
HAL Id: hal-01714060
https://hal.science/hal-01714060

Submitted on 21 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Traffic Sequence Charts for the Development of
HAVs

W Damm, S Kemper, E Möhlmann, T Peikenkamp, A Rakow

To cite this version:
W Damm, S Kemper, E Möhlmann, T Peikenkamp, A Rakow. Using Traffic Sequence Charts for the
Development of HAVs. ERTS 2018, Jan 2018, Toulouse, France. �hal-01714060�

https://hal.science/hal-01714060
https://hal.archives-ouvertes.fr

Using Traffic Sequence Charts at the Development of HAVs∗

W. Damm1,2, S. Kemper1, E. Möhlmann1, T. Peikenkamp1, A. Rakow2

1 OFFIS - Institute for Information Technology, Escherweg 2, 26121 Oldenburg, Germany

2 Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany

Regular Paper

Keywords: highly autonomous driving, formal
specification languages, testing, type acceptance

1 Introduction

Within the german automotive industry there is a
convergence on proposing catalogs of scenarios as
a key element for acceptance testing of highly au-
tonomous vehicles (HAV). This approach is currently
taken in the german PEGASUS project and the EC-
SEL project ENABLE-S3, and will be matured in fol-
low up projects currently under evaluation.

A traffic scenario catalog lists possible traffic evolu-
tions. In this paper, (i) we illustrate how a scenario
catalog captured via Traffic Sequence Charts (TSCs)
can advantageously accompany the development pro-
cess of HAVs and (ii) we give an overview of the main
features of TSCs. TSCs are a new formal specification
language [4, 3], especially tailored for the specification
of scenario catalogs.

In particular in the early and late phases of the de-
velopment, the TSC scenario catalog will have a high
impact. In the early phase it can serve as means to
structure the application domain of the HAV. There
it can be used to distinguish relevant use cases and
critical scenarios. When finally the developed system
is tested, the TSC scenario catalog specifies the test
cases, in which the vehicle under test is examined to
show the expected behavior. Such behavior can for
instance be, avoiding a near crash situation with a ve-
hicle ahead by changing to the opposite lane if the lane
is known to be “sufficiently free”. A successful accep-
tance test against such a scenario catalog thus demon-
strates, that the vehicle’s perception system (including
sensors, sensor fusion, object identification algorithms,
possibly including information gained from car2x mes-
sages) is able to

• identify all objects in the scenario,
• assess statements about the future evolution of the

perceived internal representation of the prevailing
traffic situation such as “the opposite lane is suffi-
ciently free”, and

∗This work has been partially conducted within the ENABLE-

S3 project that has received funding from the Ecsel Joint Under-

taking under grant agreement no 692455. This joint undertaking

receives support from the European Union‘s Horizon 2020 Research

and Innovation Programme and Austria, Denmark, Germany, Fin-

land, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Bel-

gium, France, Netherlands, United Kingdom, Slovakia, and Norway.

• make, based on its perception of the car’s dynamic
capabilities and prevailing road and weather condi-
tions, informed judgments about the higher safety
margin of carrying out a lane change to avoid an
obstacle ahead, as compared to, say, a maximum
breaking maneuver and staying in the same lane.

This paper proposes a visual, formal specification lan-
guage for capturing scenarios, and thus addresses key
industrial needs for supporting scenario-driven spec-
ification and scenario-based acceptance testing for
HAVs:

1. How can we at all capture the infinite number of
possible traffic situations of an HAV in a finite cat-
alog with finitely represented scenarios?

2. How can we at the same time determine unambigu-
ously whether a particular evolution of traffic situ-
ations is covered by a scenario?

3. How can we, thus, decide, whether the reaction of
the vehicle-under-test in a given concrete traffic sit-
uation is compliant to the scenario catalog (and
thus derive test suites for acceptance testing from
scenario catalogs)?

4. How can we assess, whether all possible traffic sit-
uations are covered by scenarios?

This paper provides answers to challenges 1-3, and
provides two necessarily incomplete, complementary
proposals of how to deal with challenge 4.

We propose to use TSCs for scenario catalog spec-
ification. TSCs are a declarative specification lan-
guage, where thus every individual chart determines
via its formal semantics an infinite set of evolutions of
an infinite set of initial traffic situations meeting the
constraints on individual traffic situations and their
evolution specified in a TSC. Each additional chart
thus adds further constraints. TSCs observe entities
defined in an ontology of the categories of all types
of artifacts which must be observable in real traffic
situations currently developed within the OpenSCE-
NARIO1 initiative of OEMs and Tier1 suppliers. A
formal dense time world model implements the enti-
ties and types. It thereby captures all relevant phys-
ical phenomena of the real world. These phenomena
include

• environmental conditions, such as status of road sur-
face, aquaplaning, lighting conditions, and

• weather conditions, both influencing the perception

1http://www.openscenario.org/

1

http://www.openscenario.org/

and
• maneuvering capabilities of a HAV.

Formally, TSCs visualize first-order real-time tem-
poral logic formulas [4] that refer to the world model.
TSCs are tailored to be intuitively comprehensible by
visualizing scenarios. Additionally, TSCs have a for-
mal semantics. They are hence tool independent and
unambiguously machine-interpretable.

The design of this language benefits from our exten-
sive experience on designing visual specification lan-
guages such as Live Sequence Charts and Timing Dia-
grams, and the underlying technology for automatic
generation of observers, test cases, and animations
from such visual specification languages.

Outline In the next section, we present an introduc-
tory example in order to give an impression of how
a TSC specification looks like. In Section 3 we pro-
vide a brief overview of the TSC formalism and basic
notions. Then in Section 4 we outline how scenario
catalogs can be used for the development of HAVs.
Section 5 illustrates on a running example how TSCs
can be advantageously used to define scenario cata-
logs and accompany the development process. Before
we give our conclusions in Section 7, we use Section 6
to discuss the already achieved and also future work
related to TSCs.

