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Abstract 

This paper deals with the seepage of a fluid through a fractured porous medium. It summarizes important results obtained 
using the homogenization method for periodic structures. Thereby, unlike the phenomenological approaches, the macro­
scopie behaviors are deduced from the physics at the microscopie scales, without any prerequisite. Two cases have been 
investigated: flow of gas through a rigid medium and flow of incompressible fluid through a deformable matrix. In both 
situations, it tums out that the ratio between the two separations of scales (macroscopic scale/fissure scale and fissure 
scale/pore scale) plays an essential role. The macroscopic description depends upon the separations of scales, and the 
coupling effects between the two porous systems are maximum when the scales are equally separated. Then, the 
homogenization result is compared to classical phenomenological models for slightly compressible fluid flow through a rigid 
double-porosity medium. Pseudo-steady-state phenomenological models are shown to give a rough description for transient 
excitations and finally a correction is proposed giving a more accurate short-time behavior. 

Keywords: fractured reservoir; double porosity; interporosity flow; physical mode! 

1. Introduction

A double-porosity medium consists of two interacting porous systems whose permeabilities are very 
different. Modeling such an heterogeneous system tums out to be a difficult task. Actually, taking all 
heterogeneities into account one by one appears to be impossible. Nevertheless, the internai disorder repetition 
allows a large-scale continuous description. In other words, the physical processes can be described by means of 
equations with transfer coefficients independent from the macroscopic boundary conditions. This is the basic 
idea common to all homogenization techniques. If the macroscopic scale is large enough compared to the 
microscopie scale, a macroscopically equivalent medium can be determined, i.e. behaving "in average" like the 
initial heteregeneous medium under a given excitation. The homogenization techniques have already proved to 
be efficient for modeling fluid flows through porous media. The homogenization method for periodic structures 
leads to precise descriptions since no macroscopic prerequisite is required. 

The double-porosity concept was introduced by Barenblatt et al. (1960) for the investigation of fissured 



porous media: one of the two porous structures is associated with the fractures and the other one with the porous 
matrix. Since many natural reservoirs fit with this scheme, the behavior of such a medium during fluid flow is 
particularly of interest in mining engineering and petroleum engineering. The first investigations were on the 
basis of phenomenological approaches, i.e. a directly macroscopic approach (Barenblatt et al., 1960; Barenblatt, 
1963; Warren and Root, 1963). The basic assumption of this kind of mode! is that each point in space is 
associated with two pressures: the average fluid pressure in the fractures and the average fluid pressure in the 
pore-matrix. The first mode! (Barenblatt et al., 1960) shows an important characteristic of a double-porosity 
system, i.e. the fluid exchange between the two constitutive media. To describe a pseudo-steady-state flow, it is 
assumed that the interporosity flow occurs in response to the fracture-pore difference in pressure. ln the 
simplified Barenblatt mode! (Barenblatt, 1963), the flow in the pores as well as the fracture porosity are 
neglected. As for the Warren and Root mode!, only the pore-flow is discarded. This kind of simplification is a 
subject of debate. In paiticular, let us note the works of Chen (1989, 1990), where it is claimed that the overall 
Barenblatt mode! should be solved. These three first models - the complete (Barenblatt et al., 1960) and the 
simplified models (Bai·enblatt, 1963; Warren and Root, 1963) - have been taken up again by many authors to 
apply them to different domains of reservoir engineering. A state-of-the-art in the knowledge of double-porosity 
behavior investigated with this kind of approach is well described in Gringarten (1984), and also in Chen (1989) 
for the case of slightly compressible fluids. 

On the other hand, through the homogenization method for periodic structures, the macroscopic behavior is 
derived from the complete microscopie description. Now, double-porosity media such as fractured porous media 
introduce three separated scales, i.e. three scales whose characteristic lengths are very different: the pore scale, 
the fracture scale and the macroscopic scale. Therefore, the homogenization method for periodic structures is 
well adapted to mode! the problem. 

