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DIMENSION REDUCTION OF LARGE-SCALE SECOND-ORDER
DYNAMICAL SYSTEMS VIA A SECOND-ORDER ARNOLDI

METHOD

ZHAOJUN BAI† AND YANGFENG SU‡

Abstract. A structure-preserving dimension reduction algorithm for large-scale second-order
dynamical systems is presented. It is a projection method based on a second-order Krylov subspace.
A second-order Arnoldi (SOAR) method is used to generate an orthonormal basis of the projection
subspace. The reduced system not only preserves the second-order structure but also has the same
order of approximation as the standard Arnoldi-based Krylov subspace method via linearization.
The superior numerical properties of the SOAR-based method are demonstrated by examples from
structural dynamics and microelectromechanical systems.

Key words. dimension reduction, reduced-order modeling, dynamical systems, second-order
Krylov subspace, second-order Arnoldi procedure

1. Introduction. A continuous time-invariant single-input single-output sec-
ond-order system is described by

ΣN :

{
Mq̈(t) + Dq̇(t) + Kq(t) =bu(t),

y(t) = lTq(t)
(1.1)

with initial conditions q(0) = q0 and q̇(0) = q̇0. Here t is the time variable.
q(t) ∈ RN is a vector of state variables. N is the state-space dimension. u(t)
and y(t) are the input force and output measurement functions, respectively. M,
D, K ∈ RN×N are system matrices, such as mass, damping, and stiffness as known
in structural dynamics. b, l ∈ RN are input distribution and output measurement
vectors, respectively.

Second-order systems ΣN arise in the study of many types of physical systems,
with common examples being electrical, mechanical, and structural systems, electro-
magnetics, and microelectromechanical systems (MEMS) [11, 6, 9, 3, 23, 25, 26, 29].
The state-space dimension N of the system ΣN arising from those applications is of-
ten very large and it can be formidable to use for many practical analysis and design
tasks within a reasonable computing resource. Therefore, it is necessary to obtain a
reduced-order model which retains important properties of the original system and
yet is efficient for practical use. In this paper, we discuss a computational technique
for dimension reduction of the second-order system ΣN . Specifically, for the given
second-order system ΣN , we show how to construct another system Σn of the same
second-order form but with a smaller state-space dimension, such that it accurately
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captures the input-output behaviors while retaining essential properties of the original
system ΣN . An accurate and effective reduced system thus replaces the original one
and can be efficiently applied for a variety of types of analyses to significantly reduce
design and simulation time.

The most common approach to the dimension reduction of the second-order sys-
tem ΣN is based on a mathematically equivalent linearized formulation of the second-
order system. Different dimension reduction methods of linear systems have been
studied in various fields. Most of these methods can be classified into the families of
balancing truncation methods and moment-matching methods; see [14, 2, 1] and refer-
ences therein. However, the linearization approach has a number of disadvantages. It
ignores the physical meaning of the original system matrices, and the reduced-order
system is no longer in a second-order form. For engineering design and control of
such a system, it is highly desirable to have a reduced-order model preserving the
second-order form and the essential properties, such as stability and passivity.

Over the years, there have been a number of efforts toward structure-preserving
dimension reduction of a second-order system. Su and Craig proposed a structure-
preserving method with moment-match property in 1991 [28]. This has been revisited
in recent years [23, 2, 25, 26]. It has been applied to very large second-order systems.
The work of Meyer and Srinivasan [20] is an extension of balancing truncation methods
for the second-order system. Recent such effort includes [7]. Another structure-
preserving model reduction technique was presented in [15]. Those two approaches
focus on the application of moderate-size second-order systems.

The method presented in this paper is a further study of the work by Su and
Craig [28]. We pursue a structure-preserving dimension reduction algorithm for large-
scale second-order systems. The algorithm is developed under the framework of pro-
jection. We use a second-order Krylov subspace as the projection subspace. Subse-
quently, a second-order Arnoldi (SOAR) method is used to generate an orthonormal
basis of the projection subspace. The resulting reduced system not only preserves
the second-order structure but also has the same order of approximation of a re-
duced linear system obtained by the standard Arnoldi-based Krylov subspace projec-
tion method via linearization. We demonstrate the considerable superior numerical
properties of this new approach with examples from structural dynamics and MEMS
simulations.

The remainder of the paper is organized as follows. In section 2, we review
the definitions of transfer function and moment of the second-order system ΣN and
specify the goals of dimension reduction. In section 3, we discuss the projection
subspace and present a SOAR procedure to generate an orthonormal basis of the
projection subspace. In section 4, we present the dimension reduction algorithm via
the SOAR method and prove its moment-matching properties. In section 5, we discuss
a practical algorithm and review the standard Arnoldi-based dimension reduction
for the second-order system with linearization. In section 6, we present results of
numerical experiments for examples from different areas of applications. Concluding
remarks are in section 7.

Throughout the paper, we follow the notational convention commonly used in
matrix computation literature. Specifically, we use boldface letters to denote vec-
tors (lower cases) and matrices (upper cases), I for the identity matrix, ej for the
jth column of the identity matrix I, and 0 for zero vectors and matrices. The di-
mensions of these vectors and matrices are conformed with dimensions used in the
context. ·T denotes the transpose. N denotes the order of the original system (1.1).
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span{q1,q2, . . . ,qn} and span{Q} denote the space spanned the vector sequence
q1,q2, . . . ,qn and the columns of the matrix Q, respectively. ‖ · ‖1 and ‖ · ‖2 de-
note 1-norm and 2-norm, respectively, for vector or matrix.