2 Introductory Example

A TSC specification consists of (i) a formal world
model (for instance specified via probabilistic hybrid
automata) defining entities, (ii) a visual specification
of scenarios or rules and (iii) a symbol dictionary that
defines the link between the visual symbols and the
entities of the world model. In this section we give
an impression of the visual specification by sketching
the development of a collision avoidance maneuver.
As initial situation we consider a car that drives on
a two-lane highway on the right lane and approaches
an obstacle, for instance a non-moving object (e.g. a
construction site) or a slowly moving object (e.g. ve-
hicle).

We first structure the space of possible scenarios
arising at that situation. There are two basic scenar-
ios: either the car stays on the right lane and collides
with the obstacle, or it changes lane and avoids the
collision. Figure 1 shows a TSC that models a colli-
sion scenario. TSCs are to be read from left to right.
So, Figure 1 consists of a header (explained later) fol-
lowed by three snapshots (sns). Sn1 (the black frame
with gray hatching) is the empty snapshot and speci-
fies that we allow anything to happen before sn2. Sn2

specifies our initial situation. The car is on the right
lane, distance ≤ d1 away from the obstacle (the black
rectangle).2 The distance arrow is used to spec-
ify bounds on distances between objects. The third

2d1 denotes a predicate specifying the emergency braking
distance while, e.g., d2 at Figure 2 denotes the distance a car
needs to get around the obstacle. They depend on the current

snapshot describes a collision between the car and the
obstacle. The hatching on the lanes denotes that—
for now—we do not constrain whether there are other
objects (”don’t care”). Figure 2 specifies the collision-
avoidance scenario. Again, the sequence of sn1, sn2 ex-
presses that eventually sn2 is reached –the car is ≤ d1
away from the obstacle. Before the car gets closer to
the obstacle than d2, it starts changing lane (cf. sn3).
The dashed somewhere-box surrounding the car indi-
cates that the car may be anywhere within the box.
The whole process of changing onto the left lane is,
hence, covered by sn3. Sn4 describes that the car has
arrived on the left lane and drives past the obstacle.
Finally, the last snapshot describes that the car has
passed the obstacle. Note that we require snapshots
(of a sequence) to contiguously hold during a trajec-
tory. Hence, the somewhere-boxes at sn3 and sn4 are
an important mean to write succinct specifications.

The headers in Figure 1 and Figure 2 declare
that both TSCs are to be understood existentially
(quantification mode = exists). That is, we specify that
the scenarios of Figure 1 and Figure 2 exist. Existen-
tial TSCs allow cataloging observations.

While Figure 1 and Figure 2 describe observations,
the TSC in Figure 3 specifies behavior of ego, the car
under design at a collision avoidance maneuver.

It specifies that if ego gets into the situation of sn1

–ego is closer than d1 to an obstacle– and if the left
lane will be free for a time duration greater than t (cf.
sn2), then ego changes to the left lane and drives past
the obstacle. We now introduce the syntactical ele-
ments used at Figure 3 step by step. The TSC uses
a premise-consequence chart to express “if ego [. . .],
then ego changes lane [. . .]”. The dashed hexagon
contains the premise. Right of it follows the conse-
quence. Our premise consists of two parts: It specifies
the initial situation via sn1 (so the premise expresses
“if ego is closer than d1 to the obstacle”) and via sn2

the future (which adds to the premise “and if there will
be no car within a distance of d4 behind ego up to d5
in front of ego”). We use the nowhere-box, a black
frame with diagonal lines, to denote that we rule out
the existence of cars within the box. The dimensions
of the nowhere-box are specified via the distance ar-
rows anchoring at ego’s and the box’s borders. The
hour glass on top of sn2 specifies that the left lane
will be free for a time duration greater than t. The
consequence (sn3 to sn5 of Figure 3) is like sn3 to sn5

of Figure 2, but with the additional annotation of a
bar at its top. This annotation specifies how conse-

quence (sn3 to sn5) and the future (sn2 abbreviated by
) synchronize. ego has to perform the lane change

while the left lane is guaranteed to be free. Thus, the
future snapshot sn2 is concurrent to sn3 and ends some
time during sn4.

state of the involved cars and the environment. Due to the lack
of space, we refrain from spelling out the distance predicates di,
1 ≤ i ≤ 5, in this example.

2

qnt.m= exists

act.m= initial

≤ d1

Figure 1: The car collides with the obstacle.

qnt.m= exists

act.m= inital

≤ d1 ≥d2 d3

Figure 2: The car avoids the collision with the obstacle.

As the activation mode of the TSC of Figure 3 is
always and the quantification mode is all, all trajec-
tories have to satisfy the TSC and if at any time the
premise matches (“ego is close to an obstacle and the
left lane will be free”), the consequence has to hold
(“ego changes to the left lane”). The TSC of Figure 3
specifies a very abstract lane change rule –chosen here
for simplicity and ease of the example. A TSC for a
concrete implementation will rephrase the future part
of the premise of Figure 3 (“there will be free”) in
terms of sensor readings and on-board prediction so
that a sufficiently free corridor is guaranteed.

3 TSCs in A Nutshell

In the following, we briefly introduce the TSC formal-
ism. The interested reader can find the formal seman-
tics of TSC in [3, 4].

Traffic Sequence Charts (TSCs) are a formal-
ism to unambiguously express families of trajecto-
ries, respectively trajectory segments, in an intu-
itive, scenario-based way. To this end they refer to
world model and restrict its trajectories by combining
two formalisms synergetically: Snapshot Charts (SCs)
[3, 4] focus on the visual specification of constraints
on the continuous evolution at a scenario, while Live
Sequence Charts (LSCs) [2] support the visual spec-
ification of communications between the entities. A
TSC consists of a header, SC and optionally an LSC
part (all TSCs of Section 2 consist only of SCs with
headers). A TSC specification consists of a collection
of TSCs that have to hold conjunctively.

