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Double conductivity media: a comparison 
between phenomenological and 

homogenization approaches 

J. L. AURIAUL T and P. ROYER

Laboratoire sols. solides, structures, Institut de Mécanique de Grenoble, Laboratoire associé C.N.R.S., 
B. P. 53X, 38041 Grenoble cedex, France 

Abstract-The heat lransfer mode) for the double conductivity medium is investigated. The medium is 
composed of two homogeneous materials which differ considerably in their conductivity characteristics. The 
aim of this paper is to compare the descriptions obtained by a phenomenological and a homogenization 
approach. The first one, which introduces two temperature fields, is shown to be inefficient for a large 
range of the phenomena. The latter gives the rigorous description. The study enables us to improve the 
phenomenological description. It provides an approximation which is valid for the quasi-static conditions. 

1. INTRODUCTION

WE CONSIDER a two-constituent medium characterized 
by the conductivities which differ considerably, and 
we investigate transient heat transfers. For the sake 

of simplicity the two constituents will be assumed to 
be homogeneous. The modelling of such a medium at 
the scale of the heterogeneities îs totally inefficient 
because of the high number of heterogeneities in 

macroscopic samples, that renders the calculations 

intractable. A classical idea is to replace the medium 
by a continuous one which is equivalent from the 

macroscopic point of view. We focus here on two 
different approaches. 

On the one hand, the modelling of such media with 
double-conductivity has been investigated directly at 
the macroscopic scale, by using a phenomenological 

approach (I-3]. Two temperature fields are assumed, 
i.e. one for each constituent. Similar approaches have
also been carried out for other diffusive processes,
such as diffusion [4, 5], or flow through double­
porosity porous media [6-10].

On the other hand, an effective macroscopic 
description for transient heat transfer in periodic com­
posites with double-conductivity was obtained (11] by 
an homogenization technique using asymptotic devel­

opments. The method is based on the passage from the 
microscopie description-the heterogeneity scale-to 
the macroscopic one by using the small parameter s, 

which is the ratio between the two scale characteristic 
lengths. The method gïves the exact macroscopic 
description, within an approximation O(s). 

Although the homogenization leads to the right 
answer, the modelling which is obtained appears to 
be a little more complex than the phenomenological 
one. And the latter is often considered as a good 
approximation for weakly transient processes. lt is 
therefore of interest to investigate the links between 

them. The problem was already partially addressed in 
ref. (12] where the two descriptions were shown to 
lead to similar boundary value problems from the 
mathematical point of view. 

At first, in Section 2, we present the phenom­
enological approach for the modelling of heat trans­
fers in media with double conductivity. 

In Section 3 the results are recalled obtained in ref. 
[11] with an homogenization technique. The reason­

ing follows a more recent forrnalism [13].
Then, Section 4 is devoted to the comparison 

between the two descriptions. lt is shown that they 
are equivalent only in a particular case, for a given 
pulsation of the excitation. The phenomenological 
approach is shown to be inefficient for a large range 
of the phenomena. 

Finally, based on the application of the homo­
genization approach, the phenomenological point of 

view is improved in Section 5 and a correct approxi­
mation for the quasi-static behaviour is provided. 

2. PHENOMENOLOGICAL APPROACH

When considering double-conductivity media, the 
phenomenological reasoning is characterized by the 
introduction of two temperature fields, i.e. one tem­
perature for each constituent(!]. These temperatures 
are defined at a macroscopic scale, directly, and the 

description is assumed to be continuous. 
Because of the two different temperatures, a heat 

flux between the two constituents appears. Using this 
point of view, Rubinshtein [ l] and Aifantis and 
Beskos [3] introduce an interconstituent heat transfer 
to be proportional to the temperature difference 
between the constituents. The composite material is 
made of two homogeneous constituents, one of them, 
denoted 1, being much more conductive than the 
other, denoted 2. The two constituents are occupying, 



NOMENCLATURE 

Ci specific mass capacity of the medium i 
k coefficient characterizing the 

homogenization approach 
(k) effective value of k
(k)ph coefficient (k) obtained by comparison

with the phenomenological approach 
k memory function 
k.ph memory fonction obtained by 

comparison with the 
phenomenological approach 
characteristic microscopie length 

L characteristic macroscopic length 
Il partial volume of the constituent 
ri unit normal to r
q, heat flux for the medium i 
Q, quantity of heat in Q, 

time 
1, temperature field of the medium i 
T; amplitude of the harmonie perturbation 

of!; 
.i low space variable 
)' fast space variable 
(pc) effective value of pc for the 

homogenizalion approach 
(pc)u, average of pc in the medium i for 

the phenomenological approach. 

respectively, the volumes n 1 and n2 . Two temperature 
fields, t I and t 1, are defined in each point as the average 
of the temperatures in the corresponding constituent, 
respectively. Corresponding are two heat fluxes ij 1 
and ij 2 per unit surface which are again defined at each 
point. At each point the quantity Q1 is a!so defined as 
the quantity of heat in a volume Q, of the medium i, 
Î= 1,2. 

