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Abstract. We investigate how minimal subsumption modules can be ex-
tracted using methods for uniform interpolation and forgetting. Given an
ontology and a signature of concept and role names, a subsumption mod-
ule is a subset of the ontology that preserves all logical entailments that
can be expressed in the description logic of the ontology using only terms
in the specified signature. As such, they are useful for ontology reuse and
ontology analysis. While there exists a range of methods for computing
or approximating minimal modules for a range of module types, we are
not aware of a practical, implemented method for computing minimal
subsumption modules in description logics beyond ELH. In this paper,
we present a method that uses uniform interpolation/forgetting to com-
pute subsumption modules in ALCH, and which under certain condi-
tions guarantees minimality of the extracted modules. As a side prod-
uct, our method computes a so-called LK subsumption module, which
over-approximates the union of all minimal subsumption modules, and
as such may already have applications of its own. We further present an
initial evaluation of this method on a varied corpus of ontologies.

1 Introduction

Description Logics [1] (DLs) are a well-investigated family of logics that are
commonly used to describe terminological knowledge in form of ontologies. Ap-
plications in areas such as medicine, biology and the semantic web have lead to
the development of very large ontologies that, with growing size, become harder
to understand and maintain. Due to the complexity of existing ontologies, there
are areas where it is useful to extract a subset of the ontology, a so-called module,
based on a set of terms of interest. For example, when developing a new ontology
for a specialised application, one may want to reuse knowledge from an existing
ontology. If this ontology covers a large domain of concepts, not all information
in it will be relevant for the application at hand, so that it makes sense to first
extract a module of the ontology that is sufficient for the application. Secondly,
for maintaining an existing ontology it may be important for an ontology engi-
neer to understand which axioms in the ontology are responsible for which of
its logical entailments. Modules give the engineer an overview on the axioms of
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the ontology that contribute to any entailment over a selected set of terms. This
allows him to browse the ontology in a more directed manner guided by the
terms he is interested in. In the mentioned applications, it is usually desirable
to extract a module that is optimal in some sense, for example minimal w.r.t.
set inclusion.

There are a range of different notions and properties for modules that have
been defined in the literature, and correspondingly a range of methods for mod-
ule extraction have been developed [2,8]. For some of those notions, such as
semantic modules, deciding whether a subset of the ontology is a module that is
minimal w.r.t. set inclusion is undecidable already for ontologies formulated in
the lightweight DL EL [13]. In this paper, however, we consider a notion for which
computing a minimal module is decidable. More precisely, we are interested in
computing minimal subsumption modules, which are modules that preserve all
logical entailments in the form of concept inclusions over the specified signa-
ture of terms.While a method for computing minimal subsumption modules in
acyclic EL ontologies has been presented in [4], in this paper we focus on the
more expressive DL ALCH. Already for ALC ontologies, deciding whether a
subset of the ontology is a subsumption module, is known to be 2ExpTime-
complete [6], but we are not aware of a practical implementation for extracting
minimal subsumption modules in DLs that are more expressive than ELH [3].

The core idea of our method is to use uniform interpolation [22] to compute
a finite representation of the entailments the module has to preserve, together
with techniques from axiom-pinpointing [28]. The method can compute small
subsumption modules of ALCH-ontologies for signatures that contain all role
symbols, which under certain conditions guarantees minimality of the computed
modules. As a side-product, the method computes a lean kernel (LK) subsump-
tion module, an over-approximation of all minimal subsumption modules, which,
as our evaluation indicates, is computationally cheaper to compute and usually
not much larger than the minimal subsumption module. Moreover, we believe LK
subsumption modules may have applications on its own: if subsumption mod-
ules are used by ontology engineers to investigate information with respect to
certain signatures, it might be useful to have an overview of all the axioms that
contribute to this information: this overview is provided, if over-approximated,
by the LK subsumption module.

Our method only supports signatures that contain all role names, while arbi-
trary signatures are left for future work. Modules for this type of signatures have
a property that makes them especially useful for ontology reuse. Specifically, as
we show, modules for signatures that include all role names provide for a weak
form of robustness under replacement [12].