Snapshot Charts (SCs) can be recursively built
of snapshots (see below) composed by concatenation,
choice, concurrency and negation (cf. Figure 4). A
trajectory segment is contained in the concatenation
of two SCs SC1 and SC2 if it can be split into two
subsegments that are contained in the denotations of
SC1 and SC2, respectively. Similarly, choice, concur-
rency and negation are defined. The resulting snap-
shot graphs can additionally be annotated with tim-
ing constraints. Timing constraints can be used (i) to
specify the time duration spent at a snapshot sub-
graph as well as (ii) to synchronize concurrent de-
velopments of a scenario. The SC syntax also pro-
vides a pattern to express implications, the premise-

consequence SC (an example is given at Figure 3). The
premise is surrounded by a dashed hexagon and con-
sists of two parts, the past and the future. Both past
and future are specified via snapshot graphs. Right
of the premise follows a snapshot graph specifying the
consequence. Intuitively, such an SC is satisfied by a
trajectory, if the consequence holds in all situations
where the past has been observed and the future will
occur.

We can translate an SC to a first-order multi-sorted
real-time formula, by composing the snapshot formu-
las according to the graph’s structure and annotations.

Snapshots The leaves in the hierarchy of SCs are
given by snapshots. A snapshot describes a traffic sit-
uation. It specifies invariant properties that constrain
the (otherwise unconstrained) traffic situation by re-
quiring absence or presence of objects of the under-
lying world model and constraining their states and
relations among them. Formally, a snapshot is equiv-
alent to a first-order predicate on (i) the traffic partic-
ipants (cars, bikes, pedestrians, . . .) and (predicates
on) their attributes (like position, speed, acceleration,
mass, size, color, . . .), (ii) the traffic infrastructure ele-
ments (roads, lanes, traffic signs, . . .) and (predicates
on) their attributes, (iii) the relationships among these
entities (like distance, visibility to each other, relative
speed of two cars, same platoon membership, friction
between road and car (wheels), . . .).

LSCs are a planned and optional part of a TSC
specification. An LSC is used to represent communi-
cation protocols between the traffic participants. We
refer the reader to [2] here.

World Model An SC (temporal formula) is inter-
preted wrt. a world model WM, that is a formal model
of the “real world”. The world model defines classes
of objects (cars, bikes, . . .) with a set of attributes
(position, size, velocity, . . .) and the dynamics of
moving objects. The world model allows a possibly
unbounded number of objects each belonging to one
of finitely many classes of, e.g., (probabilistic) hybrid
automata. Nevertheless, the world model might re-
flect for instance physical constraints on the number
of objects.

3

qnt.m= all

act.m= always
≤ d1 ≥d4 ≥d5

δ δ≥t

≥d2 d3

Figure 3: The rule ”Change lane to avoid collision, if next lane is free.”

A B
A

B

A

B

A B

Figure 4: Composing snapshots: (a) Concatenation:
First A holds then B (b) Choice: A holds or B holds
(c) Concurrency: A holds and B holds (d) Negation:
It does not hold, that first A holds and then B holds.

TSCs restrict the overall possible behavior of the
world model (to the behavior modeled at the scenar-
ios). The symbols and predicate annotations used in
the snapshots refer to objects and their states within
the world model. A TSC specification thus defines the
set of trajectories that arise from the world model and
satisfy the predicates defined via SCs. Having a formal
world model provides the basis for a wide range of au-
tomated analysis techniques, such as model-checking
(e.g. to analytically answer, whether a specified sce-
nario is possible within the world model) and test-
case generation (e.g. simulate trajectories for each
scenario).

(Spatial) View In the previous section, we have
seen an example of an SC describing a scenario via a
spatial view. For collision freedom spatial dimensions
certainly have to be reflected. Hence, at our exam-
ple all object symbols refer to objects with a spatial
dimension. The spatial view encodes predicates that
relate the borders of the objects and hence encode rel-
ative placement and containment of objects.

In general, TSCs allow visualizing distinct views of
a scenario concurrently. Up to now, we mainly con-
centrated on the spatial view.

Symbol Dictionary The link between the visual
symbols used in the snapshots and the world model is
defined in a symbol dictionary. It declares the symbols
and links the symbols to object(classe)s of the world
model. The symbol dictionary also defines the mean-
ing of symbol modifications, i.e., which object features
are represented by a symbol modification (e.g., it de-
clares that the modified car symbol, , represents
a car that indicates to its left and not to its right).
To link symbol positions to object positions, for each
symbol at least one anchor (a distinguished position)
is declared at the symbol dictionary and mapped onto
an anchor of a corresponding world model object.

Conclusion To summarize, the TSC formalism is a
mean to formally specify a system, requirements or
scenario catalogs. TSC specifications are conceptu-
ally divided into a reference world model and the vi-
sual specification of constraints on the world model
(cf. Figure 5), their link is defined via the symbol dic-
tionary.

4 Scenario Catalogs for Developing
HAVs

In this section, we sketch an exemplary development
process of HAVs using scenario catalogs (and following
the V-model). In the next section, we will illustrate
how in particular TSCs are apt to accompany such a
development process.

Within the German Automotive industry there is
a convergence on proposing catalogs of scenarios as
a key element for acceptance testing of HAVs. Sce-
narios are derived from (i) collected real world data
such as, e.g., traffic accident data bases, field opera-
tional tests (FOTs) or natural driving studies (NDSs)
or (ii) along an analytical process structuring the de-
sign space, e.g., for risk analysis or by use cases, during
the development process of an HAV.

Building a Scenario Catalog In the sequel, we de-
scribe how a scenario catalog is built following mainly
[13, 12]. To this end we outline the steps to build a
scenario catalog: scenario screening, clustering, iden-
tification of entities, world model definition and the
definition abstract scenarios.

The first step of building a scenario catalog is
screening data from risk analysis, accident data bases
(like GIDAS (German In-Depth Accident Study)) and
virtual and real long term testing etc. The German
PEGASUS identifies a list of characteristics of critical
situations (like time to collision). For each of these,
concrete scenarios will be produced either by simula-
tion or by field tests, so that they get represented as
entries of the scenario catalog.

At a clustering step, then scenario clusters are built
of the concrete scenarios that are similar wrt context
and evolution. Relevant parameters, influencing fac-
tors and the characteristics of critical situations (like
time to collision) are identified at this step.