The heat equation in the medium i is then written 

dQ; 

dt 

Î V(I1V1;) dv+ 
Î 'P1 d1•

Jn, Jn. 

where I; denotes the macroscopic thermal con­
ductivity of the medium i, t is time and i/1

1 
an internai 

production term, the interconstituent heat transfer. It 
is often supposed that this latter can be considered in 
a linearized form. Therefore, 'P 1 (which is defined as 
the heat transfer from medium 2 to medium 1) can be 
put in the form 

'111 =cx(/1 12) 
where r:1. is a negative constant and denotes the transfer 

Greek symbols 
rx. transfer coefficient for the 

phenomenological approach 
î' dimensîonless pulsation 
r boundary between the two media 

for the homogenization 
approach 

i'J;; Kronecker delta 
P. small parameter
Ç, dimensionless number defined in the 

medium i 
i., conductivity of the medium i for the 

homogenization approach 
... macroscopic thermie conductivity of A; 

medium i for the phenomenological 
approach 

Âcff effective conductivity for the 
homogenization approach 

p; density of the medium i
X; particular solution for T 
'f'; term of heat transfer between the two 

constituents of the composite for the 
phenomenological approach 

w pulsation 
Q spatial period 
Qi volume occupied by medium i.

X1 is supposed negligible with respect to I 1 • Then, 
the phenomenological approach for the conduction 
phenomenon in a composite composed of two 
materials very different in their conductivities, leads 
to the two following coupled equations 

(2) 

for media I and 2, respectively; p1 and l'; denote the 
density and the specific mass capacity of the con­
stituent i. (pc)0 represents the average of pc in the 
medium i. Let �s define the partial volume of con­
stituent 2 by 

n 

where 

coefficient expressed in W m- 3 K - 1
• Consequently, We have 

'P 1 characterizes the heat transfer from medium I to 
{pc)n, = (l-n)p 1c 1 

{pc)n, np1c2. 
medium 2 and is written 

'P 2 = -'P, = -rx.(t,-l i). 
In medium 2, the macroscopic thermie conductivity Proceeding by Fourier's analvsis, we study the sys-



   

tem response to a harmonie perturbation of the pul­
sation w 

ti = Ti e'"" 

where Ti and T::. are the complex numbers. 
Then, eliminating T::. between ( 1) and (2) leads to 

V(X1 VT 1 ) = 

-cw1"112(p2c::.f +icx1w((l-n)p 1 ci +np::.c2)

+iw311"(l -11)p 1C1 (P2C2)2
- - ---cx-2�+-w___,2c--n-o-2-(p-

1
-c_
2
_
f

� -- --T,.

(3) 

Equation (3) represents the phenomenological 
description of the transient heat transfer process at 
the constant pulsation. Thus, the phenomenological 
description of the problem is governed by the tem­
perature of the more conductive constituent. Note 
that the conductivity of the second constituent has 
been neglected and that it seems to be difficult to give 
a physical interpretation of the temperature field T2• 

3. APPLICATION OF THE HQMOGENIZATION

METHOO 

Unlike the phenomenological approach, the homo­
genization method is based on the passage from the 
microscopie description to the macroscopic one. The 
main idea of this method is to define, if possible, a 
fictitious homogeneous medium, that will be hereafter 
referred to as the homogeneous medium or the equi­
valent macroscopic medium. Il will behave as the com­
posite medium when submitted to the same external 
constraints. The description of this medium must be 
intrinsic to the material and the phenomenon con­
sidered. In particular, it should not depend on the 
macroscopic boundary conditions. 

An effective macroscopic description for transient 
heat conduction in periodic composites has been 
already derived by Auriault [11]. In this paper we 
follow the hornogenization process which was pre­
sented in ref. [13]. Consîder a two-constituent com­
posite medium, with heterogeneity sizes 0(/) and a 
large volume of this material of a dimension L.