2. Second-order system and dimension reduction. In this section, we first
review the definitions of transfer function and moment of the second-order dynamical
system ΣN , and then we formally state the goals of dimension reduction. For simplic-
ity, we assume that we have zero initial conditions q(0) = 0, q̇(0) = 0, and u(0) = 0
in (1.1). Taking the Laplace transform of ΣN , we have{

s2Mq̃(s) + sDq̃(s) + Kq̃(s) =b ũ(s),
ỹ(s) = lTq̃(s).

(2.1)

Here q̃(s), ỹ(s), and ũ(s) represent the Laplace transform of q(t), y(t), and u(t),
respectively. Eliminating q̃(s) in (2.1) results in the frequency domain input-output
relation ỹ(s) = h(s)ũ(s), where h(s) is the transfer function:

h(s) = lT
(
s2M + sD + K

)−1
b.(2.2)

The physically meaningful values of the complex variables s are s = jω, where ω ≥ 0
is referred to as the frequency, j =

√−1. The following lemma shows that the transfer
function h(s) can be rewritten in linear form of the variable s.

Lemma 2.1. Let 2 × 2 block matrices C and G and the block vectors b̂ and l̂ be
defined as

C =

[
D M

−W 0

]
, G =

[
K 0
0 W

]
, b̂ =

[
b
0

]
, l̂ =

[
l
0

]
,(2.3)

where W is an arbitrary N ×N nonsingular matrix. Then the transfer function h(s)
as defined in (2.2) can be written as

h(s) = l̂ T(sC + G)−1b̂.(2.4)

Proof. The lemma is proved by the following identity of the inverse of the 2 × 2
block matrix sC + G:

(sC + G)−1 =

[
sD + K sM
−sW W

]−1

=

[
P(s)−1 −P(s)−1sMW−1

sP(s)−1 P(s)−1(sD + K)W−1

]
,

where P(s) = s2M + sD + K.
A common choice of W is to be the identity matrix, W = I, as it is used through-

out this paper. If M, D, and K are all symmetric and M is nonsingular, we can choose
W = −M. The result is that C and G are symmetric matrices.

The power series expansion of h(s) is formally given by

h(s) = m0 + m1s + m2s
2 + · · · =

∞∑
�=0

m�s
�,(2.5)

where m� for � ≥ 0 are called (low-frequency) moments. By Lemma 2.1 and the
assumption that K is invertible, moments m� can be compactly expressed as m� =
l̂ T(−G−1C)�(G−1b̂) for � ≥ 0. If K is singular, we can consider the Taylor series
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expansion of h(s) about a selected expansion point s0 �= 0. This will be discussed in
section 5.

The desiderata for a moment-matching dimension reduction method are to con-
struct a reduced system of the same second-order form but with many fewer states
and meanwhile to match the moments of the transfer functions of the original system
and the reduced system as much as possible. Specifically, for the given second-order
system ΣN in (1.1), we want to find a reduced second-order system of the same form

Σn :

{
Mnz̈(t) + Dnż(t) + Knz(t) =bnu(t),

ŷ(t) = lTn z(t),
(2.6)

where the state vector z(t) is of dimension n, n < N , and in most cases, n � N .
Mn, Dn, and Kn are n × n matrices, and bn and ln are vectors of length n. The
corresponding transfer function hn(s) of the reduced system Σn is given by

hn(s) = lTn
(
s2Mn + sDn + Kn

)−1
bn = l̂ T

n (sCn + Gn)
−1

b̂n,

where

Cn =

[
Dn Mn

−I 0

]
, Gn =

[
Kn 0
0 I

]
, b̂n =

[
bn

0

]
, l̂n =

[
ln
0

]
.

The moments of Σn are m
(n)
� = l̂ T

n (−G−1
n Cn)�(G−1

n b̂n) for � ≥ 0. It is desired that
for the largest q possible, the first q moments of two systems ΣN and Σn are matched,
i.e.,

m� = m
(n)
� for � = 0, 1, 2, . . . , q − 1.(2.7)

This implies that hn(s) is a qth-order Padé-type approximant of h(s):

h(s) = hn(s) + O(sq).

In section 4, we will show how to construct such a reduced system so that hn(s) is
an nth Padé-type approximant of h(s), i.e., q = n. Furthermore, if ΣN is symmet-
ric, namely, M, D, and K are symmetric and b = l, then hn(s) is an nth Padé
approximant of h(s), i.e., q = 2n.

3. Second-order Krylov subspace and SOAR procedure. We will use the
framework of a subspace projection technique to derive a reduced system (2.6) with
the moment-matching property (2.7). The gist of the projection technique is on the
choice of a subspace which the full-order system is to be projected onto. If the transfer
function h(s) is written in the linear form (2.4) in terms of the matrices C and G,
then it can be cast using only one matrix:

h(s) = l̂ T(I + sG−1C)−1G−1b̂ = l̂ T(I − sH)−1b̂0,

where H = −G−1C and b̂0 = G−1b̂. Then it is natural to consider the following
Krylov subspace as the projection subspace for the dimension reduction:

Kn(H, b̂0) = span{b̂0,Hb̂0,H
2 b̂0,H

3 b̂0, . . . ,H
n−1 b̂0}.

