H. Wang and Z. J. Ren, A comprehensive review of microbial electrochemical systems as a platform technology, Biotechnol. Adv, vol.31, pp.1796-1807, 2013.

S. Venkata-mohan, Reorienting waste remediation towards harnessing bioenergy: a paradigm shift, pp.235-281, 2014.

S. Bajracharya, M. Sharma, G. Mohanakrishna, X. Dominguez-benneton, D. P. Strik et al., An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond, Renew. Energy, vol.98, pp.153-170, 2016.

D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, Electrode-reducing microorganisms that harvest energy from marine sediments, Science, vol.295, pp.483-485, 2002.

L. M. Tender, C. E. Reimers, H. A. Stecher, D. E. Holmes, D. R. Bond et al., Harnessing microbially generated power on the seafloor, Nat. Biotechnol, vol.20, pp.821-825, 2002.

Y. Zhang and I. Angelidaki, Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges, Water Res, vol.56, pp.11-25, 2014.

M. Kitching, R. Butler, and E. Marsili, Microbial bioelectrosynthesis of hydrogen: current challenges and scale-up, Enzym. Microb. Technol, vol.96, pp.1-13, 2017.

H. Wang and Z. J. Ren, Bioelectrochemical metal recovery from wastewater: a review, Water Res, vol.66, pp.219-232, 2014.

Y. V. Nancharaiah, S. Venkata-mohan, and P. N. Lens, Metals removal and recovery in bioelectrochemical systems: a review, vol.195, pp.102-114, 2015.

, Theoretical concentration (A and B) and pH (C) profiles inside the micro-pillar arrays calculated by the model with the parameter values given in Table 3, from top (X = 0) to bottom (X = 1). Continuous line: 100-?m spaced micro-pillars

G. Pasternak, J. Greenman, and I. Ieropoulos, Self-powered, autonomous biological oxygen demand biosensor for online water quality monitoring, Sens. Actuators B Chem, vol.244, pp.815-822, 2017.

M. D. Lorenzo, T. P. Curtis, I. M. Head, and K. Scott, A single-chamber microbial fuel cell as a biosensor for wastewaters, Water Res, vol.43, pp.3145-3154, 2009.

B. Erable, L. Etcheverry, and A. Bergel, From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater, Biofouling, vol.27, pp.319-326, 2011.

B. Matturro, C. C. Viggi, F. Aulenta, and S. Rossetti, Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments, Front. Microbiol, vol.8, 2017.

W. G. Characklis and K. C. Marshall, Biofilms, pp.195-196, 1990.

R. D. Monds and G. A. O'toole, The developmental model of microbial biofilms: ten years of a paradigm up for review, Trends Microbiol, vol.17, pp.73-87, 2009.

M. Sun, F. Zhang, Z. Tong, G. Sheng, Y. Chen et al., A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1, Biosens. Bioelectron, vol.26, pp.338-343, 2010.

L. Peng, S. You, and J. Wang, Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis, Biosens. Bioelectron, vol.25, pp.1248-1251, 2010.

Y. Fan, S. Xu, R. Schaller, J. Jiao, F. Chaplen et al., Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells, Biosens. Bioelectron, vol.26, pp.1908-1912, 2011.

L. Pons, M. Délia, and A. Bergel, Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes, Bioresour. Technol, vol.102, pp.2678-2683, 2011.

D. Pocaznoi, A. Calmet, L. Etcheverry, B. Erable, and A. Bergel, Stainless steel is a promising electrode material for anodes of microbial fuel cells, Energy Environ. Sci, vol.5, pp.9645-9652, 2012.

C. Feng, F. Li, H. Liu, X. Lang, and S. Fan, A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electroFenton process, Electrochim. Acta, vol.55, pp.2048-2054, 2010.

Z. Ye, J. Hou, M. W. Ellis, and B. Behkam, Effect of anode surface roughness on power generation in microbial fuel cells, ASME, ASME International Mechanical Engineering Congress and Exposition, vol.6, pp.1409-1414, 2012.

K. Guo, B. C. Donose, A. H. Soeriyadi, A. Prévoteau, S. A. Patil et al., Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems, Environ. Sci. Technol, vol.48, pp.7151-7156, 2014.

X. Jia, Z. He, X. Zhang, and X. Tian, Carbon paper electrode modified with TiO2 nanowires enhancement bioelectricity generation in microbial fuel cell, Synth. Met, vol.215, pp.170-175, 2016.

H. Feng, Y. Liang, K. Guo, W. Chen, D. Shen et al., TiO 2 nanotube arrays modified titanium: a stable, scalable, and cost-effective bioanode for microbial fuel cells, Environ. Sci. Technol. Lett, vol.3, pp.420-424, 2016.

S. Kalathil and D. Pant, Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems, RSC Adv, vol.6, pp.30582-30597, 2016.

S. Inoue, E. A. Parra, A. Higa, Y. Jiang, P. Wang et al., Structural optimization of contact electrodes in microbial fuel cells for current density enhancements, Sens. Actuators Phys, vol.177, pp.30-36, 2012.

T. Kano, E. Suito, K. Hishida, and N. Miki, Effect of microscale surface geometry of electrodes on performance of microbial fuel cells, Jpn. J. Appl. Phys, vol.51, 2012.

Z. Ye, M. W. Ellis, A. S. Nain, and B. Behkam, Effect of electrode sub-micron surface feature size on current generation of Shewanella oneidensis in microbial fuel cells, J. Power Sources, vol.347, pp.270-276, 2017.