Assume a good separatîon of scales 

e 
l -« I
L 

The composite is periodic with a period Q = 0(/). The 
period is composed of two parts QI and Q2, occupied 
by the constituents I and 2, respectively (Fig. 1 ). 

At the initial time, the medium is in thermal equi­
librium and the temperature has a constant value 
throughout the period. Consider a perturbation of 
this equilibrium, with the pulsation w, in such a way 
that the wavelength is large compared to the charac­
teristic length / of the period. The temperature per­
turbation is given by 

T(.i) é"' 

where T is a fonction or the space coordinates 

The determination of the macroscopic laws by the 
homogenization method is based on the use of an 
asymptotic expansion of T in powers of the small 
parameter e and including a double scale with charac­
teristic lengths / and L. Due to the separation of scales, 
the temperature T can be written as a function of two 
space variables 

T(.i,_r). 

The variable .i is the macroscopic space variable and 
y (.i /f.) is the microscopie one. describing the small 
heterogeneities. 

The ternperature T is looked for in the form 

T(.i,.r) = T0 (.i,fl+eT 1 (.i,f)+e 2T2 (.i,fl+ · ·· 

where the T' are periodic with respect to J', with a 
period f.l* fi.je. For the sake of simplicity, Q* will 
be denoted Qin that which follows. 

The method consists of incorporating such an 
expansion into the set of equations which describes 
the phenomenon at the local scale and in identifying 
the powers of e, while keeping in mind that .i and _v 
should be considered as independent variables. The 
homogenization process gives a set of equations sat­
isfied by T0

, which in fact represents the macroscopic 
behaviour within an approximation O(e). 

Let 1. 1 and ).2 be the conductivities of the two media, 
with À2 « À 1• The case of interest corresponds to 

FIG. 1. Macroscopic and microscopie view of the composite. 



(4) V1.(À.2 V,.k) P2C2 iw(k- l )  in il2 

k = 0 on r. (14) 
The equations which govern the problem at the local Putting
scale are 

V(,1. 1VT 1 ) fJ 1 C 1 iWT1 inil 1 

V().zVTi) = f) 2C2iWT2 in n 2 

[TJr 0 

[,1.VTJr·n = o 

(5) 

(6) 

(7) 

(8) 

in which ii denotes a unit vector, normal to r. We aim 
at discovering the equivalent macroscopic description. 
The non-dimensionalizing of equations (5)-(8) intro­
duces the following dimensionless numbers 

V À1 
�Il.

= 

p,C i WL2 

We will assume that 

T1 = O(T2) 

C 1 1. = 0(I). 

Taking (4) into account, yields 

= O(e 2). 

We now make dimensionless the set ofequations (5)­
(8). For the sake of simplicity, we use the same 
notations for nondimensional quantities. Therefore, 
the dimensionless equations for the local description 
are as follows 

V(). 1 VT,) P 1C 1 iWT1 

V(e2l2VT2) = p2c2 iwT2 

in the media n 1 and il2, respectively, and 

Ti T1 on r 

)./JT1 ·,î 1 =e 2Â2VT1 ·ii, onr. 

(9) 

(10) 

(11) 

(12) 

Let us perform the homogenization process (see 
ref. [l l]). The equivalent macroscopic behaviour is 
expressed by 

V,(Â.rrVxT0
) = (P 1 C 1 ( l-n)+P2C2n-p2C2(k))iwT0 

(13) 

where k is the solution of the following boundary 
value problem 

it is shown in ref. [11] that 

O:;-;;(k),:;-;;n, O:;-;;(k) 2 :,;;n. (15) 

Equation (13) represents the description obtained by 
the homogenization technique. Notice the rote of the 
coefficient (k). We aim at comparing this result with 
the phenomenological one. We will therefore need 
more insight into this description. A way to detennine 
the coefficient (k) follows. Considering equation ( 14), 
we first look for the eigenvalues µ" and the associated 
eigenfunctions <1\ of the Laplacian operator with the 
above boundary conditions 

v .. (Â.2 v,.<f>k > -µ.<f>k, <no summation on k) 

<Pk O on r 

<l>k n periodic. 

It leads to a discrete spectrum 

and the eigenfunctions are orthogonal 

L, <l>k<I> 1 dil = 0 if k # 1.

