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Rotor-to-Stator, Rub-related, Thermal/Mechanical Effects in 
Rotating Machinery 

a 

PAUL GOLDMAN and AGNES MUSZYNSKA 

Bently Rotor Dynamics Research Corporation, P.O. Box 2529, Minden, Nevada 89423, USA 

Abstract-The thermal effects of rotor-to-stator rub, and their influence on the rotor vibrational 
response, are discussed in this paper. Based on machinery observations, it is assumed in the analysis 
that velocities of transient thermal effects are considerably lower than that of rotor vibrations, and 
thermal effects affect only rotor steady-state vibrational responses. These responses would change 
due to thermally induced bow of the rotor, which can be considered slowly varying in time for the 
purposes of rotor vibration calculation. Thus uncoupled from the thermal problem, the rotor 
vibration is analyzed. The major consideration is given to the rotor, which experiences intermittent 
contact with the stator due to predetermined thermal bow of the rotor, unbalance force, and radial 
constant load force. In the case of an inelastic impact, this causes an on/off step-change in the 
stiffness of the system. A specially developed transformation is applied to the system model which 
contains discontinuities, and an averaging technique is then used to analyze stability of the different 
resonance regimes of rotor motion that were obtained. These regimes are further used to calculate 
the heat generated during rotor-to-stator contact stages, as a function of thermal conditions and rotor 
thermal bow modal parameters. The calculated heat input is used as a boundary condition for the 
rotor beat transfer problem. The latter is treated as quasi-static, which allows the application of an 
asymptotic method to the problem. The solution at its first approximation is used to adjust the rotor 
thermal bow value. As a result of this calculation, an ordinary differential equation with complex 
variables is obtained for the thermal bow, and it is investigated from the stability standpoint. 

NOTATION 

A,B,G 
b.tr 

nondimensional unbalance amplitude (17) 
specific functions of the system parameters (33) 
combined nondimensional unbalance amplitude and phase (25} 
radial clearance between the rotor and stator c 

cj 
Ca 
D,.M 
Dr.K.k,fi 
E 
£!. E-c. F 
f 
F 
g, g 

h 
H.U 
i. k 
I 
i = v,..-1 
Kj, K2, K3 
I, I 1• !2 
L 
m, e, a 

nondimensional amplitude of the rotor vertical response (22) 
the root of resonance equation (31) 
modal damping and modal mass of the rotor 
thermal time constant and thermodynamic constants of the rotor 
Young's modulus of elasticity 
specific functions of the system parameters ( 48) 
dry friction coefficient 
generalized input (25) 
beat rate density per unit area and its integral over the shaft length and cross 
section angle IJl ( 19) 
nondimensional distance from the rotor to the stator 
generalized input functions (17) and (25) 
integer numbers 
shaft moment of inertia 

modal partial stiffnes ses of the rotor 
axial coordinate and its values for the disk and rub locations 
length of the shaft 
unbalance mass, radius and angular orientation 
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moments generated by normal thermal stresses 
nondimensional natural frequency (17) 
normal force at the rotor,/stator contact 
order of smallness 
stiffness parameter of the system ( 17} 
radial (side-load) force and its angular orientation respectively 
generalized input (25) 
polar coordinates of the shaft cross sections points 

Nondimensional radial coordinate (19) 

radius of the shaft cross section 
nondimensional thermal bow (17) 
time 
temperature difference between specific point of the rotor and environment and 
its integrals over the shaft length I and cross-section polar coordinates r. lj.' ( 12) 
nondimensional horizontal displacement (17) 
coordinates rotating with the rotor 
rotor lateral displacements at the disk (1) and rub (2) locations in stationary 
coordinates (x-horizontal. y-vertical} 
angular orientation of the thermal bow 
slowly variable phases 
Dirac function 
nondimensional rotor/stator clearance coefficient 

small parameters 

second approximation to the vertical response nondimensionalized amplitude 
nondimensional damping (17) 
phase of horizontal response 

specific angle {36) 

indicator of contact-no-contact between rotor and stator 
modal coefficient ( 17) 
special product of system coefficients ( 44) 
lateral natural frequency of the rotor without rub (17) 
detuning (30) 
nondimensionalized amplitude of horizontal response 
amplitude of thermal bow and its values at the disk and rub locations 
vector of thermal bow in the coordinates rotating with the rotor 
nondimensional time 
phase of the rotor vertical response and its 2rr-periodic functions (23) 
disk rotating phase 
unit step function 
thermal expansion coefficient 
frequency of the rotor vertical response to rotor rotative speed ratio 
rotor rotative speed 