After that, the concrete scenarios will be abstracted
to obtain entries for the catalog and a world model is
defined that consists of the relevant objects and that
reflects relevant real world phenomena. Based on this
world model, abstract scenarios are derived for the

4

”TSC Scenario Specification”

• annotated SCs + optionally LSCs
• SCs translateable into first-order multi-sorted real-time logic

• snapshots describe invariant properties

• relevant aspects visualized via (concurrent) views
• visualisation has formal semantics

restrict trajectories allows analysis tasks of TSCs

”Physical Aspects at the World Model”

• world model reflects all relevant real world phenomena
• world model = compilation of agents and infrastructure objects
• objects are instances of classes, have attributes and dynamics.

• defines trajectories

”Symbol Dictionary connects TSCs with World
Model”

• it defines what objects of the world model an object
symbol represents

• it define which attribute value (combination) a
symbol modification represents

• it defines how relation symbols are translated to
predicates on the world model

Figure 5: TSCs in a nutshell

collected concrete scenario(cluster)s.
At this step the right level of abstraction has to

be ensured. Given we generalize a concrete scenario
sc to an abstract scenario sg, we will have to investi-
gate whether all concretizations of sg still reflect the
relevant criteria of sc. If for instance only some con-
cretization of an abstracted critical scenario lead to a
critical situation while other concretization do not, the
scenario specification has to be refined yielding more
determinate abstract scenarios that precisely charac-
terize critical situations.

The resulting scenario catalog consists of selected
scenarios of the world model that capture the core
of the scenario space. As well, they cover peculiar,
relevant and critical scenarios.

We envision to this end, that a completion proce-
dure is performed on the scenarios in the catalog. This
procedure checks for completeness of cataloged scenar-
ios. The completion procedure is subject of current
research efforts and is currently in the process of be-
ing investigated deeply. The basic idea is to abstract
from a concrete scenario representing a scenario clus-
ter (e.g., critical scenarios). To abstract from the con-
crete scenario, constraints are weakened (e.g., instead
of a certain number of pedestrians, the number has to
be within a certain interval). The level of abstraction
has to be chosen so that the resulting abstract scenario
still can only be refined to realistic concrete scenarios.

We then check whether all evolutions of the world
model are covered by the scenario catalog, which is a
formal analysis task.

It remains to check that the information within
the world model is represented sufficiently and cor-
rectly. The question of determining an appropriate
world model perimeter is an important research direc-
tion, which has been approached in [1].

We envision that such a scenario catalog is main-
tained by a public accredited trust center as described
in [11, 12] and agreed upon by manufacturers as to
provide the relevant scenarios for type acceptance.

Scenarios at the Development Process At Fig-
ure 6 we illustrate the design process for a safety con-

cept following the V-model and using such a catalog
of scenarios.

As a first step of the development process the sys-
tem context is analyzed and a world model reflecting
the relevant phenomena and entities is defined (WM).
At this step, the existing scenario catalog –built in a
step referred to as (Sc)– is taken into account. The
steps (WM+Sc) provide the basis to define homology
criteria and use cases for the system under design.

According to our development process, functional
and non-functional requirements (Rq) of the system
under design are defined and then refined until they
are concrete enough for implementation (Rq+Im).
The requirement specification is strongly influenced by
the scenario space, that reflects the necessities, risks
and optimization potentials of the system within the
targeted context.

Part of the design is a safety concept to combat
the identified risks. A risk identification process is
started already with the identification of use cases and
accompanies the development process.

In the phase (VA), verification and analysis, anal-
ysis methods such as virtual testing or model check-
ing, are triggered on different levels of the abstract
system and finally on the realized system. The goal
of (VA) is to ensure that the realized system fulfills
the requirements of (Rq+Im). The realized system
is tested component-wise with increasing system com-
plexity, and finally acceptance is tested.

At verification and analysis, the scenario catalog
provides the system context and targeted uses cases,
based on which test runs can be generated.

Conclusion Scenarios catalogs allow collecting use
cases, critical situations and peculiarities that can
drive the development process. They help to structure
the design space early at the development process and
help to identify system borders. Next they provide a
reference test environment that supports virtual tests
already at abstract system specifications up to the def-
inition of concrete tests for acceptance testing.

5

Technical
Safety Concept

HW/SW
Safety Reqs

Development of
System Safety

Concept

Development of
Component

Safety Concept

Realization

Verification

Safety Goals

HW/SW
Safety Tests

Component
Safety Tests

System
Safety Tests

Development of
HW/SW Safety
Requirements

Definition of
Safety Goals

Functional
Safety Concept

Acceptance
Tests

HW/SW Safety
Test Cases

Component Safety
Test Cases

System Safety
Test Cases

Acceptance
Test Cases

Scenario
Catalog

Lifecycle
(Extension

from
in-situ data)

TSC

TSC

TSC

TSC

TSC

Figure 6: The V-Model for a Safety Concept. TSCs are used at the early and late stages of development.

5 TSCs for Developing HAVs

As outlined in the previous section, scenarios pro-
vide early in the design process information based on
which requirements of the autonomous driving func-
tion (ADF) can be derived, and furthermore they ac-
company the design process by providing a reference
for testing and validation. Along the development pro-
cess scenarios will be considered at different levels of
detail and underlie a refinement process that is influ-
enced by the characteristics of the implemented sys-
tem and the analysis at hand.

TSCs are a formalism that allows to formally repre-
sent scenarios at different levels of abstraction. TSCs
can, hence, accompany the development process of
HAVs, supporting refinement, maintenance and anal-
ysis of scenario catalogs during the development of
HAVs by formal methods.

They allow to specify a scenario (bundle) as a se-
quence of snapshots. A TSC specification of sce-
narios is hence visual and yet formal. The scenario
specification refers to a formal world model, which
is an important product/artifact of building a sce-
nario catalog [13]. TSCs distinguish between the world
model definition and the specification of the scenarios
(WM+Sc).

Furthermore, TSCs can be used to specify require-
ments (Rq). These can successively be made more
detailed up to rules that capture the preconditions of
implementable specifications (Im). So TSCs allow to
accompany activities at the left arm of the V-model,
from requirements towards implementation.