We assume the eigenfunctions to be normalized 

Now, looking for k in the form 

we obtain 

Thus, the coefficient (k) is expressed by 

For a transient excitation, the description is obtained 
by taking the inverse Fourier transfonn of equation 
(13) 

where .K(t) is the inverse Fourier transform of (k)/iw 



K(t) ;p· 1 c�) 

= l�I I [ r (/Jp dn]2 exp(- , 1). up=I Jn, P2l2 (17) 
Note that in the general case, K(t) is a sum of expon­ential terms. It represents a memory function which gives the behaviour at time t depending on the history of the second time derivative of the temperature. An equivalent formulation is obtained by integrating by parts the integral in equation (16) and noticing that ail the time derivatives of K(t) are vanishing when tgoes to infinity 

The memory of the past is replaced by the knowledge of ail the time derivatives at the present time. 

4. COMPARISON BETWEEN THE TWO

DESCRIPTIONS 

The comparison between the phenomenological and the homogenization results is conducted by fol­lowing two different ways. Firstly, we consider har­monie excitations and we show that, under certain conditions, both are equivalent for a given pulsation. Secondly, we investigate transient heat transfers. The phenomenological approach then appears as a more or Jess rough approximation of the quasi-static behav­iour. Finally, a bilaminated composite is studied as an example. Although the significances of the tem­peratures which are introduced by the two approaches to describe constituent 2 do not coincide, the com­parison appears to be possible because X1 and T1 , which were introduced by the phenomenological approach, can be identified with À.cil' and T0, respec­tively. 
4.1. Harmonie excitationsFollowing the above remark, equations (3) and (13) will coïncide when their right-hand members are equal 
-,xc.o2 n2 (p 2C2 f + ù:x2 w((l -n)p I C 1 

+np2c2 ) + iw3 n2 ( 1-n)p 1c 1 (p2c2 )2 

This enables us to introduce a (k), which is denoted (k)ph for the phenomenological approach. Let us put
(k)ph = (k)1ph + i(k)2ph·

Identifying the real and imaginary parts gives the two following equations 

w2 n3 (p2c2 )2 

0:2 
+ w

2 n\p2c2) 2
(k) _ _ o:wn2

p 2c2 2ph - o:2 +w2 n2 (P2C2)2 .
Let us introduce the dimensionless pulsation y 

Then, equations (19) and (20) become 
<k>,ph <') _ L

n 
y - I +î' 2 

(k)1ph (y)
n 

(19) 
(20) 

So, (k) 1ph/n and (k)2ph/n can be written as a fonc­tion depending on the dimensionless pulsation y only. They are shown in Fig. 2. Note that when y goes to zero 

and 
(k)1pn = O(}'")

n 

(k)2ph = O(y).
n 

The general curve behaviours (Fig. 2) and the above results are quite similar to those obtained in ref. (11) where it is shown that (k) 1 and (k)2 are, respectively,even and odd, and that when w -. 0 
(k) 1 = O(w2 ), (k)i = 0(1).

(() 

The behaviours of (k) iph and (k)2ph for a large pulsation are also the same 

when 
��>lph

-+ l
n

, 

(J)-+00. 

-> 0, 
n 

Let us now compare more precisely the two approaches. To ensure that the two descriptions are equivalent, equations (19) and (20) must be sim-

2 4 6 8 

<k>1 
n 

10 'Y 

FIG. 2. Memory function: <k) 1ph/n and <k)2ph/n with respect to the dimensionless pulsation. 



ultaneously satisfied, i.e. they must lead to the samevalue of a. By equating (k)
ph to (k), from equation (20) weobtain two possible expressions a I and cx 2 for 1J. 

which is possible only if 

n 

From equation (19), oc3 is obtained 

The two descriptions are equivalent if 

or if 

This corresponds to a pulsation such that 

n <}.1.J(-1 n (k) 1 n 
Therefore, from the general behaviours of (k) 1 and (k)2 , as shown in Fig. 2, the above equalities will be verified, when it is possible, for a small value of thepulsation. This will be illustrated by the example ofSection 4.3. As can be seen from the general behaviours of thecurves et 1 (w), cx 2(w) and oc3 (w), this is only possible if

or if 
[(k�,1i2 

� 
[<k>2J 

W =0 W w-0 

4.2. Transient heat transfer From equations (19) and (20), the phenom­enological approach introduces a (k), which will bedenoted (k)
ph, given by 

(k)
p
h

= -----

iw 

Taking the inverse Fourier transform, we obtain 
(21) 

We compare this result to the one in equation ( 17),obtained from the homogenization process 