INTRODUCTION 

Rotor-to-stator rub, an unwelcome contact between a rotating and nonrotating elements of 
the machine, can be one of the most damaging malfunctions of rotating machinery. 
Generated by some perturbation of normal operating conditions that causes an increase of 
rotor vibration level, and/or an increase of the rotor centerline eccentricity, the rub can 
maintain itself, and gradually become more severe. The self-generating feature of this 
phenomenon originates from the interaction between rub-related thermal effects and lateral 
vibration response of the rotor. Starting from pioneering works of Tailor [1] and Newkirk 
(2 L the unwinding spiral vibrations of rotors are documented in several papers [3-11]. In 
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addition to that spiral response, Dimaragonas [4, 8] described an oscillating mode of shaft 
vibration, occurring during the transition from the spiraling to a steady-state mode. A 
similar result from an improved rotor dynamic model was obtained by Muszynska [ll]. 

The problem of rub-related heat distribution was discussed by several authors. for 
example, Kellenberg [6], Smalley [10), Sweets [12]. The most complete analysis of the heat 
transfer problem associated with rub is given in the book by Dimaragonas and Paipetis 
[ 13]. In all referenced literature the analysis of the shaft bow, resulting from the uneven 
temperature distribution due to rub, is based on an approximation on the mean flexural 
rotation of one end of the shaft in relation to the other (Goodier [141). 

The subject of this paper is an analysis of vibration responses of a rotor which 
experiences an occasional contact with the stator due to the combination of thermal bow, 
radial load force, and unbalance force. Machinery observations [ 111 indicate that the 
thermal processes are relatively slow; it is assumed, therefore, that they will affect only the 
steady-state regimes of rotor vibration. This allows the time-dependent thermal problem to 
be uncoupled, and the analysis of the thermal problem and rotor vibration responses to be 
pursued independently. 

The mathematical simulation of the pure vibrational aspect of rotor-to-stator rubs was 
considered in several papers [15-20]. In most cases of the mechanical/thermal problem, the 
analytical results are based on the method of harmonic balance, which is limited to periodic 
solutions, and is not quite strict mathematically. An attempt is made in this paper to adapt 
to the problem a more powerful asymptotic method, namely the averaging method. This 
method is valid only for the systems of ordinary differential equations in the specific forms 
[21]: the standard form and the form with multi-dimensional rotating phase. Mathematic­
ally, the problem reduces to establishing an appropriate transformation of the original 
variables in order to present the system in one of these forms. This problem has been 
solved using discontinuous variable transformation. The idea appeared first in the paper 
[22] by Zhuravlev, and was expanded later by Petchenev et a!. [23] and Goldman er a!. 
[24j. The developed mathematical body can further be applied to a number of other 
physical problems, including, for example, a problem of breathing and gaping shaft crack 
1251. 

2. MATHEMATICAL MODEL OF THE RUBBING ROTOR 

An isotropic rotor at its first lateral mode is considered (Fig. 1). The rotor-to-stator rub 
occurs at the shaft axial location /2 . The mathematical model of the system is as follows: 

Mil+ D,i1 + (Kl + Kz)(zl- Pneilrp+{!))- Kiz2- PneJirp+/il) = meQ2eN'- jt> 

Kk:. 1 - flnCJ(rp+/Jl) - (K2 + K,)(Zz - Pnci1q'+fi>) - {}N(1 + jf)~~:~ = 0, 

f = v -1' • = d (1) 
dt 

where K1 , K 2 , K 3 are modal partial stiffnesses of corresponding sections of the shaft 
(Fig. 1), M, D, are modal mass and damping of the rotor, Q is a rotor rotative speed, 
supposed constant; z1(t), z2(t) are rotor complex lateral displacements at the disk and rub 
locations in stationary coordinates (see Notation); q1 = Qt + a; m, e, « are unbalance 
mass, radius and angular orientation, respectively; P is a constant radial (side-load) force, 
applied in the vertical-down direction; f is a dry friction coefficient; N is the normal force 
between the rotor and circular stationary obstacle, like a seal or stator. This force occurs 
during the rotor/stator contact stage. 
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Fig. 1. Physical model of the rubbing rotor. 