The paper is structured as follows. We first recall related work on module
extraction and uniform interpolation in Section 2, and give the preliminaries on
ALCH, subsumption modules and uniform interpolation in Section 3. We then
describe our core algorithm for computing subsumption modules based on axiom
pin-pointing in Section 4. A central idea for reducing the number of entailment
checks is to use a technique to quickly compute uniform interpolants for differ-
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ent subsets of the input ontology, for which we compute an annotated uniform
interpolant defined in Section 5. As a by-product, the annotated uniform inter-
polant encodes an upper approximation of the minimal subsumption module,
which indeed over-approximates all minimal subsumption modules. We call this
module lean kernel subsumption module, as they are similar to lean kernels in
axiom pinpointing, which we discuss in more detail in Section 6. Finally, we give
results from an initial evaluation in Section 7 and conclude with a discussion in
Section 8.

2 Related Work

There is a range of types and properties of modules that have been investigated
in the literature, surveys of which can be found in [12] and [2]. Usually, mod-
ules are computed on the basis of an ontology and a signature Σ, i.e. a set of
concept and role names, and preserve certain properties of the ontology with re-
spect to that signature Σ. Examples include semantic modules, which preserve
all models of the ontology when restricted to Σ [13] and subsumption modules,
which preserve all logical entailments in the form of concept inclusions over Σ
that can be expressed in the description logic under consideration [4,3]. Apart
from minimality under set inclusion, additional properties have been considered
such as self-containedness (the module is also a module with respect to its own
signature) and depletedness (the remaining ontology only entails tautologies in
the specified signature, i.e. all relevant information is in the module). Deciding
whether a subset of the ontology is a semantic module for a signature is un-
decidable already for EL-ontologies [13], and consequently minimal (depleting,
self-contained) semantic modules can only be approximated in practice. For EL
and ALCI, an exception are modules of acyclic ontologies and for signatures
that contain only concept names, for which methods to extract depleting mod-
ules have been implemented in the tool MEX [13]. A well-known approximation
of semantic modules are locality-based modules, of which syntactical variants,
such as >⊥∗-modules, can be computed very cheaply [8,14]. However, locality-
based modules may still contain a large portion of the original ontology [27].
A more refined technique for extracting semantic modules is presented in [5],
which computes lower and upper approximations of minimal depleting mod-
ules in ALCQI using QBF-reasoning. Depending on the application, modules
that only preserve entailments in a certain query-language may be sufficient.
A method that approximates minimal modules taylored towards specific query
languages uses datalog reasoning and has been presented in [26].

For computing minimal subsumption modules of ELH-terminologies, a method
has been presented in [3]. An alternative approach is presented in [4], which uses
a black-box search algorithm that detects axioms that can be safely removed
without causing a logical difference, i.e. a difference in the set of entailed con-
cept inclusions over the selected signature. For computing logical differences, the
authors use the tool CEX [11], whose latest version supports the computation
of logical differences between ELHr-ontologies [21]. However, in principle, the
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same algorithm could be used for ontologies formulated in any logic for which a
tool for computing logical differences exists. We tried this for ALCH ontologies,
deploying the tool Lethe [17] that allows for computing logical differences in
ALCH for arbitrary signatures, provided a uniform interpolant exists for them.
However, we found that this approach is too computationally expensive in prac-
tice.

A notion strongly related to that of subsumption modules is that of uniform
interpolants, which are also computed as part of our method. Both subsumption
modules and uniform interpolants preserve all logical entailments in the speci-
fied signature that can be expressed in the respective description logic. However,
while subsumption modules are subsets of the input ontology, uniform inter-
polants are themselves completely formulated in the specified signature, and
may therefore contain axioms that do not occur in the original ontology. In fact,
in the worst case, already for the description logics EL and ALC, the uniform
interpolant may have a size that is triple exponential in the size of the input
ontology [23,22]. Despite this discouraging theoretical result, various practical
methods for computing uniform interpolants in expressive description logics have
been developed [20,16,18,31]. In fact, it turns out that in practice, uniform in-
terpolants are often of moderate size.

3 Preliminaries

We recall the description logic ALCH [1], as well as the notions of subsumption
modules and uniform interpolants.

Let Nc and Nr be two disjoint, countably infinite, sets of respectively concept
names and role names. A signature Σ ⊆ Nc∪Nr is a finite set of concept names
and role names.