The objective of this paper is to summarize important results obtained by this three-scale homogenization 
approach. The local descriptions at both pore scale and fracture scale are expressed by Navier-Stokes equations. 
The main result of these investigations is that the macroscopic behavior strongly depends on the relative order 
of magnitude of the three characteristic lengths. In the next section, the periodic medium under consideration is 
described, and three cases corresponding to three different relationships between the scale ratios are defined. 
Section 3, 4 are respectively devoted to gas flow through a rigid fractured porous medium and to incompressible 
fluid flow through a deformable fractured porous medium. In both sections, attention will be focused on 
physical interpretation of the results. For details concerning the method and its application, the reader will be 
referred when required, to several former papers. For a general presentation of the method in the classical case 
of a two-scale medium, see Auriault (1991). At last in Section 5, a comparison between the results obtained by 
the phenomenological approach and by homogenization is carried out in the case of slightly compressible tluid 
flow through a rigid double-porosity medium. It will be shown that the classical pseudo-steady-state mode! leads 
to a rough description for transient excitations. This limitation is well notificd by the authors of the 
pseudo-steady-state models (Barenblatt et al., 1990). To be adequate for the purpose of reservoir engineering, 
these models must be ultimately used in conjunction with well-test data (Warren and Root, 1963). The problem 
of transient-term introduction in the interporosity-flow term is mentioned in Gringarten ( 1984) and Chen (1989). 
Finally, a correction of the interporosity-flow term is proposed, which induces a more accurate short-time 
description. 

2. Medium under consideration

2.1. Medium description 

In order to make the homogenization method for periodic structures consistent with the investigation of 
three-scale problems, the medium is assumed to be doubly periodic. There is no Joss of generality by 
introducing the assumption of periodicity. It does not have any influence on the macroscopic behavior (Auriault, 
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Fig. 1. a. Pore-scale period. 

b. Fracture-scale period.
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1991). At the pore scale, consider the medium to be D-periodic and its characteristic length to be l. The solid 
and the pores occupy the domains D, and D

P
, respectively, and their common boundary is r (Fig. l a). A 

second periodic porous structure exists at the fracture level, whose period is D' and whose characteristic length 
is l', such that l' » l. The porous matrix and the fractures occupy the domains n;

P 
and n;, respectively, and 

their common boundary is noted I'' (Fig. lb). In a given reservoir l and l' are defined, but the macroscopic
characteristic length l" must be chosen such that: l" » l'. ln the classical case where only two scales are 
involved (single-porosity), the homogenization theory can be applied if the two scales are separated, namely, if 
the macroscopic scale is large enough compared to the microscopie scale. In the case of double porosity, the 
medium shows two separations of scales: 

( 1) l' / l" « 1 between the fracture scale and the macroscopic level;
(2) l / l' « 1 between the pore scale and the fracture scale.
If the first condition is not checked the homogenization theory cannot be applied because the macroscopic

scale and the fracture scale are not separated. If the second one is not checked, that means that the medium is a 
two-scale medium, namely a single-porosity medium. Thus, we assume here that the two former scale-sep­
aration conditions are satisfied, so that the medium is a double-porosity medium and the homogenization 
method can be applied. Consider the three following parameters picturing the different separations of scales: 

l' 
e = /' , 7J = 

[
" , y = B7J = 

[
"

lt will be shown hereafter that the equivalent macroscopic behavior depends upon the relationship between 
the two separations of scales e and 77. In the next subsection three different cases are isolated, which are 
defined by three different relationships between e and 7J resulting from the analysis of characteristic 
consolidation times of the medium. 