Further, TSCs formally capture scenarios and allow
describing abstract as well as concrete scenarios. A
TSC scenario catalog can easily be used for simulation
and testing wrt the requirements. So also at the right
arm of the V—verification and analysis (VA)— TSCs
are nicely applicable. TSCs are especially well suited
for virtual tests.

In the following, we give simple yet representative
TSC examples to illustrate how TSCs can advanta-
geously be used. TSCs are a powerful formalism, be-
cause it combines the world model formalism with the
first-order temporal logic of the SCs. Their key feature
is to provide a mean to specify formally yet visually.
For this reason, we see their application especially at
the early phases of the development process and at the
late where experts of different domains cooperate.

(WM+Sc) According to the previous section, the
reference scenarios are defined wrt a world model WM
that identifies the relevant objects and real world phe-
nomena. The TSC formalism is based on such a WM.
For TSCs WM is supposed to overapproximate every
possible—and relevant—behavior of the real world.
That means everything that is relevant and possible
within the real world has to be possible at WM as well.

Example 1. Let us for a toy example consider a sim-
ple world model that defines the attributes and dynam-
ics of roads, lanes and cars. We model these objects
for instance via hybrid automata classes. An automata
instance of class Car defines for example the steering
and acceleration capabilities of a car. The control of
the car is not subject of the world model. To overap-
proximate every possible behavior, a car hence behaves
non-deterministically. Here we leave it to SCs to re-
strict the behavior appropriately and thereby making
assumptions on the nominal and exceptional behavior
explicit. �

The list of reference scenarios can be expressed via
existential TSCs. Note, that a single TSC usually rep-
resents infinitely many trajectories of WM, that is all
trajectories that satisfy the requirements characteriz-
ing the scenario variation.

Example 2. Consider for instance a single snapshot
as in Figure 7 to see how a TSC represents an infinite
number of concrete scenarios.

6

!

Figure 7: Car with the intent to turn left at the inter-
section

! ! !

Figure 8: Exemplary instances of the initial scenario

For a TSC specification a symbol dictionary for-
mally documents the (used) formal meaning of sym-

bols. For our toy example we use to represent
Car objects of the world model. We represent the in-
tended path a car wants to drive via a blue dashed
arrow. We represent a lane with no adjacent lane be-
low but with an adjacent lane above via . Its norm
traffic direction is such that the dashed line is to the
left hand side of the vehicle.

At Figure 7 a car is at one of the four lanes of the
intersection and intends to turn left. Via this snap-
shot we specify that the car is in front of the crossing
and that the considered crossings have two roads with
two lanes, but we do not, e.g., specify how far the car
is away from the crossing or how fast it is. Further
we do not constrain the number or positions of other
traffic participants. Every compilation of other traffic
participants, that is possible at the world model, satis-
fies this snapshot.

The snapshot hence represents infinitely many situ-
ations within the space of possibilities that is spanned
by the different attribute values of the car that wants
to do a left turn and by the possible other traffic par-
ticipants. �

Having a formal definition of the scenarios and a
formal definition of the world model allows to formally
check whether the scenario is actually possible within
the world model.

Moreover, using TSCs to specify a scenario catalog,
allows to describe those scenarios detailedly that are
considered to be relevant and represents others more
abstractly. We can hence cover all behaviors of the
world model via scenarios.

Example 3. At Figure 9 we captured all scenarios
where the car eventually successfully performs a left
turn maneuver. Again eventually is expressed by the
True snapshot, sn1 of the SC. At our initial situation

qnt.m = exists

act.m = initial
!

Figure 9: Successful Left Turn

qnt.m = exists

act.m = initial
!

Figure 10: Failed Left Turn

qnt.m = all

act.m = invariant
!

Figure 11: Fully covered left-turn scenario

the car is in front of the intersection and intends to
turn left (sn2), then the car drives onto the intersec-
tion (sn3), turns left and finally arrives at the intended
destination (cf. sn5). Similarly, Figure 10 captures a
scenario starting at our initial situation, but then ev-
ery behavior is allowed that does not accord not the left
turn maneuver of Figure 9. At Figure 10 we hence de-
scribed a scenario where the car does not eventually
successfully performs the left turn. �

We advocate to maintain scenario catalogs that
completely cover all WM behavior. TSCs can express
that a set of existential scenarios covers completely
the world model. To this end, we can for instance use
a universal TSC that disjunctively lists the scenarios
that together cover the world model behavior.

Example 4. At Figure 11 we captured in a universal
invariant TSC rule with the premise consequence pat-
tern that Figure 9 and Figure 10 cover the complete
scenario space at the initial situation of Figure 7. The
SC in Figure 11 specifies that whenever we are at the
initial situation, then the SC of Figure 9 or the SC of
Figure 10 is satisfied. So, a scenario catalog with the
TSCs of Figure 9, Figure 10 and Figure 11 expresses
that there are a successful and a failed left turn and
that from the initial situation, these two are the only
possibilities. �

(Rq+Im) TSCs not only allow to list scenarios,
they can also be used to capture requirements (Rq).
These requirements can be specified (i) in a future de-
pendent and abstract way, which seems natural for a
requirement early in the design process as well as (ii)
in a more detailed way, up to pure ”past implies a
future consequence” rules.

7

Example 5. At Figure 3 we have already presented an
example how TSCs can be used to specify requirements.
The TSC specifies (R1): ”the system is required to
change lane, if it meets an obstacle at its lane and
the next lane is free”. (R1) is quite intuitively say-
ing ”change lane, if possible”. It requests the car to
change lane, if the car will be able to change onto the
next lane and no other car will be there closer than
the safety distance. The requirement (R1) is overly
strong, since the car cannot foresee the future, but has
to predict based on the currently available information,
whether next lane will be free. TSCs allow specifying
abstract requirements like (R1). A more detailed ver-
sion of ”change lane, if possible” is given at Figure 12.