C. P. Siu and M. Chiao, A microfabricated PDMS microbial fuel cell, J. Microelectromech. Syst, vol.17, pp.1329-1341, 2008.

J. Kim, Power enhancement of a ?l-scale microbial fuel cells by surface roughness, Appl. Phys. Lett, vol.104, p.223702, 2014.

C. Dumas, R. Basseguy, and A. Bergel, Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes, Electrochim. Acta, vol.53, pp.5235-5241, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00475979

A. Baudler, I. Schmidt, M. Langner, A. Greiner, and U. Schröder, Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems, Energy Environ. Sci, vol.8, pp.2048-2055, 2015.

D. R. Bond and D. R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol, vol.69, pp.1548-1555, 2003.

D. R. Lovley, T. Ueki, T. Zhang, N. S. Malvankar, P. M. Shrestha et al., Geobacter: the microbe electric's physiology, ecology, and practical applications, Adv. Microb. Physiol, vol.59, pp.1-100, 2011.

L. Soussan, B. Erable, M. Delia, and A. Bergel, The open circuit potential of Geobacter sulfurreducens bioanodes depends on the electrochemical adaptation of the strain, Electrochem. Commun, vol.33, pp.35-38, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860257

Y. Irie and M. R. Parsek, Quorum sensing and microbial biofilms, Bacterial Biofilms, pp.67-84, 2008.

E. Medilanski, K. Kaufmann, L. Y. Wick, O. Wanner, and H. Harms, Influence of the surface topography of stainless steel on bacterial adhesion, Biofouling, vol.18, pp.193-203, 2002.

D. Rodriguez, B. Einarsson, and A. Carpio, Biofilm growth on rugose surfaces, Phys. Rev. E, vol.86, 2012.

E. Blanchet, B. Erable, M. De-solan, and A. Bergel, Two-dimensional carbon cloth and three-dimensional carbon felt perform similarly to form bioanode fed with food waste, Electrochem. Commun, vol.66, pp.38-41, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01304333

L. Pons, M. Délia, R. Basséguy, and A. Bergel, Effect of the semi-conductive properties of the passive layer on the current provided by stainless steel microbial cathodes, Electrochim. Acta, vol.56, pp.2682-2688, 2011.

R. Belas, Sensing, response, and adaptation to surfaces: swarmer cell differentiation and behavior, Bacterial Adhesion: Molecular and Ecological Diversity, 1996.

E. Karatan and P. Watnick, Signals, regulatory networks, and materials that build and break bacterial biofilms, Microbiol, Mol. Biol. Rev, vol.73, pp.310-347, 2009.

S. C. Popat and C. I. Torres, Critical transport rates that limit the performance of microbial electrochemistry technologies, Bioresour. Technol, vol.215, pp.265-273, 2016.

B. G. Lusk, P. Parameswaran, S. C. Popat, B. E. Rittmann, and C. I. Torres, The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica, Bioelectrochemistry, vol.112, pp.47-52, 2016.

A. K. Marcus, C. I. Torres, and B. E. Rittmann, Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model, Bioresour. Technol, vol.102, pp.253-262, 2011.

M. Oliot, S. Galier, H. Roux-de-balmann, and A. Bergel, Ion transport in microbial fuel cells: key roles, theory and critical review, Appl. Energy, vol.183, pp.1682-1704, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01920448

S. C. Dexter and S. H. Lin, Calculation of seawater pH at polarized metal surfaces in the presence of surface films, Corrosion, vol.48, pp.50-60, 1992.

A. G. Zelinsky and B. Y. Pirogov, Effective thickness of the diffusion layer during hydrogen ion reduction in aqueous hydrochloric acid solutions, Russ. J. Electrochem, vol.44, pp.585-593, 2008.

V. S. Bagotsky, Mass Transfer in Electrolytes, in: Fundamental Electrochemistry, pp.51-67, 2005.

K. Scott and Y. Sun, Approximate analytical solutions for models of three-dimensional electrodes by Adomian's decomposition method, Modern Aspects of Electrochemistry n°39, pp.221-304, 2007.

, CRC Handbook of Chemistry and Physics, 2018.

H. Richter, K. Mccarthy, K. P. Nevin, J. P. Johnson, V. M. Rotello et al., Electricity generation by Geobacter sulfurreducens attached to gold electrodes, Langmuir, vol.24, pp.4376-4379, 2008.

Y. Liu, H. Kim, R. Franklin, and D. R. Bond, Gold line array electrodes increase substrate af-finity and current density of electricity-producing G. sulfurreducens biofilms, Energy Environ. Sci, vol.3, pp.1782-1788, 2010.

N. S. Malvankar, M. Vargas, K. P. Nevin, A. E. Franks, C. Leang et al., Tunable metallic-like conductivity in microbial nanowire networks, Nat. Nanotechnol, vol.6, pp.573-579, 2011.

C. Koch and F. Harnisch, Is there a specific ecological niche for electroactive microorgan-isms?, ChemElectroChem, vol.3, pp.1282-1295, 2016.

M. Oliot, S. Galier, H. Roux-de-balmann, and A. Bergel, Ion transport in microbial fuel cells: Key roles, theory and critical review, Appl. Energy, vol.183, pp.1682-1704, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01920448

J. R. Rumble, CRC Handbook of Chemistry and Physics