2.2. Characteristic consolidation limes of the medium 

Flow of incompressible fluid through a single-porosity deformable medium is governed by the classical 
model introduced in Biot (1941): 

v · ( ce - a P) = o 
- __ ae ap 
V· (KVP) = a

at 
+ {3at

( 1) 

(2)



where è is the material elasticity tensor; e its strain; K its permeability; and P the fluid pressure. Notice the 
symmetry of Eqs. (1) and (2) set by the tensor a. /3 > 0 is related to the compressibility of the material of the 
matrix. f3 = 0 and a= i when the matrix material is incompressible. Eqs. (1) and (2) are also valid for slightly 
compressible fluids. The rate of medium strain (ae) /(at) is such that: 

where T
c 

is the characteristic consolidation time of the medium. Let us determine the order of magnitude of � 
with respect to the characteristics of the medium. The tensor a is such that: 1 a 1 = 0( 1 ). Then, from Eq. (2) and 
if L is the macroscopic characteristic length of this single-porosity medium, we get: 

Now, from Eq. (1), it follows that: 

P = O(lèllel) 

from which 

(3) 

The order of magnitude of the characteristic consolidation time depends upon the physical and geometric 
characteristics of the material. In a double-porosity medium, two characteristic consolidation times can be 
defined, T

P 
for the porous matrix and T

r 
for the fractures: 

( a) In the pores:

( b) In the fractures:

The effective elastic coefficients of a porous material with fractures or pores can be assumed to be of the 
same order of magnitude: lè

P
I = O(lèrl), We have also IK

P
I = 0[(1'2)/( µ,)] and IKrl = 0[(!'2)/(µ,)], where µ,

is the viscosity of the fluid. From these estimations we deduce: 

T
__I:_ = 0( 1] 28-2) 
Tr 

(4) 

The ratio between the two characteristic limes depends only on the separations of scales. From this last 
relationship, three cases of interest can be isolated: 

2.2.1. Case !: Weak separation between the pore scale and the fracture scale 

1J = 0( 8 2 ) 

The small parameter 8 serves as "measurement" and is such that 8 « I. It follows: 

T 
__I:_ = 0( 8 2

) 
Tr 



For times of the order of magnitude of T
f
, the rnicroporous matrix consolidates instantaneously. The coupling 

between the two porous systems is instantaneous and the characteristic evolution time of the sunken 
microporous matrix is T

f
. 

2.2.2. Case II: Equal separations of scales 

e = O(r,) 

Hence, the relative order of magnitude of the characteristic consolidation times is such that: 

T 
_!'_=0(1) 
Tt 

Phenomena at both pore scale and fracture scale take place at times of the same order of magnitude. 
Therefore, fractured porous medium consolidation should be strongly influenced by matrix consolidation. 

2.2.3. Case III: wrge separation between the pore scale and the fracture scale 

e = O(r,2 ) 

We get: 

T 
_!l_=O(e-1)
Tt 

Microporous matrix consolidation does not influence fractured medium consolidation. Actually, while the 
fractures consolidate the matrix behaves like a single-phase elastic medium. Thus, there is no coupling between 
the two porous systems and the characteristic evolution time in the microporous matrix is T

P 
= 0( e - 1 )T

f
. 

A similar analysis could be carried out for flow of compressible fluid in a rigid matrix. Eq. (4) remains valid 
and then the characteristic times T

P 
and T

f 
are the flow characteristic times in the pores and in the fractures, 

respectively. 
Hereafter, are successively considered flows of very compressible fluid in a rigid fractured porous medium, 

and then of incompressible fluid in a deformable fractured porous medium. In each context, the local 
descriptions in the pores and in the fractures, and the macroscopic behaviors which are derived in the three cases 
of different scale separation are given. 

3. Gas flow through rigid fractured porous medium

3./. Local descriptions 

Consider quasi-static flow of very compressible fluid in a rigid fractured porous medium. Application of 
homogenization theory to this problem and calculus are detailed in Royer and Auriault (1992, 1994), Auriault 
and Royer (1993b), and Royer (1994). 