l 1 
ff= 

0 
(2) 

is a rotor/stator contact indication function (a switch condition); c is the radial clearance 
between the rotor and the stator at the rub location. The rub·related heating results in the 
thermal bow, distributed along the length of the shaft. It can be expressed in stationary 
coordinates (Fig. 1) as follows: 

PT(l, t)ei(<r+fJ(I,rl) = PrU, t )eirr (3) 

where I is an axial coordinate along the rotor (Fig. 1), f3 is the thermal bow angular 
orientation, PT(l, t) is amplitude of bow at a particular axial location land time t, PTU• t) 
is the thermal bow vector in the coordinates rotating with the rotor (Fig. 2). As it will be 
shown later, in case of only one axial location of rub, the phase {3 does not change with the 
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Fig. 2. Cross-section of the rotor at the rub axial location I= 12 • When 00 1 "" lz21 = c, the rotor-to-stator contact 
occurs, and normal force N and tangential friction force jN are applied to the shaft. !XY is inertial orthogonal 
system of coordinates with the shaft neullal axis as I (0 is a projection of this axis on this particular cross-section), 

0 1X,Y, is an orthogonal system of rotating coordinates attached to the rotor; r, 1/J ar~ polar coordinates. 
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axial coordinate. For axial locations of the rotor disk and rubbing spot, the thermal bow 
differs only by a value of amplitude Pr; = Pr(/;, t). Note that the terms containing the 
thermal bow and unbalance force in Eqn (1) provide the energy for the rotor lateral 
vibration, while the terms describing damping and friction are responsible for the energy 
dissipation (the latter only during rotor-to-stator contact). The thermal bow appears due to 
an uneven temperature distribution along the rotor caused by the friction-force-generated 
heat. The latter can be characterized by the heat rate density g( l, ljJ, t) per unit area of the 
rotor cross section ( ljJ is an angular coordinate, Fig. 2). Considering the particular area 
element R dlljJ (R is the rotor radius), on the rotor surface around the point with axial 
coordinate l, the friction force fN is applied to the rotor if ljJ ~ lfJN ~ ljJ + dtjJ and 
l ~ 1:. ~ l + dl (it is assumed that the rotor-to-stator contact occurs at one point only). The 
friction force, therefore, can be expressed in a form of a distribution over the rotor surface 
as follows: 

L/2 21T N ( l f ) 
fJ[N = ffJf J -D-- _2 D(ljJ- lfJN)dldtjJ 

-L/2 0 L L L 
(4) 

where 

describes the angular position of the friction force (Fig. 2), [ <pj21T] is the highest integer 
number k which satisfies inequality <p- 21Tk ;;o. 0, D( . .. ) is the Dirac function. Since the 
rotor velocity at the contact location can be approximated as RQ, the heat rate density 
g(l, ljJ, t) per unit area equals to the friction force power per unit area. Taking into 
account Eqn (4), it can be presented as follows: 

N ( l l2) ( 31T [ <p ]) g = fQ£o £- £ 0 lfJ- 2 + <p- 21T 2; · 

2.1. Thermal relations 

The thermal conductivity equation 

2i T 1 aT 1 o2 T o2 T 1 aT --+--+---+--=--
or2 r ar r 2 a~ at2 k at 

with an initial condition 

Tit=O = 0 

and boundary conditions 

kaT+ fiTJ = o, 
of l=O,L 

~aT ~ J k- + hT = g(l, ljJ, t) 
or r=R 

(5) 

(6) 

(7) 

