Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment

Abstract : This paper deals with autonomous navigation of unmanned ground vehicles (UGV). The UGV has to reach its assigned final configuration in a struc-tured environments (e.g. a warehouse or an urban environment), and to avoid colliding neither with the route boundaries nor any obstructing obstacles. In this paper, vehicle planning/set-points definition is addressed. A new efficient and flexible methodology for vehicle navigation throughout optimal and discrete selected way-points is proposed. Combining multi-criteria optimization and expanding tree allows safe, smooth and fast vehicle overall navigation. This navigation through way-points permits to avoid any path/trajectory planning which could be time consuming and complex, mainly in cluttered and dynamic environment. To evaluate the flexibility and the efficiency of the proposed methodology based on expanding tree (taking into account the vehicle model and uncertainties), an important part of this paper is dedicated to give an accurate comparison with another proposed optimization based on the commonly used grid map. A set of simulations, comparison with other methods and experiments, using an urban electric vehicle, are presented and demonstrate the reliability of our proposals.
Type de document :
Article dans une revue
Journal of Intelligent and Robotic Systems, Springer Verlag (Germany), 2016, 82 (2), pp.301 - 324. 〈10.1007/s10846-015-0223-1〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01711774
Contributeur : Lounis Adouane <>
Soumis le : vendredi 23 février 2018 - 00:35:43
Dernière modification le : mardi 27 février 2018 - 01:08:08

Fichier

2016_Vilca_IRS_Last.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

José Vilca, Lounis Adouane, Youcef Mezouar. Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment. Journal of Intelligent and Robotic Systems, Springer Verlag (Germany), 2016, 82 (2), pp.301 - 324. 〈10.1007/s10846-015-0223-1〉. 〈hal-01711774〉

Partager

Métriques

Consultations de la notice

66

Téléchargements de fichiers

15