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Reuse method for quantum circuit synthesis

C. Allouche, M. Baboulin, T. Goubault de Brugière and B. Valiron

Abstract The algebraic decomposition of a unitary operator is a key operation in
the synthesis of quantum circuits. If most methods factorize the matrix into prod-
ucts, there exists a method that allows to reuse already existing optimized circuits
to implement linear combinations of them. This paper presents an attempt to ex-
tend this method to a general framework of circuit synthesis. The method needs to
find suitable groups for the implementation of new quantum circuits. We identify
key points necessary for the construction of a comprehensive method and we test
potential group candidates.

1 Introduction

The notion of quantum circuit has emerged from the beginning of the field of quan-
tum computing [3] and so far remains the most widespread description of a quantum
algorithm. Contrary to conventional algorithms that manipulate bits (0 or 1) using
boolean gates, a quantum algorithm operates on quantum bits, or qubits, using a se-
ries of quantum gates which are generally desired as simple as possible. A quantum
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
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


SWAP

Table 1 Usual elementary unitary matrices.

bit is formally a unit vector in C2 (modulo a phase factor) and represents a linear
superposition of both states 0 and 1. Using the usual Dirac notation, the state |ψ〉 of
one qubit is the vector

|ψ〉= α |0〉+β |1〉=
(

α

β

)
. (1)

We compose spaces of states for systems of several qubits by using the tensor prod-
uct of the spaces of states of each qubit. Then a system of n qubits is a unit vector
that belongs to C2n

. With this formalism, quantum gates are unitary matrices, i.e
matrices whose inverse are their own adjoint. Depending on the physical realization
of the quantum memory, some unitary matrices might be easier to implement than
others [11]: we refer to these gates as elementary. Among the elementary quantum
gates usually considered, we can mention the gates presented in Table 1: the Pauli
matrices X , Y and Z, the Hadamard gate H, the T -gate and the two-qubit gates
CNOT and SWAP.

A quantum circuit is then a series of elementary quantum gates operating on n
qubits for some n > 0. It represents a global quantum operator that corresponds to
a matrix of U (2n), where U (2n) denotes the set of unitary matrices of size 2n×2n

(see, e.g., [10] for a comprehensive introduction to quantum computing).
A quantum circuit can be represented as in Figure 1. Each wire corresponds to a

quantum bit and we read from left to right the gates that are applied to the system.
In this case, we first apply a Hadamard gate on the first qubit (tensored with the
identity on the second qubit), then the Pauli gate X is applied to the second qubit,
controlled by the first one. This means that if the first qubit was in state |0〉, the state
is unchanged, and if it was in state |1〉 the gate X is applied. One can check that the
controlled-X gate is equivalent to the CNOT gate. Finally, the overall operator U
applied to the system is the product

U = Λ(X)× (H⊗ I2), (2)

where Λ(X) denotes the fact that the gate X is controlled by the first qubit.
A set of gates is said to be universal when any unitary can be implemented via a

quantum circuit using these gates. Since the mid-1990s various universality results
have been shown (see, e.g. [5]). For example the set composed of all the 1-qubit
gates and the CNOT gate is sufficient to implement any operator. Another example
is the set of H, T and CNOT gates which is also universal. In order to implement a
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input: |x〉
H

X

output: U |x〉

Fig. 1 Example of a quantum circuit

general quantum operator on a concrete system, it is necessary to decompose it into
elementary gates. If these elementary gates are chosen from a universal set, then it
is theoretically possible to implement this operator.

Quantum computing yields several challenges. One of the problem is to actu-
ally generate a quantum circuit from a textual description. Several programming
languages have been developed to address this issue [15, 6, 17]. Another prob-
lem is to optimize the generated quantum circuits by simplifying them as much
as possible, for example by using rewrite rules in order to minimize the number of
elementary gates [9]. Also many efforts have been made to provide software that
simulates quantum circuits on classical computers in order to help researchers to
make progress in view of a future quantum computer. In this case the optimization
of circuits can be understood as minimizing the simulation time.