The set of concepts C,D, TBox axioms α and RBox axioms β the set of
ALCH-inclusions α are built according to the following grammar rules:

C ::= > | ⊥ | A | ¬C | C u C | C t C | ∃r.C | ∀r.C
α ::= C v C | C ≡ C
β ::= r v s | r ≡ s

where A ∈ Nc and r ∈ Nr. A TBox is a finite set of TBox axioms, an RBox a
finite set of RBox axioms, and an ontology is the union of a TBox and RBox.

The semantics of ALCH is defined using interpretations I = (∆I , ·I), where
the domain ∆I is a non-empty set, and ·I is a function assigning each concept
name A to a subset AI of ∆I and every role name r to a binary relation rI

over ∆I . Then ·I is inductively extended to complex concepts by: (>)I := ∆I ,
(⊥)I := ∅, (¬C)I := ∆I\CI , (C u D)I := CI ∩ DI , (C t D)I := CI ∪ DI ,
(∃r.C)I := {x ∈ ∆I | ∃y ∈ CI : (x, y) ∈ rI}, and (∀r.C)I := {x ∈ ∆I |
∀(x, y) ∈ rI : y ∈ CI}.

An interpretation I satisfies a TBox axiom C v D (C ≡ D) iff CI ⊆ DI

(CI = DI). It satisfies an RBox axiom r v s (r v s) iff rI ⊆ sI (rI = sI).
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We write I |= α if I satisfies the axiom α. An interpretation I is a model of an
ontology O if I satisfies all axioms in O. An axiom α is entailed by O, written
O |= α, if for all models I of O, we have that I |= α.

A signature is a (countable but possibly infinite) set Σ ⊆ Nr ∪Nc of concept
and role names. Given a concept/axiom/ontology α, we denote by sig(α) the set
of concept and role names occuring in α.

Definition 1 (Σ-Inseparability, Subsumption Module, Uniform Inter-
polant.). Let O1 and O2 be two ALCH-ontologies, and let Σ be a signature.
Then O1 and O2 are Σ-inseparable, denoted as O1 ≡Σ O2, iff for every axiom
α s.t. sig(α) ⊆ Σ, we have O1 |= α iff O2 |= α.

A Σ-subsumption module of O is an ontologyM s.t. O ≡Σ M andM⊆ O.
M is minimal iff there exists no Σ-subsumption module M′ of O s.t. M′ (M.

A uniform interpolant of O for Σ is an ontology OΣ s.t. O ≡Σ OΣ and
sig(OΣ) ⊆ Σ.

4 Minimal Subsumption Modules as Justifications

A related problem to minimal subsumption module extraction is that of com-
puting justifications [28]. Given an ontology O and an axiom α that is entailed
by O, a justification for α in O is a subset J of O s.t. J is minimal w.r.t. (
and J |= α. We can generalise this notion to justifications of ontologies O′ by
asking for minimal subsets J ⊆ O s.t. J |= O′. One easily sees that every min-
imal subsumption module is a justification of a uniform interpolant: for a given
ontology O and signature Σ, a uniform interpolant OΣ captures all entailments
of O that are in Σ, and therefore, any subset of O that entails OΣ entails all
axioms that are in Σ. Therefore, one possible approach for computing minimal
subsumption modules is to first compute a uniform interpolant, and then com-
pute a justification for it using any DL reasoner that supports this. As there are
implemented systems for both for uniform interpolation (e.g. [20,17,31]), and for
computing justifications (reasoners such as HermiT [7], JFact [30] and Pellet [29]
support this directly via the OWL API [9]), it seems that such a method could
be implemented without much effort.

However, there are two short-comings of this approach. First, it is well-known
that uniform interpolants do not always exists for any pair of ontology and sig-
nature. For this reason, existing methods for uniform interpolation either only
compute approximations of the uniform interpolant, or they compute a uniform
interpolant in an extended language that uses greatest fixpoint operators. Un-
fortunately, we are not aware of any reasoner that supports fixpoint operators,
so that the method can only be applied for ontology-signature pairs for which
there exist a uniform interpolant without fixpoint operators. Secondly, in first
experiments of this idea we quickly found out that reasoners such as HermiT,
Pellet and JFact struggle with the computation of justifications for large en-
tailments such as uniform interpolants. While in this paper, we offer no general
solution for the case in which there is no uniform interpolant without fixpoints,
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to overcome the more practical problem of computing justifications for uniform
interpolants without fixpoint operators, we developed a more refined approach
based on ideas for computing justifications.