K(t)=
1
!
1
f[f r/>P

dQJ2 exp(- µP.t). (17) 
u p� 1 Jn, P2l2 

One possible way to proceed is to approximateequation ( 17) by the first exponential p 1, i.e. tolimit ourselves to quasi-static excitations. Equatingnow the exponents, gives 

But in general, the coefficients standing by theexponentials cannot be identified 

Therefore, the phenomenological approach gives abad approximation for quasi-static excitations. 
4.3. Bilaminated composite Let us consider the particular composite consistingof two homogeneous media, 1 and 2, occupying layersof respective thickness (1-n)h/e and nh/e, measuredwith the space variable f (Fig. 3). For numericalpurpose, we consider an academic example wheremedium I and medium 2 are composed of iron andcernent, respectively. Their characteristics are asfollows 

2 1 = 80.2W m- 1 K- 1 

p 1 = 7870 kg m- 3 

c 1 = 447 J kg- 1 K- 1 

1 2 = 0.72 W m- 1 K- 1 

p 2 = 1860 kg m- 3 

C2 = 780 J kg- 1 K - 1 

h = 1 m. 
When applied to this composite, ref. [11], the homo­genization technique leads to 

and the corresponding memory fonction is written inthe form 
- · "° exp[-(2p+l ) 2n: 2r/4] 

K(t) = 8n L (2 1)2 2 p-o p+ n 
4l2t r---� 

- P2C2n 2
h

2 • 

One way to compare the two approaches is to ident­ify the memory functions. The phenomenologicalcoefficient œ· is no longer a constant and becomesa function of the time t, in contradiction with the phenomenological theory. Figure 4 shows the dimen­sionless heat transfer coefficient â. with respect to the 



- (1 - n) h / C 

0 

nhlt 

Y1 

FIG. 3. Bilaminated composite. 

dimensionless time t. As , is approaching infinity, i 

tends to a constant. This fact will permit the derivation 

of the approximation presented in Section 5. 

Firstly, we consider harmonie excitations. The heat 

transfer coefficients x 1 • x2 and x3 are ploued in Fig. 

5 against the pulsation w for n 0.5. The two 

approaches are equivalent for w � 9 x 10- 6
• On the 

contrary. for n 0.8. there is no possible equivalence. 

as can be seen in Fig. 6. 

Secondly, let us consider quasi-static transient heat 

transfers. We obtain 

-40

-60

0.5 

a=� 
4 Â.2 

t= 4Â.2t 
P2 t2 n2 h

2 

1.5 2 2.5 3 '[ 

FIG. 4. Identification of the memory functions of the 
phenomenological and the homogenization approaches: the 
dimensionless heat transfer coefficient w against the dimen-

sionless lime r. 

Cî) 

-2.5 

-5

-7.5 

-1 

-12.s

-15t...-���-:::::� 

-17.5 

FtG. 5. Deterrnination of the frequency for which the 
phenomenological and the homogenization approaches are 

equivalent. Bilaminated composite, n = 0.5. 

and we verify that the coefficients standing by the 

exponentials are not equal 

Sn 
* n.

Although the discrepancy is small for the considcred 

composite, it is easy to check that it can become large 

for different geometries. 

5. AN APPROXIMATION FOR QUASI-STATIC

EXCITATIONS 

The phenomenological approach was shown in Sec­
tion 4.2 to give a bad approximation of the modelling 

of quasi-static excitations. Improving the modelling 

implies the introduction of a second parameter to 

fit the homogenization result at the first order. The 

solution obtained by the homogenization technique, 

in its form (18), suggests to introduce a new term 

related to the time derivative of t I into the relation 

giving the heat transfer between the two constituents 

Identifying this new mode) with the one obtained by 

0.000002 0.000004 0.000006 
Cil 

-2 

-4 

-6

-8 

-10 

FIG. 6. As Fig. 5, n = 0.8. 



homogenization results in new expressions <k) iap and 
<k)2up 

for <k> irh and <k)2ph, depending on ex and /3 

w2n3(p2c2) 2 + cx{Jw2n2 P2C2 <k)1ph = 112 +w2
n

2(P2C2)2 

}'
2 (a/J/ P2C2 +n) 

1 +r2 

y(cx/3/p2c2 +n) 
l+y2 

Returning to the time space, we obtain 

It is now possible to completely identify this result 
with the first exponential term of the expansion of 
.K(t). It gives 

Therefore, by taking a heat transfer term in the form 

we obtain a correct estimation for quasi-static exci­
tations. Note that the two coefficients ex and /1 are 
directly related to the first eigenvalue and the first 
eigenfunctîon of the Laplacian operator. 