In this paper we are instead interested in the synthesis of quantum circuits. Con-
trary to the case where the circuit is explicitly described, here a unitary operator
is provided as a matrix and the problem consists in finding a quantum circuit that
implements it optimally.

We can impose various constraints on the solution circuit such as the choice of the
considered elementary gates, the physical medium, the arrangement of qubits, the
memory properties, etc. We can evaluate the optimality of the solution by measuring

• the number of elementary gates,
• the time to find the circuit,
• the time to classically simulate the circuit,
• the error between the targeted operator and the implemented operator (for exam-

ple using the norm of the difference between the corresponding matrices).

Over the years more and more efficient methods have been developed to synthe-
size an arbitrary quantum operator [1, 8, 13, 16]. Most synthesis frameworks rely
on linear algebra methods to decompose unitary matrices. The first methods aimed
at decomposing the operator column by column [1, 8]. One can cite as example the
QR method, via Givens rotations [16]. Other decomposition methods have also been
proposed, for example the recent block-ZXZ decomposition [4], or the quantum
Shannon decomposition [13] that relies on the use of the sine cosine decomposition
of a unitary operator U ∈U(2n):

U =

(
A1 0
0 A2

)(
C −S
S C

)(
B1 0
0 B2

)
(3)
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Fig. 2 Quantum circuit implementing a linear combination of operators

where A1,A2,B1,B2 ∈U(2n−1) and C,S are diagonal real matrices such that C2 +
S2 = I2n−1 . For an overview of the history and links between these various methods,
refer to [12].

In this context, there exists a less typical method that focuses on a decomposi-
tion of the operator as a linear combination of other operators chosen from a given
set. This method enables to reuse optimized circuits in order to implement more
complex operators [7]. To our knowledge, this is the only method using such a tech-
nique. This method, which we informally call the reuse method, has been shown to
be efficient on specific cases [7]. Our objective in this paper is to determine whether
this method can be efficiently extended to a general framework for circuit synthesis.

The paper is organized as follows. In Section 2, we recall the main principles of
the reuse method. In Section 3, we select the groups that can be used in synthesizing
circuits via the reuse method. In Section 4, we study the potential group candidates.
We conclude in Section 5.

2 The reuse method

The reuse method has emerged from the following motivation: if we know how to
implement circuits (supposedly efficiently), can we directly reuse these circuits in
order to implement new operators?

Based on this idea, Klappenecker and Rötteler replied in the affirmative [7]. Be-
low is a simplified version of [7, Th. 6].

Theorem Let G⊂U (2m) be a group of order 2n, and T = (t1, ..., tn) be a transver-
sal of G (i.e any member g of G can be written as g = tα1

1 ...tαn
n with αi ∈ {0,1}).

Suppose
A = ∑

g∈G
βgg (4)

with A ∈ U (2m) and define the coefficient matrix CA = (βg−1h)g,h∈G. Then the co-
efficients (βg)g∈G can be chosen such that CA is unitary and the operator A can be
implemented as depicted in Figure 2.
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This remains a simplified version, sufficient for the rest of our study. An illustra-
tion of the method can be found in [7, Sec. 3], where there is an implementation of
the Hartley transform via a linear combination of powers of the Fourier transform.

A key point in the use of this method is the distribution of information between
the group and the matrix of coefficients. When the group contains sufficient infor-
mation, such as the Fourier transform powers group, the coefficient matrix is easy
to compute and the efficiency of the quantum Fourier transform synthesis is used to
produce an efficient circuit on non trivial operators. An alternative would be to con-
sider the problem in the other direction: the group is simple, contains little informa-
tion but the matrix of coefficients — which now has a maximum of information —
has a structure that makes its implementation effective.

For example, if the group is circulant then the matrix of coefficients will be cir-
culant and diagonalizable in the Fourier basis. If the group is symmetric and its
elements are involutive, then the matrix will be diagonalizable in the Hadamard
base. In these cases, information can be predominantly contained in the coefficient
matrix but the implementation of the coefficient matrix, although inevitably costly
in terms of gates, is much simpler than for any generic operator (see the article by
Bullock and Markov for the implementation of diagonal operators [2]).