Given an ontology O1 and a set of entailed axioms O2, such as a uniform
interpolant, we can compute a justification for O2 in O1 using the following
algorithm A1.

1. Input: ontology O1, entailed set of axioms O2

2. For each α ∈ O1:

(a) Set O′1 = O1 \ {α}
(b) If O′1 |= O2, set O1 = O′1

3. Return O1

If in Step 2b), we test entailment of O2 by checking one axiom after the other,
this algorithm has to perform a quadratic number of entailment tests, namely
one for each pair (α, β) of axioms α ∈ O1 and β ∈ O2. However, if O1 and O2

overlap syntactically, this number of tests can be reduced, as we do not need
to call a reasoner for axioms that are already in O1. Unfortunately, if O2 is a
uniform interpolant of O1 for Σ, it only contains axioms in Σ, and is therefore
unlikely to syntactically overlap with O1, especially if Σ is significantly smaller
than the signature of O1. To overcome this problem, we propose the following
algorithm A2, which checks for entailment of the uniform interpolant by another
uniform interpolant.

1. Input: Ontology O, signature Σ

2. Initialise Om to the >⊥∗-module of O for Σ

3. Compute the uniform interpolant OΣ of Om for Σ

4. For each β ∈ Om:

(a) Compute the uniform interpolant OΣ2 of Om \ {β} for Σ

(b) Set Od = OΣ \ OΣ2
(c) If OΣ2 |= Od, set Om = Om \ {β}

5. Return Om

Of course, the improvement of this method relies on the shape of the uniform
interpolants we compute: in general, OΣ and OΣ2 may not overlap at all, so that
Od may have the same size as OΣ . However, as our experiments confirmed,
if the uniform interpolants are computed wisely, in the algorithm above Od is
usually significantly smaller than OΣ2 , and in fact often contains only a single
axiom. Therefore, the algorithm is expected to require a much smaller number
of entailment checks than A1. However, we now need to compute a uniform
interpolant in every iteration, which usually is a much more expensive operation
than testing for entailment of axioms. Luckily, as it turns out, for signatures Σ
s.t. Nr ⊆ Σ, we can compute the required uniform interpolants very efficiently
if we compute an annotated uniform interpolant first, from which all required
uniform interpolants can then be obtained by simple replacement operations.
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5 Annotated Uniform Interpolants

In the following, for simplicity, let O be the input ontology of our method. Let
Na ⊆ Nc be a special set of concept names called annotation concepts, which
we assume to be disjoint from the signature of O, and let A : O → Nc be
a bijective function that maps each axiom in O to an annotation concept. To
improve readability, we write A(α) as Aα.

Note that in ALCH, every TBox axiom is equivalent to a set of TBox axioms
of the form C v D. Given a TBox axiom α, we denote by gci(α) the set of GCIs
that is equivalent to α.

Definition 2. Given an axiom α, the annotation αa of α is defined as

{C v D t Aα | C v D ∈ gci(α)}.

Given an ontology O, the annotation Oa of O is the union of all annotations
of axioms in O. Given a signature Σ, a annotated uniform interpolant of O
for Σ is a uniform interpolant OΣa of the annotation of O for the signature
Σ ∪ {Aα | α ∈ O}.

Note that the annotation Oa of an ontology O is usually not a conservative
extension. Specifically, Oa 6|= C v D may not hold even for C v D ∈ O, due
to the added disjuncts. Instead, all non-tautological entailments now involve
annotation concepts that refer to the axioms that have been used to infer the
axiom.

The idea of the annotation concepts is to track which axioms contributed
to computing a uniform interpolant. This way, we can easily obtain a uniform
interpolant of any subset of the original ontology. Specifically, given an anno-
tated uniform interpolant of O for Σ, where Nr ⊆ Σ, we can obtain uniform
interpolants for Σ of any subset O′ of O as follows: we replace every annotation
concept Aα s.t. α ∈ O′ by ⊥, and every remaining annotation concept by >.

Example 1. Consider the following ontology O.

∃r.> v A tB A ≡ ∃r.B

The following ontology is a uniform interpolant of O for Σ = {A, r}.

A v ∃r.>
∃r.(∃r.> u ¬A) v A

To track which axioms contributed to the uniform interpolant, we compute
the annotated uniform interpolant. For this, we first compute the annotation
of O, which is the following.