However, in this paper, we will use a second-order Krylov subspace as the projection
subspace. We will show that by using this second-order Krylov subspace, the reduced
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system not only has the same order of approximation as the one derived based on the
projection onto the Krylov subspace Kn but also preserves the second-order form of
the original system ΣN .

We note that

H = −G−1C =

[ −K−1D −K−1M
I 0

]
=

[
A B
I 0

]
and b̂0 =

[
K−1b

0

]
,

where A = −K−1D and B = −K−1M. Let

r0 = K−1b,

r1 = Ar0,

r� = Ar�−1 + Br�−2 for � ≥ 2.

Then one can easily derive that the vectors {r�} of length N and the Krylov vectors

{H�b̂0} of length 2N are related as the following:[
r�
r�−1

]
= H�b̂0 for � ≥ 1.(3.1)

In other words, the vector sequence {r�}, in principle, defines the entire Krylov se-

quence {Hjb̂0}. It indicates that the projection subspace spanned by {r�} of RN

should be able to provide sufficient information for dimension reduction as does the
Krylov subspace Kn(H; b̂0) of R2N . This essential idea is first proposed in [28], al-
though it is not in the form we present here. In [4], such a subspace is called a
second-order Krylov subspace since the vector r� is generated by a linear homoge-
neous recurrence relation of degree 2. Formally, an nth second-order Krylov subspace
with matrices A and B and the starting vector r0 is defined by

Gn(A,B; r0) = span {r0, r1, r2, . . . , rn−1} .
A SOAR method was proposed in [4] for generating an orthonormal basis of Gn(A,B; r0).
The following is a pseudocode of the SOAR procedure.

Algorithm 1. SOAR procedure.
1. q1 = u/‖u‖2

2. f = 0
3. for j = 1, 2, . . . , n do
4. r = Aqj + Bf
5. for i = 1, 2, . . . , j do
6. tij = q T

i r
7. r := r − qitij
8. end for
9. tj+1,j = ‖r‖2

10. if tj+1,j �= 0,
11. qj+1 := r/tj+1,j

12. f = QjT̂(2 : j + 1, 1 : j)−1ej
13. else
14. reset tj+1,j = 1
15. qj+1 = 0

16. f = QjT̂(2 : j + 1, 1 : j)−1ej
17. save f
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18. if f belongs to the subspace spanned by previously saved f ,
then stop (breakdown)

19. end if
20. end for

Note that at line 18 of the algorithm, if f belongs to the subspace spanned by
previously saved f vectors, then the algorithm encounters a breakdown and termi-
nates. Otherwise, there is a deflation at step j. After setting tj+1,j to 1 or any
nonzero constant and qj+1 = 0, the algorithm continues. To check whether f is in the
subspace spanned by the previously saved f , we can use a modified Gram–Schmidt
procedure [27]. Note that it is not necessary to use extra storage to save those f
vectors. They can be stored at the columns of Qn where the corresponding qj = 0.

At the return of the SOAR procedure, it computes a basis Qn of the second-order
Krylov subspace:

span{Qn} = Gn(A,B; r0).

Furthermore, the nonzero columns of Qn form an orthonormal basis. The dimension
of the second-order subspace Gn(A,B; r0) equals the number of nonzero columns of
Qn, which could be less than n when deflation occurs. To simplify the presentation,
we will still use Qn to denote such an orthonormal basis. If the SOAR procedure
breaks down at the n0th step, then it indicates that

span{Qn0
} = G∞(A,B; r0) = span{r0, r1, r2, . . .}.

Before we proceed to the use of the projection subspace span{Qn} for dimen-
sion reduction, we present the following theorem, which shows the relationship be-
tween the standard Krylov subspace Kn(H; b̂0) and the second-order Krylov subspace
Gn(A,B; r0). This is the essential observation leading to moment-matching and ap-
proximation properties of the reduced system to be discussed in section 4.

Theorem 3.1. Let Qn be an orthonormal basis of the second-order Krylov sub-
space Gn(A,B; r0). Let Q[n] denote the following 2 × 2 block diagonal matrix:

Q[n] =

[
Qn 0
0 Qn

]
.(3.2)

Then H�b̂0 ∈ span{Q[n]} for � = 0, 1, 2, . . . , n− 1. This means that

Kn(H; b̂0) ⊆ span{Q[n]}.
We say that the standard Krylov subspace Kn(H; b̂0) is embedded into the second-
order Krylov subspace Gn(A,B; r0).

Proof. By the fact that the SOAR procedure generates an orthonormal basis of
the second-order Krylov subspace [4], we have that for any � ≥ 0,[

r0 r1 · · · r�−1

]
= Q�R�,

where span{Q�} = G�(A,B; r0) and QT
� Q� = I. R� is an � × � nonsingular upper

triangular matrix. Hence we have[
r0 r1 · · · rn−1

0 r0 · · · rn−2

]
=

[
Qn 0
0 Qn

]⎡⎣ Rn

0 Rn−1

0 0

⎤⎦ .