However among all the possible matrix groups, some are more suitable than oth-
ers for a generic synthesis method. In the next section we narrow our research by
investigating the theoretical properties of “good” groups for general synthesis.

3 Characterization of candidate groups G

In this section we discuss under which conditions the reuse method can be used as
a generic method for the synthesis of circuits.

We can already eliminate the case where the group G is Abelian. Indeed, in this
case the matrices of the group G commute in pairs and are therefore simultaneously
diagonalizable, just like any member of the span of G. One cannot reach all unitary
matrix but only those diagonalizable in a specific basis.

Ideally, the group G should be built easily for any number of qubits either with
an adaptable construction for any n or with a recursive approach. In fact, we can
show how to construct a solution group K and its matrix of coefficients for n+m
qubits from a solution group G for n qubits and a solution group H for m qubits.

We use can the properties of the tensor product to construct the group K. Indeed,
by setting K = G⊗H, provided that U(2n)⊆ span(G) and U(2m)⊆ span(H) then
we have U(2n+m)⊆ span(G⊗H). Recall the identity

(g1⊗g2)(h1⊗h2) = (g1⊗h1)(g2⊗h2) (5)

which is used to provide an expression of the coefficient matrix associated with K:
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CK = (βg−1h)g,h∈G⊗H = (β(g−1
1 ⊗h−1

1 )−1(g2⊗h2)
)g1,g2∈G,h1,h1∈H

= (β(g−1
1 g2)⊗(h−1

1 h2)
)g1,g2∈G,h1,h1∈H .

(6)

With an appropriate ordering of K, the matrix CK can be expressed as

CK =



β(g1g1 ,h1h1)
... β(g1gn ,h1h1)

β(g1g1 ,h1h2)
... β(g1gn ,h1h2)

...

...
...

...
...

β(gng1,h1h1)
... β(gngn ,h1h1)

β(gng1 ,h1h2)
... β(gngn ,h1h2)

...

β(g1g1 ,h2h1)
... β(g1gn ,h2h1)

β(g1g1 ,h2h2)
... β(g1gn ,h2h2)

...

...
...

...
...

β(gng1 ,h2h1)
... β(gngn ,h2h1)

β(gng1 ,h2h2)
... β(gngn ,h2h2)

...

...
...

...
...


. (7)

Thus, if a series of operations P factors CG and a series of operations Q factors CH ,
then (P⊗ I) block-factorizes CK and (I⊗Q) factorizes each block of CK . Thus a
priori (P⊗Q) factorizes CK .

Therefore, if a solution for one qubit has been found, we can generate a solu-
tion for an arbitrary number of qubits by successive tensor products. Now, because
the available memory is limited1, it is desired to minimize the number of auxiliary
qubits by logical qubits especially if additional qubits are necessary for error cor-
recting codes [14]. In our study the size of the group G has been fixed to a maximum
of 8 elements so as to have only 3 auxiliary qubits per logic bit. This accounts for
the fact that quantum memory is expensive.

Only a few potential groups then satisfy the above restrictions:

• the projective Pauli group,
• the dihedral group over 3 qubits,
• the quaternion group.

4 Study of the candidates

The two 8-element groups – quaternion and dihedral group – are very similar: we
only consider the latter. Indeed, the results on one of the two groups are immediately
transposable to the other group.

This section analyzes first the base cases: the projective Pauli group and the dihe-
dral group. In a second step, we discuss the behavior of the factorization mentioned
in Section 3 for the case of two qubits in the context of the dihedral group.

1 Simulating quantum computation on a conventional computer is known to be expensive [10]
since a linear increase in the number of manipulated qubits yields an exponential increase in the
size of the required memory.
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4.1 The projective Pauli group

In the original publication, [7, Th. 6] has been extended to the case of projective
groups in [7, Th. 7]. The particular projective group that we consider is

G = {I,X ,Z,XZ}. (8)

By setting A = a0I +a1X +a2Z +a3XZ the associated coefficient matrix is

CA =


a0 a1 a2 a3
a1 a0 a3 a2
a2 −a3 a0 −a1
a3 −a2 a1 −a0

 . (9)

Klappenecker and Rötteler [7, Eq. 12] gave the factorization

CNOT ×CNOT (2,1)× (H⊗ I2)×CA× (H⊗ I2)×CNOT = A⊗ I2 (10)

with

CNOT (2,1) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

This shows that the synthesis of CA is as difficult as the synthesis of A. No improve-
ment can therefore be achieved with this group.