∃r.> v A tB t A∃r.>vAtB
A v ∃r.B t AA≡∃r.B

∃r.B v A t AA≡∃r.B
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By interpolating the annotation of O, we obtain the following annotated uniform
interpolant of O for Σ.

A v ∃r.> t AA≡∃r.B
∃r.(∃r.> u ¬A u ¬A∃r.>vAtB) v A t AA≡∃r.B

The annotation concepts mark which parts of the uniform interpolant where
influenced by which axiom. If we replace every annotation concept by ⊥, we
obtain a uniform interpolant of O again. If instead, we replace AA≡∃r.B by ⊥
and A∃r.>vAtB by >, we obtain the following uniform interpolant of A ≡ ∃r.B:

A v ∃r.> t⊥
∃r.(∃r.> u ¬A u ¬>) v A t ⊥,

which can be simplified to {A v ∃r.>}, as the second axiom is tautological. In
a same way, we obtain that a uniform interpolant of ∃r.> v A tB is {⊥ v >}.

This technique however only works for signatures that contain all role sym-
bols of the original ontology. The following lemma, which can be shown by
inspection of the uniform interpolation method presented in [15], provides the
central property of uniform interpolants which make our technique possible.

Lemma 1. Let O be an ontology and Σ a signature s.t. Nr ⊆ Σ. Let O1 ⊆ O be
such that sig(O1) = Σ and O1 contains no RBox axioms, and let O2 = O \ O1.
Further, let OΣ2 be a uniform interpolant of O2 for Σ. Then, O1 ∪ OΣ2 is a
uniform interpolant of O for Σ.

As a corollary of this lemma, we obtain the robustness property of subsump-
tion modules for signatures Σ s.t. Nr ⊆ Σ which was claimed in the introduction,
and which can equivalently be proved based on a corresponding result for ALC
from [12].

Corollary 1 (Weak robustness under replacement). Let O be an ontology,
Σ a signature s.t. Nr ⊆ Σ, and M be a Σ-subsumption module for O. Let O′ be
an ontology s.t. sig(O′)∩sig(O) ⊆ Σ and O′ contains no RBox axioms containing
role names from O. Then, for any axiom α s.t. sig(α) ⊆ sig(O′) ∪ Σ, we have
O ∪O′ |= α iff M∪O′ |= α.

We can now show that uniform interpolants of subsets of the original ontol-
ogy can indeed be computed using the replacement operations described earlier.
(Recall that annotated uniform interpolants are defined as uniform interpolants
of the annotated ontology, for the given signature extended by annotation con-
cepts.)

Theorem 1. Let O be an ontology, Σ a signature s.t. Nr ⊆ Σ, and OΣa an
annotated uniform interpolant of O for Σ. Let O1 ⊆ O. Then, the ontology

OΣ1 = OΣa [Aα 7→ ⊥ | α ∈ O1][Aα 7→ > | α ∈ O \ O1]

is a uniform interpolant of O1 for Σ.

58



Proof. Let O, Σ, OΣa and O1 be as in the lemma. Let Oa be the annotation
of O, and extend Oa to following ontology O2.

Oa ∪ {Aα ≡ ⊥ | α ∈ O1} ∪ {Aα ≡ > | Aα ∈ O \ O1}

By looking at the way axioms are annotated, one easily establishes that the
uniform interpolant of O2 for sig(O) is equivalent to O1. Also, one easily sees
that this uniform interpolant is simply obtained by replacing every annotation
concept Aα s.t. α ∈ O by ⊥, and every annotation concept Aα s.t. Aα ∈ O \ O1

by >. Since uniform interpolation is commutative, we can obtain a uniform
interpolant of O1 for Σ, starting from O2, in two ways. Either we first compute
O1 as uniform interpolant ofO2, and compute then the uniform interpolant ofO1

for Σ. Or we first compute the uniform interpolant of O2 for Σ∪Na, of which we
then compute the uniform interpolant for Σ. As observed earlier, this last step
is simply performed by replacing annotation concepts by ⊥ respectively >. By
Lemma 1, the uniform interpolant of O2 is equivalent to the uniform interpolant
of Oa—the annotated uniform interpolant—together with the additional axioms
in O2, which means, these axioms are only involved in computing the second
uniform interpolant. Therefore, we obtain the same ontology if we first compute
the annotated uniform interpolant of O, and then perform the substitution on
the annotated uniform interpolant. ut

