ECG Fiducial Point Extraction Using Switching Kalman Filter

Abstract : In this paper, we propose a novel method for extracting fiducial points (FPs) of the beats in electrocardiogram (ECG) signals using switching Kalman filter (SKF). In this method, according to McSharry's model, ECG waveforms (P-wave, QRS complex and T-wave) are modeled with Gaussian functions and ECG baselines are modeled with first order auto regressive models. In the proposed method, a discrete state variable called " switch " is considered that affects only the observation equations. We denote a mode as a specific observation equation and switch changes between 7 modes and corresponds to different segments of an ECG beat. At each time instant, the probability of each mode is calculated and compared among two consecutive modes and a path is estimated, which shows the relation of each part of the ECG signal to the mode with the maximum probability. ECG FPs are found from the estimated path. For performance evaluation, the Physionet QT database is used and the proposed method is compared with methods based on wavelet transform, partially collapsed Gibbs sampler (PCGS) and extended Kalman filter. For our proposed method, the mean error and the root mean square error across all FPs are 2 ms (i.e. less than one sample) and 14 ms, respectively. These errors are significantly smaller than those obtained using other methods. The proposed method achieves lesser RMSE and smaller variability with respect to others.
Document type :
Journal articles
Complete list of metadatas

Cited literature [32 references]  Display  Hide  Download
Contributor : Christian Jutten <>
Submitted on : Tuesday, February 20, 2018 - 3:20:39 PM
Last modification on : Monday, July 8, 2019 - 3:11:47 PM
Long-term archiving on : Monday, May 21, 2018 - 1:26:00 PM


AKhbari_SKF_CMPB_4 Jan_Color.p...
Files produced by the author(s)



Mahsa Akhbari, Nasim Ghahjaverestan, Mohammad Shamsollahi, Christian Jutten. ECG Fiducial Point Extraction Using Switching Kalman Filter. Computer Methods and Programs in Biomedicine, Elsevier, 2018, 157 (April), pp.129-136. ⟨⟩. ⟨10.1016/j.cmpb.2018.01.018⟩. ⟨hal-01713406⟩



Record views


Files downloads