4.2 The dihedral group

The idea is to get rid of the projective character of the Pauli group by adding matrices
to the G group, i.e with

G = {I,−I,X ,−X ,Z,−Z,XZ,−XZ}. (11)

The coefficient matrix then becomes

CA =



a0 a1 a2 a3 a4 a5 a6 a7
a1 a0 a3 a2 a5 a4 a7 a6
a2 a3 a0 a1 a7 a6 a5 a4
a3 a2 a1 a0 a6 a7 a4 a5
a4 a5 a6 a7 a0 a1 a2 a3
a5 a4 a7 a6 a1 a0 a3 a2
a7 a6 a5 a4 a2 a3 a0 a1
a6 a7 a4 a5 a3 a2 a1 a0


. (12)

The best factorization that we have found is



8 C. Allouche, M. Baboulin, T. Goubault de Brugière and B. Valiron

P×CA×P† =


I

U
I

U

= I⊗Λ(U) (13)

where
P = (SWAP⊗ I)× (I⊗SWAP)× (Λ(Z)⊗ I)×H⊗3 (14)

and where U is some arbitrary 2×2 unitary matrix, a priori not simpler to synthesize
than the matrix A.

We can then conclude that no improvement can neither be found for this group.

4.3 Factorization for two qubits

In this section, we highlight the fact that the factorization procedure envisioned in
Section 3 is not so simple to use, and that it does not necessarily provide a usable
decomposition.

Consider indeed an operator A on 2 qubits. Using the dihedral group, the block
factorization on CA would then lead to

I
V

I
V

 (15)

with V a 2 by 2 block-matrix with blocks of size 8 by 8. Applying the same factor-
ization on each block of V gives a matrix of the shape

I 0
U1 U2

I 0
U1 U2

0 I
U3 U4

0 I
U3 U4


, (16)

with U1, U2, U3 and U4 arbitrary matrices of size 2×2, such that
(

U1 U2
U3 U4

)
is unitary.

Synthesizing A therefore corresponds to synthesizing this matrix, which does not
seem too less costly. This hints at the fact that extending the study to larger groups
might not trivially help in getting a working solution.
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5 Conclusion

We have recalled the fundamentals of the synthesis of quantum circuits. We started
from an already existing method, aiming at implementing linear combinations of
known circuits in order to attempt to derive a generic synthesis method. By clari-
fying how a generic synthesis method can be compositionally derived, we have il-
lustrated the complexity of the problem. We presented the issues encountered when
restricting the approach to small groups of one-qubit operators. This study calls for
a more in-depth analysis of larger groups of two- or three-qubit operators.

References

1. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T.,
Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A
52(5), 3457 (1995)

2. Bullock, S.S., Markov, I.L.: Asymptotically optimal circuits for arbitrary n-qubit diagonal
computations. Quantum Information and Computation 4(1), 27–47 (2004)

3. Chi-Chih Yao, A.: Quantum circuit complexity. In: Proceedings of the 34th Annual Sympo-
sium on Foundations of Computer Science (SFCS’93), pp. 352–361. IEEE Computer Society,
Washington, DC, USA (1993)

4. De Vos, A., De Baerdemacker, S.: Block-Z X Z synthesis of an arbitrary quantum circuit.
Physical Review A 94(5), 052,317 (2016)

5. Deutsch, D., Barenco, A., Ekert, A.: Universality in quantum computation. Proceedings of the
Royal Society of London A 449, 669–677 (1995)

6. JavadiAbhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T., Martonosi, M.:
ScaffCC: Scalable compilation and analysis of quantum programs. Parallel Computing 45,
2–17 (2015)
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