Figure 12 specifies that ego is required to change
lane if there is no other car at the next lane within
distance d6 to its rear and within distance d7 ahead.
d6 and d7 abbreviate functions on the ego car and the
car to the back or respectively front that takes the rel-
ative speed into account to conservatively determine
a distance great enough to guarantee that the obstacle
avoidance maneuver can be performed safely, whatever
other cars may do. Note that hence d6 and d7 will usu-
ally be greater than safety distances d4 and d5. �

Requirements can successively be made more de-
tailedly. While at (Rq), TSCs of the ”past and future
imply a future consequence” pattern seem most ap-
propriate to capture the precondition, TSCs of the
pattern ”past implies a future consequence” are ex-
pected to be used to specify requirements close to im-
plementation (Im), where the precondition refers to
information available at the present.

Hence, from (Rq) to (Im) the future (oracle) is re-
placed by collected information (perceivable via sen-
sors) that allow to predict that the formerly oracled
future is guaranteed. This step of identifying sufficient
sensable information is vital for the implementation of
the system in hardware. Since both, the initial ora-
cle pattern and the implementation-close “past implies
the future” pattern are formal and relate to the same
world model, we can reason about coverage and criti-
cality.

Example 6. At example 5, (R1) is specified via a
TSC ”past and future imply a future consequence”
rule, whereas (R2) is specified via a ”the past implies
a future consequence” rule. Applying formal methods
on the TSC specifications allows to analyze the relation
of (R1) and (R2). For instance, ”Are there trajecto-
ries for which a lane change is required by (R1) but
not by (R2)?”, ”Is a lane change performed according
to (R2), that is not possible according to (R1)” are
questions that can be analyzed with the help of model
checking. �

(VA) Given the system has already been
implemented—fully or in parts—, simulation and
testing will be performed to verify that the realized
system fulfills the specification.

TSCs conceptually separate the world model and
the specification of controller. The constraints on the
controller under design are captured via SCs. For a
virtual test, a play out [10] of environment behavior
is basically determined by the world model. At a test
run it has to be monitored whether the implemented
controller satisfies the SCs.

Given a FOT according to a scenario is performed,
the observed behavior is of discrete and continuous na-
ture (e.g., the discrete controller and continuous car
dynamics). Formally, we ask whether the observed
behavior is possible within the world model and satis-
fies the SCs. This is not decidable in general. Never-
theless, since the observations will only approximate
the reality (due to limited observation accuracies and
resources for storing), we rather ask whether the se-
quence of observations is robustly (due to the jitter in
accuracies) possible. To this end we plan to employ
the results of [7, 8, 5, 19] to analytically answer this
questions in a broad range of settings.

6 Achievements and Next Steps

In the following, we summarize the main features of
TSCs and outline the next steps of the development
of the TSC formalism for developing HAVs.

6.1 Benefits of Using TSCs

To summarize, TSCs are a specification formalism
that allows us to accompany the development process
of HAVs from the specification of a scenario catalog,
over the requirement specification, to testing and val-
idation. Since TSCs have a formal semantics, they
open the door to application of formal methods.

A TSCs specification is conceptually divided into a
world model specification and SCs that capture sce-
narios and requirements. The world model of TSCs
can be seen as the test environment at the analysis
and validation phase. Since the testing of ADFs can-
not be done retrospectively [13] but has to accompany
the development process, TSCs are, hence, in partic-
ular suited as a formalism.

Moreover, TSCs are a visual specification formalism
allowing specifications at different levels of abstrac-
tion. The formalism allows the introduction of cus-
tomized sets of symbols. Although we focused here
only on the spatial view, different aspects of a behav-
ior can be visualized at specialized views. TSCs aim
to accelerate the discussions among experts of differ-
ent domains by providing an intuitive, visual and yet
formal specification language.

Using TSCs to specify a scenario catalog, we can (a)
list required scenarios as existential TSCs and also (2)
express that a set of scenarios covers all possible evo-
lutions via universal TSCs. Whereas (1), listing sce-
narios, is the minimum requirement for a formalism
to specify scenario catalogs, (2), expressing complete
coverage, is a distinguishing features of TSCs. A sce-
nario catalog that covers all possible evolutions of the

8

qnt.m= all
role = ego
act.m= always ≥d6 ≥d7

≤ d≤ d1

≥d4 ≥d5

≥d2 d3

Figure 12: Rule: Change lane to avoid collision, if next lane is free.

world model—the relevant more detailedly, the others
more abstractly— helps not to miss scenarios.

We see TSCs mostly at the early stages of the V-
model and at the end. In particular, they are suited
to support scenario based testing. Certainly testing
inspects the system only in a finite number of test
runs, while for HAVs usually infinitely many evolu-
tions are possible. This is in contrast to methods like
model checking, which are used for instance to ver-
ify hardware. Model checking exhaustively examines
the system’s functionality. For HAVs there are two
main problems: (WG) the gap between model and
real world, and (CC) the complexity of the verifica-
tion task. Even if the formal model of a system is
verified to be correct, the question remains whether
the system is correctly modeled. HAVs, due to the
continuous dynamics, are usually too complex (and
often undecidable) for practical use of model checking
of the complete system. Thus testing is irreplaceable
at the system level, even if formal methods prove parts
of the system to be correct.

Scenario catalogs allow us to focus our attention on
relevant and critical scenarios. Especially TSC cata-
logs with complete coverage can hence ensure that the
test efforts are invested where necessary and allow to
relieve the test effort for other scenarios.

6.2 Next Steps

In Section 4 and Section 5 we sketched how TSCs may
accompany the development of HAVs. We mentioned
that one major benefit of TSCs is the application of
formal methods. Conceptually, TSCs allow rich spec-
ifications at the SCs and the world model and are,
hence, in general undecidable [14]. So we cannot ex-
pect that a model checker will terminate in all cases
applied to check for instance whether a scenario cata-
log covers all world model behavior. Instead of the full
model, simplified models can be examined, which of-
ten provides valuable hints regarding the full model’s
properties. As real world systems with limited sensor
precision also allow to use a notion of robust satisfac-
tion, we might profit from the results of [7, 8, 5, 19] on
decidability for robust satisfaction. In the future we
will look into efficient automatic methods for checking
consistency and completeness relative to a given world
model.