For the sake of simplicity assume the system to be initially at rest: fluid velocity is zero and pressure and 
density are constant (P

0 
and p0

, respectively). Let this equilibrium state be disturbed by changing the boundary 
conditions at the surface of the porous medium (e.g., by bringing up into service injection or production wells). 
We assume slow flow, with negligible Reynolds number. The perturbation of the equilibrium state is govemed 
by the following equations, with k = p in the pores (fl

P
) and k =f in the fractures (n;). Fluid pressure and 

density are P
0 

+ P
k and p0 + Pk

, respectively, where P
k 

and Pk 
are increments. 



3./.1. Momentum balance 

Investigation of very compressible fluid flow in a single-porosity deformable porous medium (Auriault et al., 
1990) has shown that the inertial and transient terms of Navier-Stokes equations could be neglected for the 
first-order equivalent macroscopic description. This result is still valid in the context of a double-porosity 
medium. Thus, the momentum balance is written as follows: 

f.lLlÛ
k 

+ p + IL) v( v- ük)- vp
k = o 

where À and /L are viscosities; ûk the velocity; and Pk 
the pressure increment. 

3.1.2. Mass balance 

The mass balance is expressed by: 

where p
0 

is the initial density; and Pk 
the density increment. 

3. 1.3. Gas equation of state

For the sake of simplicity, assume the fluid to be linear. Then:
Po 

Pk = -Pk 

Po 
where p0/ P

0 
= A is a constant. 

A more realistic equation of state can be easily introduced. 

3. 1.4. Boundary conditions

3.1.4.I. On r. Classically, the adherence condition is: 

ûp/I'= ô 

3.1.4.2. On I''. Continuity of normal flux and pressure are written as: 

(5) 

(6) 

(7) 

(8) 

(9) 

( 10) 

N' is a unit and normal to I'' vector. It has been shown that the volume average < Û
P 

)n is equal to a surface 
average (Levy and Sanchez-Palencia, 1975). Therefore, the velocity ï:'t/ � is well defined by Eq. (9). 

3.1.5. Initial conditions 

The fluid is at rest at the initial time: 

û
k
( t = 0) = Û 

Pk (t = O)=O 
P

k
( t = 0) = 0 

( 11) 

( 12) 
( 13) 

The above set of equations constitutes the local descriptions in the pores and in the fractures on which the 
homogenization is then applied to derive the three macroscopic behaviors. The differences between the three 



cases in the local descriptions is highlighted when this set of equations is cast in dimensionless form. For details
conceming the method, the reader is referred to Royer (1994) and Royer and Auriault (1994).

3.2. Macroscopic descriptions 

3.2.1. Macroscopic description in case 1 

Case I has been defined by the following relationship between the separations of scales:

r,=O(e2), e«l

The observer located at the macroscopic scale sees the pores and the fractures as being nearly of the same
size. In this case, the derived macroscopic behavior for times of the order of magnitude of T

f 
is:

(14)

and the macroscopic velocity is:

V= -K
r
VP

where K
f 

is the fracture permeability; P
0 

is the initial pressure; P =P
P
= Pf 

(the pressure does not depend on
the local space variable on n;

P 
and n;; <f> = 1 n

P 
1/1 il I and <f>' = 1 n; 1/1 il' 1 are the porosities of the pores and of

the fractures, respectively; and </> + (l-<f>')<f> is the total porosity. 
This macroscopic behavior is a non-linear mass-balance equation with a classical Darcy's law in the

fractures. Flow in the pores is instantaneous. The porous matrix plays the role of a fluid reservoir as it is shown
through the source term (<f> + (l -<f>')<f>)(ap ;at). Actually, in the single-porosity mode!, this source term is
simply <f>'(ap ;at). Here, the porosity of the whole volume appears.