The memory functions .k
ph , k and Kur 

for the 
bilaminated composite presented in Section 4.3 are 
shown in Fig. 7 for n = 0.8. The value of the heat 
transfer coefficient a was determined from its asymp­
totic value, see Fig. 4. 

By introducing higher derivatives of 1 1 in the heat 
transfer term, we would have obtained a still better 
approximation. In the limiting case, where ail deriva­
tives are taken into consideration, the phenom­
enological approach leads to a similar result to the 
one given by the homogenization process. 

With a view to comparing the three modellings, 

0.8 

't 

Fm. 7. The three memory functions for the bilaminated 
composite, n = 0.8. 

 

we consider a semi-infinite boundary value problem, 
x � 0, for the bilaminated composite described in Sec­
tion 4.3. A temperature T0 cos (wl), T0 constant, is 
applied along the boundary x = O. The partial volume 
n of constituent 2 is 0.9. The temperature is plotted 
against the dimensionless space variable x, at 
wt = n/2, in Figs. 8-11 for different dimensionless 
pulsations w 

T/To 0.4 

O.l

60 
i 

FIG. 8. Temperature profile in a semi-infinite bilaminated 
composite (n = 0.9) subjected to a cosinusoidal temperature 
variation at the origin, for the dimensionless pulsation 
w = 0.02. h: homogenization ; p: phenomenological 

T/To 0.25 

T/To 0.25 

0.2 

0.15 

O.l

0.05 

approach; a: approximation. 

a and h 

i 

FIG. 9. As Fig. 8, w = I. 

a 

L----....---��==�-i 
1 2 3 4 5 

Fm. 1 O. As Fig. 8, w = 4. 

T/To 0.4 

FIG. 11. As Fig. 8, w = 400. 



1[ J( i., ) .\' = nh f
f 

...... �)À IX 

In Fig. 8. where w îs very small (üi = 0.02) the dis­
crepancy between the three modellings is negligible: 
the heat flux is almost permanent and the conductivity 
of medium 2 is ignored. As cv is increased and reaches 
the value for the maximum of <k) 2• âi = 1, Fig. 9, the 
homogenization approach and the presented approxi­
mation lead to an identical behaviour, which is dilfer­
ent from the phenomenological one. If w is further 
increased, Fig. 10 with w 4, the discrepancy between 
ail the thrcc modellings is noticed. Nevertheless the 
approximation modelling still gives a better fit. 
Finally, as cois increasing to infinity (sec Fig. 11 with 
oJ = 400) the phenomenological curve tends to the 
homogenization one, whereas the approximation 
modelling curve remains apart. Notice, however. that 
high values of w correspond to nonhomogenizable 
situations without separation of scales and equivalent 
macroscopic continuous description. 

6. CONCLUSION

We have investigated the heat transfer process in 
double-conductivîty media by phenomenological and 
homogenization approaches. The first one, which 
introduces two temperature fields, leads to a descrip­
tion governed by the temperature of the most con­
ductive constituent. lt represents two important dis­
advantages: the conductivity of the Jess conductive 
constituent is neglected and is not taken into account 
in the macroscopic mode!, and the corresponding tem­
perature field has no real physical interpretation. The 
second one gives the rigorous effective macroscopic 
description but the macroscopic mode! appears to 
be less simple. These two approaches have been 
compared. Firstly, by considering harmonie exci­
tations we have shown that, under certain restrictions, 
both are equivalent for a given small pulsation. Sec­
ondly, investigating transient heat transfer bas dis­
played the phenomenological description as a rough 
approximation for quasi-static excitations. These 
conclusions were confirmed by a numerical example. 
Finally, the phenomenological mode! was improved 
by introducing a new derivative term in the inter­
constituent heat transfer. It results in an estimation 

for the quasi-static behaviour. The approximation 
would be further improved by introducing higher 
deri va ti ves. 

It is clear that the above analysis can be {pplied to 
other diffusive phenomena in double-dilfusivity 
media, like double-diffusion, double-porosity or 
double-resistivity media subjecte<l to Fick, Darcy or 
Ohm ftows, respectively. The comparison between 
the homogenization and the phenomenological 
approaches would make it possible to show the range 
of validity of the phenomenological modellings and 
also to improve them. 
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