A TSC specification is based on a world model. The

dynamic models of other traffic participants, reflecting
observed behaviors in real traffic situations, calls for
a formalism like probabilistic hybrid automata. The
current TSC formalism can be based on such world
models, but does not yet allow to specify probability
properties on the set of alternative evolutions, as for
instance “the left turn has to be successful in at least
99, 9% of the situations”. We plan to extend the TSC
formalism to this point. In [9], we have already shown
that a preliminary version of TSCs is suitable for test-
ing and statistical inference over the satisfaction of
safety requirements in complex traffic scenarios. The
TSC formalism is based on a world model. Although,
using TSCs can help to detect inconsistencies within
the world model, TSCs are not a tool to build a world
model. The question of how a suitable world model
can be obtained, poses an important future research
challenge, which is subject of future projects.

We claim that another major benefit of TSCs is suc-
cinctness and intuitiveness of the resulting specifica-
tions. The intuitiveness of TSCs depends on a careful
and contemplative design of symbols. For instance we
expect that the symbol is usually attributed with
properties like, ”fits onto a lane”, ”can accelerate to
at most 300km/h”. So representing a general vehicle,
a van, a big jeep, a racing car or truck would disguise
problematic situations. Since TSCs are based on a
formal semantics such misconceptions can be detected
by simulation runs at the specification level. Accom-
plishing an intuitive visualization is a major research
challenge. We plan to conduct experimental evalua-
tion of the intuitiveness of TSCs and more over we
will work with traffic psychologists for revisiting the
language design, in parallel to testing the approach in
non-trivial sample use cases.

All symbols used in an SC—except the pins,
somewhere- and nowhere boxes—refer to world model
objects. So the symbol set is flexibly adaptable to
the user’s needs. The link between symbols and world
model is defined in the symbol dictionary. Note that,
in order to use TSCs to specify the scenario catalog
of a public accredited trust center, as outlined at page
5, a consent on the symbol dictionary and the world
model allows each company to adopt the visual sym-
bols to its own needs without changing the semantics,
e.g., a car of the world model can be represented by

9

or .

6.3 TSCs and Scenario Languages

The importance of studying scenarios for the develop-
ment process has long been recognized—not only in
the transportation domain.

For instance, there are commercial tools that al-
low defining virtual scenarios for testing. Also in
academia, scenario languages for driving simulations
have been discussed, e.g., [17, 20, 24]. These languages
aim to orchestrate activities to define a traffic evolu-
tion within a virtual world.

In contrast to the above scenario languages for driv-
ing simulations, TSCs do not aim to define a single
traffic evolution but to specify scenario bundles, visu-
alizing the constraints defining the scenario (bundle).
A TSC scenario usually represents infinitely many con-
crete traffic evolutions (cf. Example 2) due to its
declarative nature. Usually only the play-out [10] of a
TSC represents a single traffic evolution. Being able
to specify bundles of scenarios, TSCs can be used to
structure the scenario space. Moreover, they allow
expressing, e.g., complete coverage of all possible sce-
narios of the world model (cf. Example 3).

Recently, the merits of a tool independent defini-
tion of scenarios got into the focus of academia [16, 6]
and industry. A tool independent approach is made
by OpenSCENARIO [23]. OpenSCENARIO [23] “is
an open file format for the description of dynamic
contents in driving simulation applications” [23]. To-
gether with OpenDRIVE [21] and OpenCRG [22] they
form a complementary set of exchange formats. These
formats aim at becoming a standard. There the static
road networks are basically described as graphs of
lanes labeled with geometric shapes. Dynamic con-
tent is described as a storyboard with trigger-action
pairs.

In contrast to OpenSCENARIO, TSCs are based on
a formal semantics, consequently they certainly are
tool independent and unambiguously define scenario
(bundles).

Furthermore, TSCs—other than the above
formalisms—visualizes scenario specifications. In
this respect, TSCs are close to Multi Lane Spatial
Logic (MLSL). MLSL is a spatial interval logic that
was introduced in [15] to simplify reasoning about
safety of road traffic by abstracting from the car
dynamics. TSCs like MLSL have a formal visual
semantics to represent (abstract) traffic evolutions. In
contrast to MLSL, TSCs do not determine the level
of abstraction, but leave it open to the specification
of the world model and the symbol dictionary.

6.4 Tools for TSCs

TSCs can be nicely used to automatically gener-
ate simulations like for LSCs [10]. A simulation is
a concretisation of an abstract scenario of the sce-
nario catalog where concrete valuations have been as-

signed to the quantified variables. Also TSCs can be
used to generate requirement monitors, e.g., for func-
tional (safety) requirements. Requirement monitors,
when attached to a simulation, can be used to check
the satisfaction of requirements. Such a procedure
has already been successfully established using timed-
automata in the case of LSCs [18].

Additionally, we envision tool support for inspecting
and editing TSCs. This will allow engineers to make
use of TSCs during the development and refinement
of e.g. a safety concept and to use the visualization
during inspection of possible violations.

An advantage of TSCs in this context is that the
visualization of virtual runs can be close to the visu-
alization of the scenario specification. We expect that
this feature eases debugging.

Moreover, representing concrete scenarios in the
OpenSCENARIO format allows us benefit from any
OpenSCENARIO-based tool such as simulators.

We have already developed an internal prototypical
editor for TSCs. We envision, that TSCs can nicely be
used within an integrated development environment.
There different visualizations can be switched on and
off and formal analysis techniques can be triggered and
their results are visualized in terms of TSCs.

7 Conclusion

In this paper, we have introduced TSCs and illus-
trated their usability. TSCs are a visual specification
language based on a formal semantics targeting to de-
scribe the system in scenarios. As a consequence TSCs
support testing based on scenarios well but also enable
the use of formal methods to analyze TSC specifica-
tions. Especially at the early and late phases, the
visualization of the formal specification provides an
appealing mean to involve the various stakeholders of
different backgrounds.

References

[1] W. Damm and B. Finkbeiner. Does it pay to extend
the perimeter of a world model? In FM 2011: For-
mal Methods: 17th International Symposium on For-
mal Methods, Limerick, Ireland, June 20-24, 2011.
Proceedings, pages 12–26, 2011.

[2] W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. Formal Methods in System
Design, 19(1):45–80, 2001.