3.2.2. Macroscopic description in case 11 

Case II is the case where the separations of scales are of the same order of magnitude:

e = O(r,), e«l 

This is the case for which the most important coupling effect between both flows is obtained. This result was
foreseeable from the investigation of the characteristic consolidation times: T

P 
= O(T

f 
). For times O(T

f
) = O(T

P
),

the derived macroscopic behavior is:

apf a< PP >eff -
[ _ - ]</>'- + </> - V· (P0 + Pt)KtVPf 

= 0
at at 

where the notations are the same as in case I, and where

( l) P
P 

is defined by the following boundary - value problem on il':( app - [ - - ] (a) <p
at 

- V· ( P0 + P
P
)K

P
VP

P 
= 0

(b) P
P
= P

t 
on I"

where P
P 

is il' - periodic

1 
(2) (P

p
).ff = ID'! j, 

P
P

dil 

n,p 

(15)



The macroscopic velocity is: 

It turns out that: PP = 5*( P
1 
), where i7 is a nonlinear time-dependent functional exhibiting memory effects. 

The macroscopic behavior is strongly influenced by flow in the pores. It induces memory effects and strong 
non-linearities. As it highlights how the local effects may affect the macroscopic description, this case is the 
most interesting one. 

3.2.3. Macroscopic description in case Ill 

Case III is defined by the following relationship: 

Here, the observer located at the macroscopic scale sees the pores and the fractures as being of very different 
sizes. For times O(T1), the macroscopic description is: 

( 16) 

and the macroscopic velocity is: 

The macroscopic description is derived without the need of the behavior in the pores. There is no coupling 
effect between phenomena at the first order of approximation. The result describes the behavior of a 
single-porosity medium, that only consists of the fracture porous system. The flow in the pores is completely 
ignored at the first order of approximation. 

3.3. Concluding remarks 

The strongest coupling effects are obtained in case II, i.e. for equally separated scales. The models obtained 
in case I and case III can, afterwards, be deduced from the case II model. The reasoning is based on the 
boundary-value problem defining PP in the case II mode!: 

1 app - [ - - ] 

(a) <P
af

- V· (P0 +PP )KPVPP =0

(b) PP = Pr on I"

where PP is [)' - periodic 

Since Pr = 0( P0), the following "consolidation" characteristic length can be defined:

ln case I we have L
e

» I', then PP - Pr and Eq. (15) becomes Eq. (14). In case III we have L
e

« l', then 
only a negligible part of the period [)' is affected by the consolidation process. Therefore, almost ail the 
volume remains at rest and PP= 0 on average. Thus, Eq. (15) becomes Eq. (16).



4. Incompressible fluid flow through deformable fractured porous medium

4.1. Local descriptions 

Consider now quasi-static flow of incompressible fluid in a deformable fractured porous medium. This 
context is a part of the general theory regarding fluid motion in deformable porous media, also called 
consolidation. Hereafter, results obtained in Auriault and Boutin (1992, 1993), and Boutin (1994) are taken up 
again. 

Consolidation description of a medium under fluid action requires solid deformation as well as fluid flow 
knowledge. As previously, let us assume the system to be at rest at the initial time: the velocity is zero-valued 
and the pressure is constant and P

0
-valued. 

4.1.1. Solid matrix quasi-static momentum balance 

Matrix deformability is govemed by the classical law of infinitesimal linear elasticity: 

v�=ô (17) 
with 

� = ae(ü,) (18) 

where if, is the solid matrix stress tensor; e the strain tensor; a the elastic tensor; and û, the solid matrix 
displacement field. 

4.1.2. Fluid momentum balance 

As previously, it is written as: 

µ,6.ûk - VP
k

= Ô 
which can also be expressed by: 

Vif = ô
k 

with 

if
k = - PJ + 2µ,D 

and where 

J3 = e(ûk) 
is the rate of fluid strain tensor. 