6 LK Subsumption Modules

Theorem 1 allows us to apply Algorithm A2 without having to use an expensive
uniform interpolation method in each step. Another consequence of Theorem 1
is that, if we take the axioms associated with the set of annotation concepts
occurring in the annotated uniform interpolant, we obtain a set of axioms that
contains all minimal subsumption modules. This module is not necessarily equal
to the union of all minimal subsumption modules, since the annotated uniform
interpolant may contain tautological axioms, so that it is an over-approximation.
We call this module lean kernel subsumption module (LK subsumption module
for short), since it contains all axioms that were involved in computing the
uniform interpolant, similar to lean kernels in SAT-solving [19]. LK subsumption
modules can be computed more cheaply than minimal subsumption modules, as
they do not require any further subsumption tests after the annotated uniform
interpolant is computed. We believe that they also have a special use in ontology
engineering: given a set of concept names, they allow the ontology engineer to
quickly examine all the axioms that are involved in inferring any entailments
involving no other concept names.

Definition 3. Let O be an ontology and Σ a signature. An ontologyMΣ
lk is a Σ

LK subsumption module iff there exists an annotated uniform interpolant OΣa of
O for Σ that is obtained by collecting all axioms that belong to some annotation
concepts occurring in OΣa :

MΣ
lk = {α | Aα ∈ sig(OΣa )}.
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Corollary 2. Given an ontology O, a signature Σ s.t. Nr ⊆ Σ and a Σ LK
subsumption module MΣ

lk for O, we have M ⊆ MΣ
lk for every minimal Σ-

subsumption module M of O.

Since LK subsumption modules can be obtained from the annotated uniform
interpolant without additional subsumption tests, they can always be computed
even in the case where the annotated uniform interpolant contains fixpoint op-
erators. However, different to minimal subsumption modules they do not offer
any minimality guarantees: which axioms are contained in the LK subsumption
module depends on the uniform interpolation procedure used, and as uniform
interpolants may contain redundant and tautological information, it is in general
possible that an LK subsumption module contains axioms that are not included
in any minimal subsumption module.

The requirement that the signature contains all role names is indeed crucial
for the correctness of our method, as is exemplified by the following example.

Example 2. Take following ontology O:

A v ∃r.B A v C B v ⊥,
and consider the signature Σ1 = {A, r}. The annotation Oa of O looks as follows.

A v ∃r.B t AAv∃r.B
A v C t AAvC
B v ⊥ t ABv⊥

A uniform interpolant OΣa for Oa for {A, r,AAv∃r.B ,AAvC ,ABv⊥} is

A v ∃r.ABv⊥ t AAv∃r.B .

Consequently, the Σ1 LK subsumption module contains the first and the last
axiom of O. One easily verifies that these two axioms also form the only minimal
Σ1-subsumption module of O.

Now consider the signature Σ2 = {A,C}. A close look at the original ontology
shows that in fact, the concept A is unsatisfiable, which can be inferred just
from the first and the last axiom. This makes the second axiom redundant,
and therefore the minimal subsumption module for Σ2 is the same as for Σ1.
However, the uniform interpolant OΣ2

a for Oa for {A,C,AAv∃r.B ,AAvC ,ABv⊥}
just contains the following axiom.

A v C t AAvC

That is, the LK subsumption module contains just one axiom, which is exactly
the only axiom that does not occur in the minimal subsumption module. The
reason that the annotated uniform interpolant does not contain any more axioms
is that the axiom A v ∃r.ABv⊥ t AAv∃r.B has no non-tautological ALCH-
entailment that does not also make use of the role name r.

Finally, for the complete signature Σ3 = {A, r, C}, the Σ3 LK subsumption
module contains all axioms. However, as we already observed, the second axiom
is redundant, and thus, this subsumption module is not minimal.
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7 Evaluation

To evaluate how our method performs in practice, we implemented a Java pro-
totype of our method and did an initial evaluation on a set of 96 ontologies that
were taken from the classification track for OWL DL ontologies at the ORE
competition 2014 [24]. The prototype was implemented in Java 1.7, using the
OWL-API [9] for ontology access, Lethe [17] for computing the annotated uni-
form interpolants, and MORe [25] as a reasoner in the minimisation step. MORe
is a hybrid reasoner that utilises the OWL DL reasoner HermiT [7] together with
the EL reasoner ELK [10]. As it was to be expected that the module as well as
the uniform interpolants could often be expressed purely in EL, this reasoner
was selected to improve reasoner performance for these cases. In fact, we noticed
that the minimalisation step was usually significantly faster when using MORe
than when using HermiT.

