An improved non-equilibrium model for the ignition of living fuel

Abstract : This paper deals with the modelling of living fuel ignition, suggesting that an accurate description using a multiphase formulation requires consideration of a thermal disequilibrium within the vegetation particle, between the solid (wood) and the liquid (sap). A simple model at particle scale is studied to evaluate the flux distribution between phases in order to split the net flux on the particles into the two sub-phases. An analytical solution for the split function is obtained from this model and is implemented in ForestFireFOAM, a computational fluid dynamics (CFD) solver dedicated to vegetation fire simulations, based on FireFOAM. Using this multiphase formulation, simulations are run and compared with existing data on living fuel flammability. The following aspects were considered: fuel surface temperature, ignition, flaming combustion time, mean and peak heat release rate (HRR). Acceptable results were obtained, suggesting that the thermal equilibrium might not be an acceptable assumption to properly model ignition of living fuel.
Type de document :
Article dans une revue
International Journal of Wildland Fire, CSIRO Publishing, 2018, 27 (1), pp.29-41. 〈10.1071/WF17020〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01713296
Contributeur : Elena Rosu <>
Soumis le : mardi 20 février 2018 - 14:05:20
Dernière modification le : mercredi 21 février 2018 - 01:20:30

Identifiants

Collections

Citation

Aymeric Lamorlette, M. El Houssami, Dominique Morvan. An improved non-equilibrium model for the ignition of living fuel. International Journal of Wildland Fire, CSIRO Publishing, 2018, 27 (1), pp.29-41. 〈10.1071/WF17020〉. 〈hal-01713296〉

Partager

Métriques

Consultations de la notice

50