4.1.3. Mass balance 

In the case of incompressible fluid it is written as: 

v- ük 
= o 

4.1.4. Boundary conditions 

4.1.4.1. On I'. Continuity of normal stress and velocity are written: 

( 19) 

(20) 

(21) 

(22) 

(23) 

(24)



where N is a unit and normal to I' vector, 

4.1.4.2. On I''. Continuity of normal total stress is expressed by: 

( ( if,)n + ( à'
p
)n )il'= à'r N' 

where N' is a unit and normal to I'' vector. 
Continuity of solid relative fluid velocity and of pressure are given by: 

(ür - (û,)n) · N' = (ü
p
)n · N' 

4.2. Macroscopic descriptions 

4.2.1. Macroscopic description in case 1 

(25) 

(26) 

(27) 

(28) 

In case I, the pores and the fractures are of nearly the same sizes when they are observed from the 
macroscopic scale. For times O(Tr), the macroscopic behavior of incompressible fluid flow through a 
deformable fractured porous matrix is written: 

(29) 

(30) 

and the macroscopic fluid velocity is: 

V= -Krf'P 

p =pp = pf 

Note that for a single-porosity medium the equations are similar but with equal à and y tensors (see Eqs. (1) 
and (2) for comparison). Thus, the secondary porosity induces the break of this symmetry. 

4.2.2. Macroscopic description in case ll 

In case Il, i.e. for equal separations of scales, the macroscopic behavior at constant pulsation and for times 
O(T

f
) = O(T

P
) is the following: 

(31) 

(32) 

and the macroscopic fluid velocity is: 



The pore pressure P
P 

is defined by the following boundary-value problem on the fracture periodic cell: 1 (a)�· ( R\�PP ) = Yp[ e)û:) + e(ü?)] + /3p
0;P 

(b) P
P

= P
r 

on I" 
P

P 
is {}' - periodic 

where y is the fracture-scale space variable; and e 
Y 

and � are the strain tensor and the nabla operator 
expressed with the fracture-scale space variable, respectively. z7? and û: are the two first terms of the 
displacement asymptotic expansion [see Auriault ( 1991) for a general introduction of the homogenization 
method and Auriault and Boutin (1993) for details about case II results]. 

As in case I, the coupling tensors symmetry is broken. But unlike the first case, the pore pressure is different 
from the fracture pressure: P

P 
appears as a linear fonction of e(û,) and P

r
. On the other side, the tensors C, y 

and a and the scalar /3 are now complex-valued and pulsation-dependent in Fourier space. Therefore, these 
quantities show memory effects for transient excitations, i.e. they are expressed with convolution products. 
Thus, the behavior at a given time will depend on the behavior during the previous time interval. 

4.2.3. Macroscopic description in case III 
In case III, i.e. for pores and fractures of very different sizes, the macroscopic behavior for times O(Tr) is: 

(33) 

a=y (34) 

and the macroscopic fluid velocity is: 

V= -K
c
VP

r 

This is a single-porosity medium behavior, with a coupling symmetry. Flow in the pores is completely 
ignored at the first order of approximation. Only the pressure in the fractures is required for the description. 

5. Comparison between phenomenological and homogenization models

5. I. Introduction

To our knowledge, there is no rigorous phenomenological model for highly compressible fluid flow in the
literature. The existing rigorous models are derived for slightly compressible fluids. To describe a pseudo­
steady-state flow, it is assumed that the interporosity flow q, i.e. the flux of fluid from matrix to fractures, 
occurs in response to the fracture-pore difference in pressure: 

q = sK
P
( P

P 
- P

r
) 

where s is a characteristic coefficient of the fractured rock proportional to the specific surface of the block. 
In this section the different phenomenological models are first introduced. Then, one of them, namely, the 

Warren and Root model is compared to the case II model when t goes to infinity, but in a linearized form and 
for a slightly compressible fluid flow through a rigid double-porosity matrix. This comparison will allow us to 
improve the interporosity term. 