We were particularly interested in the performance for computing small sub-
sumption modules. In particular, we were interested in the following questions:
1) how well does the method perform in practice for computing LK subsumption
modules and minimal subsumption modules, and 2) can minimal subsumption
modules in ALCH be expected to be smaller than modules extracted by al-
ternative methods, such as locality-based modules. Since we expected both the
computation of the annotated uniform interpolant, as well as the minimisation
step afterwards, to be costly in practice, we computed subsumption modules
in a relaxed setting. For this, we used a timeout for the uniform interpolation
step. Lethe computes uniform interpolants by eliminating names outside of the
specified signature one after the other. If it did not succeed in computing the
uniform interpolant within the specified timeout, we continued the computation
with the uniform interpolant it computed so far, thus obtaining LK subsump-
tion modules and minimal subsumption modules for an extended signature. This
way, we were able to get an upper bound on the size of the minimal subsumption
module even if the annotated uniform interpolant was too difficult to compute.
Furthermore, note that the annotated uniform interpolant computed in the first
step may contain fixpoint expressions, so that the LK subsumption module can-
not be minimised in the second step, as we cannot test for entailment of axioms
with fixpoint expressions using MORe. To still get an idea about the minimi-
sation potential of our approach, we simply treated entailment of axioms with
fixpoint expressions as failure, unless the axiom was syntactically contained in
the current module. Note that this may result in a module that is not minimal,
similar to when the uniform interpolation procedure created a timeout.

The ontologies for our experiments were selected as follows. We selected our
ontologies from the track “Classification of OWL DL ontologies” of the OWL
Reasoner Evaluation competition 2015, because they provide a small, yet well
balanced mix of ontologies with very different properties [24]. As our method
only supports ALCH ontologies, we further removed from each ontology the
axioms that were not in ALCH, where we kept n-ary equivalence and disjointness
axioms, as well as concept inclusions. From this set of 315 ontologies, we selected
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|Σ ∩Nc| 10 25 50

Success Rate 92.2% 90.3% 90.6%

Minimal 71.2% 70.3% 68.7%
Fixpoints 20.8% 19.8% 23.6%
UI Timeout 2.0% 2.2% 2.0%

Duration (s) 0.4 / 594.0 / 3.7 / 20.6 0.4 / 591.9 / 4.1 / 27.1 0.5 / 592.0 / 6.1 / 32.5

Size >⊥∗-Module 0 / 1021 / 131.0 / 204.4 0 / 1374 / 164.0 / 256.7 0 / 1047 / 204.0 / 260.3
Size LK Module 0 / 723 / 103.5 / 170.1 0 / 1054 / 144.0 / 216.7 0 / 835 / 170.0 / 218.5
Size Min. Module 0 / 723 / 103.0 / 169.8 0 / 1051 / 142.0 / 216.1 0 / 814 / 169.0 / 218.0

Size Original Ontology 186 / 8926 / 1792.0 / 2547.5

Table 1. Results of our evaluation for signatures containing 10/25/50 concept names
(minimal/maximal/median/average).

|Σ ∩Nc| 100 150

Success Rate 87.7% 85.7%

Minimal 66.5% 66.0%
Fixpoints 21.7% 20.6%
UI Timeout 2.6% 1.7%

Duration (s) 0.9 / 584.5 / 9.1 / 39.1 1.0 / 594.9 / 11.6 / 39.7

Size >⊥∗-Mod 1 / 1374 / 305.0 / 352.2 6 / 1242 / 385.0 / 435.8
Size LK Mod 1 / 1054 / 267.0 / 301.2 6 / 1242 / 342.0 / 382.1
Size Minimised Mod 1 / 1051 / 264.0 / 300.0 6 / 1234 / 336.0 / 379.9

Size Original Ontology 186 / 8926 / 1792.0 / 2547.5

Table 2. Results of our evaluation for signatures containing 100/150 concept names
(minimal/maximal/median/average).

those that contained less than 10,000 axioms and more than 150 concept names,
resulting in a set of 96 ontologies in total.