The theorem is then proved by the preceding expression and (3.1).
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To conclude this section, we note that the work in computing an orthonormal
basis Qn of the second-order Krylov subspace Gn(A,B; r0) is divided between the
computation of the matrix-vector products Aq and Bf and the orthogonalization.
The cost of the former varies depending on the sparsity and structures of the matrices
A and B. The cost of the orthogonalization is about 3n2N flops. The main advantage
of the SOAR procedure is on the memory requirement. It takes (n+1)N and is a half
of the memory requirement of the Arnoldi procedure (see, for example, [16, 13, 27])

for generating an orthonormal basis of the Krylov subspace Kn(H; b̂0).

4. Dimension reduction based on the SOAR procedure. We now derive a
reduced second-order system using the framework of a projection technique developed
for linear systems; for example, see [12]. The idea of projection can be viewed as to
approximate the state vector q(t) of the original system ΣN by another state vector
z(t) constrained to the subspace Gn spanned by Qn. This can be simply expressed by
the change-of-state variables

q(t) ≈ Qnz(t),(4.1)

where z(t) is a vector of dimension n. Substituting (4.1) into (1.1) and multiplying
the first equation of (1.1) with QT

n from the left yield the system

Σn :

{
Mnz̈(t) + Dnż(t) + Knz(t) =bnu(t),

ỹ(t) = lTn z(t),
(4.2)

where Mn, Dn, and Kn are n×n matrices such that Mn = QT
n MQn, Dn = QT

nDQn,
and Kn = QT

nKQn. bn and ln are n× 1 vectors such that bn = QT
nb and ln = QT

n l.
The second-order system (4.2) is called a reduced-order system Σn of the original
system ΣN .

We note that by explicitly formulating the matrices Mn, Dn, and Kn in Σn,
essential structures of M, D, and K are preserved. For example, if M is symmetric
positive definite, so is Mn. As a result, we can preserve the stability, symmetry, and
physical meanings of the original second-order system ΣN . This is in the same spirit
of the widely used PRIMA algorithm for the passive reduced-order modeling of linear
dynamical systems arising from interconnect analysis in circuit simulations [22].

The transfer function of the reduced second-order system Σn in (4.2) is given by

hn(s) = lTn (s2Mn + sDn + Kn)−1bn.(4.3)

By Lemma 2.1, hn(s) can be equivalently expressed as

hn(s) = l̂ T
n (sCn + Gn)

−1
b̂n,

where

l̂n = QT
[n]̂l, b̂n = QT

[n]b̂, Cn =

[
Dn Mn

−I 0

]
, Gn =

[
Kn 0
0 I

]
.(4.4)

Furthermore, by the definition of the 2 × 2 block diagonal matrix Q[n] in (3.2), Cn

and Gn can be expressed as Cn = QT
[n]CQ[n] and Gn = QT

[n]GQ[n]. The moments

m
(n)
� of Σn can be compactly expressed as m

(n)
� = l̂ T

n (−G−1
n Cn)�(G−1

n b̂n) for � ≥ 0.
We now discuss the moment-matching properties between the original system

ΣN in (1.1) and the reduced system Σn in (4.2). We first show that for the general
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second-order system ΣN in (1.1), the first n moments of h(s) and hn(s) are matched.
Then we show that for a symmetric second-order system, the first 2n moments of
h(s) and hn(s) are matched. These results are still true in the presence of deflations.
Furthermore, if the SOAR procedure breaks down at the n0th step, then the transfer
function hn0(s) of the reduced-order system Σn0 is identical to the transfer function
h(s) of the original system ΣN , i.e., hn0

(s) ≡ h(s). Therefore, we may regard this as
a lucky breakdown.

Theorem 4.1. The first n moments of the original system ΣN in (1.1) and the

reduced system Σn in (4.2) are matched, i.e., m� = m
(n)
� for � = 0, 1, 2, . . . , n − 1.

Hence hn(s) is an nth Padé-type approximant of the transfer function h(s):

h(s) = hn(s) + O(sn).

The result of Theorem 4.1 is from a combination of the subspace embedding
Theorem 3.1 and a theorem on the Krylov subspace-based moment-matching property
presented in [17, Theorem 3.1]. For the sake of completeness, we present a proof here.
We first prove a couple of lemmas. These lemmas will also be used later.

Lemma 4.2. For � = 0, 1, . . . , n− 1, Q[n]Q
T
[n]H

� b̂0 = H� b̂0.

Proof. From Theorem 3.1, H�b̂0 ∈ span{Q[n]} for � ≥ 0. Since Q[n]Q
T
[n] is the

orthogonal projector onto span{Q[n]}, the lemma follows immediately.

Lemma 4.3. For � = 0, 1, 2, . . . , n− 1, (−G−1
n Cn)�G−1

n b̂n = QT
[n]H

�b̂0.

Proof. We prove by induction on �. As the base case, for � = 0, by the definition
of b̂0 and Lemma 4.2, it gives that b̂ = GQ[n]Q

T
[n]b̂0. Then we have

G−1
n b̂n = G−1

n QT
[n]b̂ = G−1

n QT
[n]GQ[n]Q

T
[n]b̂0 = QT

[n]b̂0.