[3] W. Damm, S. Kemper, E. Möhlmann, T. Peikenkamp,
and A. Rakow. Traffic sequence charts - from visual-
ization to semantics. Reports of SFB/TR 14 AVACS
117, SFB/TR 14 AVACS, 10 2017.

[4] W. Damm, E. Möhlmann, T. Peikenkamp, and
A. Rakow. A formal semantics for traffic sequence
charts. In Festschrift in honor of Edmund A. Lee,
2017.

[5] W. Damm, G. Pinto, and S. Ratschan. Guaran-
teed termination in the verification of ltl properties
of non-linear robust discrete time hybrid systems. In
Automated Technology for Verification and Analysis:
Third International Symposium, ATVA 2005, Taipei,

10

Taiwan, October 4-7, 2005. Proceedings, pages 99–
113. Springer, 2005.

[6] M. C. S. Filho and J. J. P. C. Rodrigues. Human read-
able scenario specification for automated creation of
simulations on cloudsim. In Internet of Vehicles –
Technologies and Services: First International Con-
ference, IOV, Beijing, China, September 1-3, 2014.
Proceedings, pages 345–356, 2014.

[7] M. Fränzle. Analysis of hybrid systems: An ounce of
realism can save an infinity of states. In Computer
Science Logic: 13th International Workshop, CSL’99
8th Annual Conference of the EACSL Madrid, Spain,
September 20–25, 1999 Proceedings, pages 126–139,
1999.

[8] M. Fränzle. What will be eventually true of poly-
nomial hybrid automata? In Theoretical Aspects
of Computer Software: 4th International Symposium,
TACS 2001 Sendai, Japan, October 29–31, 2001 Pro-
ceedings, pages 340–359, 2001.

[9] S. Gerwinn, E. Möhlmann, and A. Sieper. Statistical
model checking for scenario-based verification of adas.
In Control Strategies for Advanced Driver Assistance
Systems and Autonomous Driving Functions, 2017. to
appear.

[10] D. Harel and R. Marelly. Come, Let’s Play: Scenario-
Based Programming Using LSC’s and the Play-
Engine. Springer, 2003.

[11] P. Heidel and W. Damm. Highly Automated Systems:
Test, Safety, and Development Processes, manage-
ment summary. http://www.safetrans-de.org/en.
accessed on 20.10.2017.

[12] P. Heidel and W. Damm. Hochautomatisierte
Systeme: Testen, Safety und Entwicklungsprozesse,
Roadmap. http://www.safetrans-de.org/de/

Aktivitaeten/Roadmapping.php. accessed on
16.11.2017.

[13] T. Helmer, K. Kompaß, L. Wang, T. Kühbeck, and
R. Kates. Safety performance assessment of as-
sisted and automated driving in traffic: Simulation
as knowledge synthesis. In Automated Driving: Safer
and More Efficient Future Driving, pages 473–494.
Springer, 2017.

[14] T. A. Henzinger, P. W. Kopke, A. Puri, and
P. Varaiya. What’s decidable about hybrid automata?
Journal of Computer and System Sciences, 57(1):94–
124, 1998.

[15] M. Hilscher, S. Linker, E.-R. Olderog, and A. P. Ravn.
An abstract model for proving safety of multi-lane
traffic manoeuvres. In Formal Methods and Software
Engineering, ICFEM 2011, Durham, UK, Proceed-
ings, volume 6991 of Lecture Notes in Computer Sci-
ence, pages 404–419. Springer, 2011.

[16] S. Jafer, B. Chhaya, U. Durak, and T. Gerlach. For-
mal scenario definition language for aviation: Aircraft
landing case study. In AIAA Modeling and Simulation
Technologies Conference, 2016.

[17] J. Kearney, P. Willemsen, S. Donikian, and
F. Devillers. Scenario languages for driving
simulation. In Driving Simulation Conference,
DSC’99, pages 377–393, 1999. [Online]. Available:
www.cs.uiowa.edu/ kearney/pubs/dsc99 kearney.pdf.

[18] S. Li, S. Balaguer, A. David, K. G. Larsen, B. Nielsen,
and S. Pusinskas. Scenario-based verification of real-

time systems using uppaal. Formal Methods in System
Design, 37(2):200–264, Dec 2010.

[19] S. Ratschan. Safety verification of non-linear hybrid
systems is quasi-decidable. Formal Methods in System
Design, 44(1):71–90, 2014.

[20] P. Suresh and R. Mourant. A tile manager for de-
ploying scenarios in virtual driving environments. In
Driving Simulation Conference, pages 21–29, 2005.

[21] VIRES Simulationstechnologie GmbH. OpenDRIVE,
2015. http://www.opendrive.org, accessed: 2017-
11-10.

[22] VIRES Simulationstechnologie GmbH. OpenCRG,
2016. http://www.opencrg.org, accessed: 2017-11-
10.

[23] VIRES Simulationstechnologie GmbH. OpenSCE-
NARIO - bringing content to the road. 2nd Open-
SCENARIO Meeting, June 29th, 2016. http://www.

openscenario.org, accessed: 2017-11-10.
[24] I. H. C. Wassink, E. M. A. G. van Dijk, J. Zwiers,

A. Nijholt, J. Kuipers, and A. O. Brugman. Bring-
ing Hollywood to the Driving School: Dynamic Sce-
nario Generation in Simulations and Games, pages
288–292. Springer, 2005.

11

http://www.safetrans-de.org/en
http://www.safetrans-de.org/de/Aktivitaeten/Roadmapping.php
http://www.safetrans-de.org/de/Aktivitaeten/Roadmapping.php
http://www.opendrive.org
http://www.opencrg.org
http://www.openscenario.org
http://www.openscenario.org

	1 Introduction
	2 Introductory Example
	3 TSCs in A Nutshell
	4 Scenario Catalogs for Developing HAVs
	5 TSCs for Developing HAVs
	6 Achievements and Next Steps
	6.1 Benefits of Using TSCs
	6.2 Next Steps
	6.3 TSCs and Scenario Languages
	6.4 Tools for TSCs

	7 Conclusion