5.2. Complete Barenblatt mode! 

To describe a double-porosity model, Barenblatt et al. (1960) introduced two pressure fields at each point of 
space: Pr and P

P 
for the fractures and the pores, respectively. The mode! applies to the case of a slightly 

deformable matrix and a slightly compressible fluid. When the porous matrix is rigid, the mode! reduces to the 
two following equations: 

and 

aPr Kr6.Pr = <f>'C* - -sK
P
( P

P 
-Pr)ar (35) 

(36) 

where C * is the gas compressibility coefficient. The permeability tensors are assumed to be isotropie: 
K f = Kr 

l, K P = K Pl, where f is the identity tensor. 

5.3. Simplified Barenblatt mode! 

In the case of fractured porous medium, the Barenblatt theory neglects the fracture porosity </>' and the fluid 
flow in the porous matrix (Barenblatt, 1963). Consequently, the pore permeability only takes place to describe 
interporosity flow, i.e. the fluid exchange between the pore matrix and the fractures: 

Kr6.Pr + sK
P
( P

r 
-Pr)= 0 

* 
apr <f>C -+sK

P
(P

P
-P1)=0 

ar 
Elimination of P

P 
in Eqs. (37) and (38) yields: 

aPr Kf 
a K1 - - --(6.P )- -6.P =0 

at sK
P 

at f </>C* t 

5.4. Warren and Root mode! 

(37) 

(38) 

(39) 

The double-porosity mode! of Warren and Root (1963) is also a simplification of the complete Barenblatt 
model. The porosity and the compressibility coefficient in the fractures are not neglected, but fluid flow in the 
pore matrix is neglected in this model: 

ap 

Kr6.Pr = <f>'C* _
f 

-sK
P
( P

P 
- Pf) ai 

In Fourier space, the system is written as: 

K16.Pf = i w<f>'C* Pr -sK
r
( P

P 
-Pr) 

iw<f>C* P
P

+ sK
P
(P

P 
-Pr)= 0 

where w is the pulsation. 

(40) 

( 41) 

(42) 

(43)



Elimination of P
P 

between Eqs. (42) and (43) yields: 

. , • iw<j)C* sK
P Kf l:!.Pf = lW<p C pf + . * pf sK

P 
+ iw<pC 

5.5. Linearized mode[ obtained by homogenization

(44) 

For the comparison to be possible, the case II model obtained in Section 3 is rewritten for slightly 
compressible fluids. The equation of state (7) is replaced by: 

(45) 

where I C * P
k 
1 « 1; and C * is the compressibility coefficient. We assume the permeabilities to be constant and 

isotropie. Then, it is possible to show that the model is changed to: 

apf a( P >off 

<fa' C * - + <j)C * P - K li P = 0
at at 

f f 

P
P 

is the solution of the following diffusive equation: 

• app K
p
!i v

P
p 

= <pC -
· 

ar 

with the boundary condition 

P
P

= Pf on I'' 

(46) 

where y is the fracture-scale space variable and li 
Y 

the Laplace operator expressed with the fracture-scale space 
variable. 

Proceeding by Fourier analysis, we then have to solve: 

K
P
!i

Y
P

P
= <jJC*iwP

P
, P

P
= Pf on I'' 

Let us define W by: 

P
P

= Pr
+ W 

The boundary-value problem becomes: 

K
P
l:!.

Y
W= <j)C*iw(P

r
+ W), W=Oon I" 

The solution is linear with respect to P
f
: 

W( y,x,w) = -k( y,x,w )Pr 

where x is the macroscopic-scale space variable; and k is complex-valued and w-dependent, and represents the 
solution for Pf = -1. Eq. (46) can then be written as follows in Fourier space: 

with 

1 
(k)eff =

ID'I 
f, kdil

nsp 

(47)



Taking the inverse Fourier transform of Eq. (47) we obtain the description for a transient excitation: 

apf fi A azpf K/J,.Pf=[<t>'C'+<t>(I-<t>)C*]--<t>C* K(t-r)-
2 

dr 
at -YC at 

(48) 

where K(t) is the inverse Fourier transform of ( k)eff/i w and characterizes the memory effects induced by the 
double-porosity structure of the medium. The convolution product in Eq. (48) corresponds to the phenomenolog­
ical interporosity flow. The memory fonction K(t) is similar to the memory fonction introduced in Auriault 
(1983) and used again in Auriault and Royer (1993a), for transient heat transfer in double-conductivity 
composites. 