This proves that the lemma is true for � = 0. Suppose that the lemma is true for
�− 1. For � (< n), by the hypothesis Cn = QT

[n]CQ[n] and Lemma 4.2, it yields that

(−G−1
n Cn

)�
G−1

n b̂n =
(−G−1

n Cn

) (−G−1
n Cn

)�−1
G−1

n b̂n

=
(−G−1

n Cn

) · QT
[n]H

�−1b̂0

= −G−1
n · QT

[n]CQ[n] · QT
[n]H

�−1b̂0

= −G−1
n QT

[n]C · H�−1b̂0.

Inserting I = GG−1 in the middle of the right-hand side of the preceding expression,
we obtain(−G−1

n Cn

)�
G−1

n b̂n = −G−1
n QT

[n] · GG−1 · CH�−1b̂0 = G−1
n QT

[n]G · H�b̂0.

Finally, by Lemma 4.2 again, we have(−G−1
n Cn

)�
G−1

n b̂n = G−1
n · QT

[n]G · Q[n]Q
T
[n]H

�b̂0 = QT
[n]H

�b̂0.

This finishes the induction argument, which completes the proof of the lemma.

Proof of Theorem 4.1. For any � < n, by the definition of m
(n)
� and Lemma 4.3,

we have

m
(n)
� = l̂ T

n (−G−1
n Cn)�G−1

n b̂n = l̂ T
nQT

[n]H
�b̂0.
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Next, by the definition of l̂ T
n and Lemma 4.2, we have

m
(n)
� = l̂ TQ[n]Q

T
[n]H

�b̂0 = l̂ TH�b̂0 = m�.

This proves that the first n moments of h(s) and hn(s) are equal.
The following theorem concerns the property of the reduced system Σn at the

breakdown of the SOAR procedure.
Theorem 4.4. If the SOAR procedure breaks down at step n0, i.e., span{Qn0

} =
G∞(A,B; r0), then the transfer function hn0

(s) of the reduced system Σn0
is identical

to the transfer function h(s) of the original system ΣN , i.e., hn0(s) ≡ h(s).
Proof. As we discussed in section 3, when the SOAR procedure breaks down at

step n0, we know that r� ∈ span{Qn0
} = G∞(A,B; r0) for all � ≥ 0. By Theorem 3.1,

this indicates that H�b̂0 ∈ span{Q[n0]} for all � ≥ 0, which implies that

K∞
(
H; b̂0

) ⊆ span{Q[n0]}.
On the other hand, by the Cayley–Hamilton theorem (for example, see [18, p. 86]),
there is a polynomial p(t) of degree at most N − 1 such that (I− sH)−1 = p(I− sH).
It gives that

(I − sH)−1b̂0 ∈ span{Q[n0]}.(4.5)

Thus there exists a vector f such that

(I − sH)−1b̂0 = Q[n0]f .(4.6)

Substituting the definition of b̂0 = G−1b̂ into (4.6) and reordering the expression
yields that

QT
[n0]

b̂ = QT
[n0]

G(I − sH)Q[n0]f = QT
[n0]

(G + sC)Q[n0]f = (Gn0 + sCn0) f .

Next multiplying (Gn0
+sCn0

)−1 from the left of the preceding equation and by (4.6)
and the orthonormality of Q[n0], we have

(Gn0
+ sCn0)

−1
QT

[n0]
b̂ = f = QT

[n0]
(I − sH)−1G−1b̂ = QT

[n0]
(G + sC)−1b̂.(4.7)

Now recall that the transfer function hn0
of Σn0

can be written as

hn0
(s) = lTn0

(
s2Mn0

+ sDn0
+ Kn0

)−1
bn0

= l̂ TQ[n0] (sCn0
+ Gn0

)
−1

QT
[n0]

b̂.

Hence, by (4.7), we have

hn0
(s) = l̂ TQ[n0]Q

T
[n0]

(G + sC)−1b̂T.

Using (4.5) and Lemma 4.2, we get

hn0
(s) = l̂ T(G + sC)−1b̂T = h(s).

This completes the proof.
We now consider the moment-matching property for a symmetric second-order

system ΣS
N , namely, matrices M, D, and K are symmetric and b = l. The transfer

function of ΣS
N is given by

h(s)(s) = bT
(
s2M + sD + K

)−1
b.

9



Correspondingly, the transfer function of the reduced symmetric second-order system
ΣS

n is of the form

h
(s)
n (s) = bT

n

(
s2Mn + sDn + Kn

)−1
bn,

where matrices Mn, Dn, and Kn and the vector bn are defined as in (4.2).
Theorem 4.5. For the symmetric second-order system ΣS

N and its reduced system

ΣS
n, the first 2n moments of h(s)(s) and h

(s)
n (s) are equal, i.e., m� = m

(n)
� for � =

0, 1, 2, . . . , 2n− 1. Hence h
(s)
n (s) is an nth Padé approximant of h(s)(s):

h(s)(s) = h(s)
n (s) + O(s2n).

The theorem is a consequence of Theorem 4.1 with a careful exploitation of sym-
metry. We provide only a sketch of the proof.