The experiment was performed on a server running Ubuntu 15.10 with In-
tel Xeon 2.50GHz cluster Core 4 Duo CPU with 64GiB RAM. We used our
prototype to compute subsumption modules for randomly created signatures
containing 10, 25, 50, 100 and 150 concept names, were we used 30 samples per
signature size. The timeout for the interpolation procedure was set to 5 minutes,
while the overall timeout was set to 10 minutes. The results of our experiment
are shown in Table 2. The success rate shows the number of runs in which the
method succeeded within the timeout. The next rows show the percentage of
runs that produced modules which were guaranteed to be minimal (Row 3),
that did not guarantee minimality due to fixpoints in the uniform interpolant
(Row 4), and that did not guarantee minimality due to a timeout in the inter-
polation procedure (Row 5). Note that the latter two cases may overlap. We
then list the minimal, maximal, median and average duration of computing the
module in the successful runs. We obtained median durations between 4.1 and
11.6 seconds, which might be reasonable for daily applications. However, as to be
expected, in general our method is more computationally expensive than other
methods for module extraction.

The following rows compare the sizes of the TBoxes of the >⊥∗-modules,
the LK subsumption modules and the minimised subsumption modules. Note
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that, because the signatures always contained all role names, the >⊥∗-modules
as well as the subsumption modules always had the same RBox as the original
ontology. It is for this reason that we focus on the TBoxes of the modules to
provide for a more meaningful comparison. The LK subsumption modules were
on average 12.3%–16.8% smaller than the >⊥∗-modules, while the minimised
variants differed only little in size to the LK subsumption modules. This shows
that in practice, LK subsumption modules provide for good approximations of
minimal subsumption modules. The last row shows for comparison the minimal,
maximal, median and average size of the input ontologies.

8 Conclusion and Future Work

We presented a method for extracting subsumption modules in ALCH for signa-
tures Σ s.t. Nr ⊆ Σ. The method ensures minimality of the extracted modules
provided that a uniform interpolant without fixpoint operators can be computed
for the given ontology and signature. In the first step, the method computes an
annotated uniform interpolant, from which an approximation of the minimal sub-
sumption module, the LK subsumption module can be obtained. This module is
then minimised in a subsequent step by comparing entailments of corresponding
uniform interpolants. Our evaluation indicates that in most cases, the LK sub-
sumption module is already minimal or close-to minimal, so that the second step
can be omitted. As for LK subsumption modules, we do not have a restriction for
cyclic ontologies, this means that our method provides for good approximations
of minimal subsumption modules for ALCH ontologies in general. Our evalua-
tion indicates that our method is often able to compute subsumption modules
that are smaller than locality-based modules. However, in some cases, the com-
putation of these modules was quite time-consuming. Our implementation uses a
timeout for the uniform interpolation step, and computes a subsumption module
for the signature for which a uniform interpolant could be computed within that
timeout. It would be interesting to see the exact effect of this timeout on the
computed subsumption modules. For small timeouts, our implementation would
compute an LK subsumption module for an extended signature that in addition
contains those concept names that are especially hard for Lethe to eliminate,
which usually is only a small fraction of complete signature. It is possible that
those LK subsumption modules provide for close approximations of the LK sub-
sumption modules for the given signature, though computable in much shorter
time.

There are obvious short-comings of our evaluation that should be addressed
in future work. First, the sample size used for the signatures was very small,
which is why we are currently running the experiments with a higher num-
ber of signatures per ontology. Second, we only compared our method with the
syntactical method for computing >⊥∗-modules. An alternative obvious choice
for comparison would be AMEX [5], which can approximate depleting semantic
modules of ALCQI ontologies. Such a comparison could give insights on whether
subsumption modules are in practice smaller than semantic modules, or whether
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they are mostly similar. Third, it would be interesting to evaluate our method on
larger ontologies and not only ontologies with at most 10,000 axioms. Further-
more, it would be interesting to test our method with other implementations for
uniform interpolation than Lethe, for example the Ackermann-based method
presented in [31].

Open problems with our approach are 1) how to obtain an optimal, practical
method in the case uniform interpolants contain fixpoints, and 2) how to compute
minimal subsumption modules for signatures that do not contain all role names.
In order to tackle these, it might be necessary to use the uniform interpolation
method not as a black box, but to modify its implementation to track inferences
directly. Again, it is possible that techniques from the area of justification and
axiom-pinpointing could be used here.
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