The memory fonction K can be represented by an infinite sum of exponential terms: 

K(t) = L aP exp(-bP t), b 1 < b2 < ... 
p�l 

The long-time behavior can therefore be approximated by: 

K ( t) "" a 1 exp( -b 1 t) 

With this approximation, Eq. (47) expressed in Fourier space becomes: 

K1!).Pr = C*[<t>'+<t>(I-<t>')-<t>
a 1 i

� ] iwPr b
1 

+1w

5.6. Comparison between Warren and Root and homogenization models 

(49) 

A similar investigation is conducted in Auriault and Royer (1993a) for heat transfer in composites with 
double conductivity. The reader is referred to this paper for details. 

Let us now compare the two descriptions (44) and (49) in Fourier space. This comparison yieids to the 
following identification: 

q>C* sKP ( 
a

1
iw 

) - - - - -- = q>C* 1 -<t>' -- - -
sKr + <t>C* iw b

1
+iw (50) 

which is impossible for ali values of w. Thus, the Warren and Root mode! cannot be identified to the long-time 
approximation of the homogenization mode!. Therefore, the Warren and Root mode! gives a rough description 
for transient excitations. 

Now let us improve the interporosity flow to make the Warren and Root model suitable for the short-time 
behaviors. Successive integration by parts of the integral: 

f i A a2Pf 
K(t-r)-

7 
dr 

-X a t-

in Eq. (48) gives an infinite sum of time-derivatives of Pr. Therefore, the model for transient excitations can be 
written as: 

(51) 

Eq. (51) suggests that we must correct the term of interporosity by introducing a time derivative of Pr: 

( apr)
q = sK r PP -Pr - {J

at 

where {J is a constant. 

(52)



It can be shown (Auriault and Royer, 1993b; Royer, 1994) that with this correction, the Warren and Root 
model can then be identified with the long-time approximation of the homogenization model. The correction 
(52) is similar to those used in a recent work (Bai et al., 1994), where the derived analytical solution is
compared to the analytical solution of the complete Barenblatt model.

6. Conclusions

Since the first mathematical double-porosity model has been published (Barenblatt et al., 1960), modeling 
transport phenomena in such media has been the subject of active research. Through the classical phenomeno­
logical approach, the problem is directly treated at the macroscopic scale. Thus, the influence of the local 
heterogeneities on the macroscopic behavior cannot be perfectly disclosed. Furthermore, negligible phenomena 
such as flow in the pores or storage capacity in the fractures are often simply discarded. 

The homogenization method for periodic structures allows derivation of the macroscopic behavior from the 
complete microscopie description. Since there is no macroscopic prerequisite, the influence of the local effects 
is conveyed to the macroscopic level. The present results show that the notion of uniqueness is meaningless for 
the double-porosity media model. Indeed, the relationship between the separations of scales states the 
macroscopic behavior. The three different cases of scale separation lead to three different macroscopic 
behaviors. In both investigations, the maximum coupling effect is obtained for equally separated scales. The 
results in Section 3 constitute the first models of gas flow through a double-porosity medium that takes the 
strong compressibility of the fluid into account. As for the second investigation, it shows a remarkable 
characteristic conceming consolidation of double-porosity media: the asymmetry of the coupling tensors. For a 
slightly compressible fluid, pseudo-steady-state phenomenological approaches are shown to be rough approxi­
mations for transient excitations. Then, the phenomenological models are improved by introducing a fracture 
pressure time-derivative term in the interporosity flow. 
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