Sketch of proof. First, by induction, we can show that the following two identities
hold:

b̂TG−1
(−CG−1

)�
= b̂TG−1

(−CTG−1
)� [ I 0

0 −M

]
for � ≥ 0(4.8)

and

b̂T
nG−1

n

(−CnG
−1
n

)�
= b̂T

nG−1
n

(−CT
nG−1

n

)� [ I 0
0 −Mn

]
for � ≥ 0.(4.9)

Then, we note that for any � ≤ 2n− 1, the moment m
(n)
� can be written in the form

m
(n)
� = b̂T

n (−G−1
n Cn)i+j+1(G−1

n b̂n)

= −b̂T
nG−1

n (−CnG
−1
n )iCn(−G−1

n Cn)j(G−1
n b̂n),

where � = i + j + 1 and 0 ≤ i, j < n. By (4.9), we get

m
(n)
� = −((−G−1

n Cn)iG−1
n b̂n)T

[
I 0
0 −Mn

]
Cn(−G−1

n Cn)j(G−1
n b̂n).

By the definitions of Mn and Cn, the above expression can be written as

m
(n)
� = −((−G−1

n Cn)iG−1
n b̂n)TQT

[n]

[
D M
M 0

]
Q[n](−G−1

n Cn)j(G−1
n b̂n).(4.10)

On the other hand, by applying Lemma 4.3 and then Lemma 4.2, we have

Q[n](−G−1
n Cn)j(G−1

n b̂n) = Q[n]Q
T
[n](−G−1C)j(G−1b̂)

(4.11)
= (−G−1C)j(G−1b̂).

Substituting (4.11) into (4.10), we have

m
(n)
� = −((−G−1C)iG−1b̂)T

[
D M
M 0

]
(−G−1C)j(G−1b̂)

= −b̂TG−1(−CTG−1)i
[

I 0
0 −M

]
C(−G−1C)j(G−1b̂).

Finally, by (4.8), we deduce that for � ≤ 2n− 1,

m
(n)
� = −b̂TG−1(−CG−1)iC(−G−1C)j(G−1b̂)

= b̂T(−G−1C)i+j+1(G−1b̂) = m�.

This completes the sketch of proof.
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5. Algorithms. In this section, we continue the discussion of the SOAR-based
method for dimension reduction of the second-order system ΣN described in section 4.
For the purpose of comparisons, we include the standard Arnoldi-based algorithm for
the dimension reduction of ΣN via linearization.

In practice, often an approximant of the transfer function h(s) of the original
system ΣN around a selected expansion point s0 �= 0 is interested. In this case, h(s)
can be written in the form

h(s) = l T((s− s0)
2M + (s− s0)D̃ + K̃)−1b,

where D̃ = 2s0M+D and K̃ = s2
0M+ s0D+K. s0 is an arbitrary but of fixed value

such that the matrix K̃ is nonsingular. Correspondingly, the moments of h(s) about
s0 can be defined in a way similar to (2.5).

By applying the SOAR procedure (Algorithm 1), we can generate an orthonor-
mal basis Qn of the second-order Krylov subspace Gn(A,B; r0) with matrices A =

−K̃−1D̃ and B = −K̃−1M and the starting vector r0 = K̃−1b. The subspace spanned
by the nonzero columns of Qn is used as the projection subspace for defining a re-
duced system Σn. Subsequently, the transfer function hn(s) of the reduced system
Σn about the expansion point s0 is given by

hn(s) = l T
n ((s− s0)

2Mn + (s− s0)D̃n + K̃n)−1bn,

where Mn = QT
nMQn, D̃n = QT

nD̃Qn, K̃n = QT
nK̃Qn, l T

n = QT
n l, and bT

n = QT
nb.

By a straightforward algebraic manipulation, hn(s) can be simply expressed as

hn(s) = l T
n

(
s2Mn + Dn + Kn

)−1
bn,(5.1)

where Mn = QT
nMQn, Dn = QT

nDQn, Kn = QT
nKQn, ln = QT

n l, and bn = QT
nb.

In other words, the transformed matrix triplet (M, D̃, K̃) is used to generate an
orthonormal basis Qn of the projection subspace Gn, but the original matrix triplet
(M,D,K) is directly projected onto the subspace Gn to define a reduced system Σn.

By an equivalent argument as presented in section 4, we can show that the first
n moments about the expansion point s0 of h(s) and hn(s) are the same. Therefore,
hn(s) is an nth Padé-type approximant of h(s) about s0, i.e.,

h(s) = hn(s) + O ((s− s0)
n) .

Furthermore, if ΣN is a symmetric second-order system, ΣS
N , then the first 2n mo-

ments about s0 of h(S)(s) and h
(S)
n (s) are the same, which implies that h

(S)
n (s) is an

nth Padé approximant of h(s) about s0, i.e.,

h(S)(s) = h(S)
n (s) + O (

(s− s0)
2n
)
.

The following algorithm is a high-level description of the second-order structure-
preserving dimension reduction algorithm based on the SOAR procedure.

Algorithm 2. Second-order structure-preserving dimension reduction algorithm.
1. Select an order n for the reduced system and an expansion point s0.
2. Run n steps of the SOAR procedure (Algorithm 1) to generate an orthonormal

basis Qn of Gn(A,B; r0), where A = −K̃−1D̃, B = −K̃−1M, and r0 = K̃−1b.

D̃ = 2s0M + D and K̃ = s2
0M + s0D + K.

11



3. Compute Mn = QT
nMQn, Dn = QT

nDQn, Kn = QT
nKQn, ln = QT

n l, and
bn = QT

nb. This defines a reduced system Σn as in (4.2) about the selected expansion
point s0.

As we have noticed, by the definitions of the matrices Mn, Dn, and Kn in the
reduced system Σn, essential properties of the matrices M, D, and K of the original
system ΣN are preserved. For example, if M is symmetric positive definite, so is Mn.
Consequently, we can preserve the stability, symmetric, and physical meaning of the
original second-order system ΣN .

The explicit formulation of the matrices Mn, Dn, and Kn is done by using matrix-
vector product operations Mq, Dq, and Kq for an arbitrary vector q. Later in this
section, we will see that this is an overhead comparing to the method based on the
Arnoldi procedure, in which the projection of the matrix is obtained as a by-product
without any additional cost. However, we believe this is a numerically better way to
use the computed orthonormal basis Qn for the second-order system. The preservation
of structure of the underlying problem outweighs the extra cost of floating point
operations in modern computing environment. In fact, we observed that this step
takes only a small fraction of the total work, due to extreme sparsity of the matrices M
and D and K in practical problems we encountered. The bottleneck of computational
costs is often associated with the matrix-vector multiplication operations involving
K̃−1 at step 2 of the algorithm.

In the rest of this section, we give a short review on the basic Arnoldi-based
Krylov subspace projection method for the dimension reduction of the second-order
system ΣN via linearization. By denoting x(t) = [q(t)T, q̇(t)T]T, the second-order
system ΣN can be written in an equivalent linear form:

ΣL
N :

{
Cẋ(t) + Gx(t) = b̂u(t),

y(t) = l̂ Tx(t),
(5.2)

where C, G, b̂, and l̂ are as defined in Lemma 2.1. The transfer function of ΣL
N and

its Taylor series expansion about a selected expansion point s0 are given by

h(s) = l̂ T(sC + G)−1b̂ = l̂ T(I − (s− s0)H
(L))−1r̂ =

∞∑
�=0

m� (s− s0)
�,

where H(L) = −(G + s0C)−1C and r̂ = (G + s0C)−1b̂. s0 is an arbitrary but
fixed value such that the matrkx G + s0C is invertible. The moments of h(s) are

m� = l̂ T(H(L))�r̂ for � ≥ 0.
Let Vn be an orthonormal basis of the Krylov subspace Kn(H(L); r̂) generated by

the standard Arnoldi process; see, for example, [16, 13, 27]. Then by approximating
the state vector x(t) of the linear system ΣL

N by another state vector xn(t) constrained
to the subspace spanned by Vn, namely, x(t) ≈ Vnxn(t), where xn(t) is an n × 1
vector, we obtain a reduced linear system

ΣL
n :

{
C

(L)
n ẋn(t) + G

(L)
n xn(t) = b̂nu(t),

ỹ(t) = l̂ T
nxn(t),

(5.3)

where C
(L)
n = −H

(L)
n , G

(L)
n = I + s0H

(L)
n , b̂n = VT

n r̂, and l̂n = VT
n l̂. H

(L)
n =

VT
nH(L)Vn is an n × n upper Hessenberg matrix and generated as a by-product of

the Arnoldi procedure. Note that r̂ is the first vector in Kn(H(L); r̂). Therefore, the
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vector b̂n can be rewritten as b̂n = ‖r̂‖2e1, where e1 is the first unit vector. The
transfer function of the reduced system ΣL

n is given by

h(L)
n (s) = l̂ T

n (sC(L)
n + G(L)

n )−1b̂n = ‖r̂‖2 · l̂ T
n (I − (s− s0)H

(L)
n )−1e1.

This Arnoldi-based method for the dimension reduction of the second-order system
ΣN via linearization is outlined as follows.

Algorithm 3. Arnoldi-based method for dimension reduction of second-order
system via linearization.

1. Select an order n for the reduced system, and an expansion point s0.
2. Run n steps of the Arnoldi procedure to compute an orthonormal basis Vn of

Krylov subspace Kn(H(L), r̂), where H(L) = −(G+ s0C)−1C and r̂ = (G+ s0C)−1b̂.

3. Let C
(L)
n = −H

(L)
n , G

(L)
n = I + s0H

(L)
n , b̂n = ‖r̂‖2e1, and l̂n = VT

n l̂. Then a
reduced system ΣL

n of ΣN is defined by (5.3).
It is well known that the first n moments about the expansion point s0 of h(s)

and h
(L)
n (s) are the same. Therefore, h

(L)
n (s) is an nth Padé-type approximant of h(s)

about s0, i.e.,

h(s) = h(L)
n (s) + O ((s− s0)

n) .

Furthermore, if ΣN is a symmetric second-order system and a symmetric linearization

is utilized, then the first 2n moments about the expansion point s0 of h(s) and h
(L)
n (s)

are the same. As a result, h
(L)
n (s) is an nth Padé approximant of h(s) about s0,

h(s) = h(L)
n (s) + O (

(s− s0)
2n
)
.

Hence the reduced systems Σn (2.6) and Σ
(L)
n (5.3) have the same orders of approx-

imations of transfer function h(s). However, only the reduced system Σn preserves
the second-order form of the original system ΣN .

6. Numerical examples. In this section, we present three numerical examples
to compare the accuracy of dimension reduction methods of ΣN based on the SOAR
procedure (Algorithm 2) and on the standard Arnoldi procedure (Algorithm 3). Under
the scope of this work, we are concerned only with the basic properties and behav-
iors of the new SOAR-based method. It is implemented in a straightforward way,
as outlined in Algorithm 2. Therefore, we will compare the SOAR method with a
straightforward implementation of the Arnoldi method as described in Algorithm 3.
All numerical experiments were run in MATLAB on a Sun Ultra 10 workstation.

Example 1. This is an example for the frequency response analysis of a second-
order system of order N = 400, which comes from a finite element model of a shaft on
bearing supports with a damper. The data were extracted from MSC/NASTRAN [19].
This is a symmetric second-order system, where M and D are symmetric but not
positive definite, and K is symmetric positive definite with 1-norm condition number
about O(109). There is no shift, i.e., s0 = 0. Figure 6.1(a) shows the magnitudes (in
log of base 10) of the exact transfer function h(s) and approximate ones by the SOAR
method (Algorithm 2) at n = 15. The relative errors |h(jω) − hn(jω)|/|h(jω)| and

|h(jω)−h
(L)
n (jω)|/|h(jω)| are shown at the second plot of Figure 6.1(a). Figure 6.1(b)

shows the results for n = 30. This example shows that the SOAR method not only
preserves the symmetry and second-order structure but also results in a more accurate
approximation. We note that this example was also reported in the previous work [2],
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(a) n = 15
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(b) n = 30

Fig. 6.1. Magnitudes of h(jω) for the shaft on bearing support with a damper and its approxi-

mations hn(jω) obtained by the SOAR-based method and h
(L)
n (jω) by the Arnoldi-based method and

relative errors.

which implements Su and Craig’s algorithm [28]. The SOAR-based method uses a
much smaller reduced-order system and produces a better approximation of h(s).

Example 2. In this example, we report the numerical results for the simulation
of a linear-drive multimode resonator structure [10]. This is a nonsymmetric second-
order system. The mass and damping matrices M and D are singular, and the
stiffness matrix K is very ill-conditioned with 1-norm condition number at O(1015).
An expansion point s0 = 2× 105π is used, the same as in [10]. The 1-norm condition

number of the transformed stiffness matrix K̃ = s2
0M + s0D + K is slightly improved

to O(1013). No further attempt is made to improve the condition number of K̃. In
Figure 6.2, the Bode plots of frequency responses of the original second-order system
ΣN of order N = 63 and the reduced-order systems of orders n = 10 and n = 20 via
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(b) n = 20

Fig. 6.2. Bode plots of h(jω) of the resonator, its approximations hn(jω) by the SOAR proce-

dure and h
(L)
n (jω) by the Arnoldi procedure, and relative errors.

the SOAR and Arnoldi methods are reported. The corresponding relative errors are
also shown over the frequency range of interest. The results clearly indicate that the
SOAR-based method is considerably superior to the Arnoldi-based method.

Example 3. This example is from the frequency response simulation of a tor-
sional micromirror described in [8]. Using a lumped finite element analysis results
in a second-order system ΣN of state-space dimension N = 846. Mass and damp-
ing matrices M and D are symmetric with small elements: ‖M‖1 = O(10−8) and
‖D‖1 = O(10−6). In contrast, stiffness matrix K is nonsymmetric with large el-
ements: ‖K‖1 = O(109). All matrices are ill-conditioned with 1-norm condition
number about O(1018). An expansion point s0 = 2 × 104π is selected. The 1-norm

condition number of the transformed stiffness matrix K̃ = s2
0M + s0D + K is still
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Fig. 6.3. Bode and phase of the micromirror between 1 − 100 kHz (top two graphs) and the
corresponding relative errors (bottom).

ill-conditioned. No attempt is made to improve the condition number of K̃. Apply-
ing the SOAR-based method to the system, we find that a reduced second system of
order n = 20 is sufficient for the desired accuracy. Bode plots of h(jω) are shown
in Figure 6.3. In Figure 6.3, the transfer function hn(jω) obtained by the SOAR-
based method is superimposed on h(jω). These results demonstrate again that the
SOAR-based method not only preserves the second-order structure but also generates
a significantly better approximation than the Arnoldi-based method.

7. Concluding remarks. We presented a structure-preserving dimension re-
duction algorithm for a second-order dynamical system ΣN . The reduced second-
order system Σn in (4.2) enjoys the same moment-matching properties as the existing
Arnoldi-based Krylov subspace algorithm via linearization. This new approach has
considerable superior numerical accuracy.

There are a number of interesting research issues for further study. One is about
error estimation and adaptive selection of the dimension n of the reduced system, such
as the work presented in [5, 21] for dimension reduction of linear systems. Another
issue is about the numerical impact of SOAR-based algorithm in the presence of
finite precision arithmetic. Another important extension of this work is about the
dimension reduction of multi-input, multioutput second-order systems, particularly
by taking into the account of deflations in a block second-order Krylov subspace.
Applications of this method to the RCS circuit simulation and for comparing to the
ENOR and SMOR algorithms [24, 30] used in the circuit simulation community are
the subjects of further study.
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