(8) 

describes heating of the shaft due to rub. Here T = T(r, ljJ, l, t) is a difference of 
temperatures between the environment and the point of the shaft with coordinates l, r, 1J1 
at moment t, and K, k, h are thermodynamic constants. To complete the problem 
formulation, a relationship between the temperature distribution and thermal bow has to 
be derived. In order to accomplish this, assumptions are made that the rotor expansion in 
the axial direction is restricted, and that the rotor can be considered within the limits of 
Euler's beam theory. In this case, the normal thermal stress a 1 in the axial direction can be 
expressed as follows: 

(9) 
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where XT is the thermal expansion coefficient, E is Young's modulus of elasticity. The 
moments related to the rotating coordinate axes Xr, t;. are as follows: 

My = XT f"dlf{RETr 2 sin ipdr = My(!), Mx = XT f" dlf'_cETr 2 cos ipdr = Mx(l). 

(10) 

For simplicity it is assumed that the shaft has constant modulus of elasticity E and polar 
moments of inertia I for all cross sections along its length. In order to find a displacement 
of the shaft at the axial location It. the theorem of Castigliano can be applied. For that 
purpose, a particular configuration of bearing supports was assumed (Fig. 3). 

According to the Castigliano theorem and Eqns (10), the vector fJr(l. t) = PTU· t)efilU.n 

of the thermal bow in the rotating coordinates can be expressed as follows: 

PTU· t) = xrL rL(f + la- /- la,- ":)[("d1j'JRrei¥'r2dr]dla 
I Jo 2L L- . Jo o 

(11) 

where la is an integration variable. It is considered here a case of local heating when the 
temperature of the shaft differs from the environment only within a very narrow range of 
axial coordinates (Fig. 4). 

Taking into account the rapid change of T around !2 • the expression (11) can be 
estimated as follows: 

T = ( [ (
2
rrd 1/JJR TeH' r2 ~r] dl. (12) 

-o Jo o R" 

The expressions (12) have zero values at both ends of the rotor and a maximum at the 
point of heating l = !2 • Note that according to equations (12). the phase of the vector p7 

does not depend on the axial coordinate. 
Equations (1), (2), (5)-(8), and (12) fully describe the cross-coupled mechanical/thermal 

problem which is further analyzed in the next sections. 

Yr Xr 

t L 
<> l 

6 /\ 
~ 

Fig. 3. System of coordinates and bearing supports. 

T 

__ ___._I --::-h~-J.-:t'T'h-:--:.+ Al:-;-- l 

h 

Fig. 4. Assumed temperature distribution for localized shaft heating. 
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2.2. Additional assumptions 

The following additional assumptions are made. 

• Closeness of the rotor to the stator at the axial rub location is assumed. It means that 
the radial rorce can be expressed as follows: 

P == c[ K1(1 + ~:) + K3](1 - ~), (13) 

If the nondimcnsional clearance coefficient ~ is positive, then contact during static 
conditions docs not occur: othenvise, the contact breaks only due to the dynamic action 
of the input forces. 

• 'Smallness· assumptions: the static position of the rotor is perturbed by small forces, the 
thermal processes are slow: 

D K 
~. f, --,-- = O(tt); 

2MQ QR2 

Pn me 2 
~, ----- = O(tt) 

c ( K,) 
c 1 + -K: M 

(14) 

where 11 is a small parameter. 

2.3. Transformation of the mathematical model 

An introduction of new variables h = 1/~(l- \i(x2
2 + Y2")/c2

) = 0(1) (rotor nondimen­
sional vertical displacement at rub location), and 

u = - Re z1 Pne + p-nel('f'+fll = 0(1), Re = real part (15) 
c~ K, 
1 [ - J(rp-{3) l 

1+--' 
K2 

(u has a meaning of a rotor nondimensional horizontal displacement at the disk location) 
together with assumptions (13) and (14) allows equation (1) to be presented in the 
following form: 

h" + n 1"(1 + {lp 2)h - n 1
2 = ~H + O(tt2), 

Z2 = c{-j + f + ~[u + j(l- &)h]} + O(ti), 

where 

r = Q.r, 

N = -jl'fc~(K2 + K 1)[h + O(,i)j 

(16) 

d 

(17) 

, " = 1 - ___ fJ_n 
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The conditions (2) of the switch become now very simple: 

u = I o 
l 1 

if h > 0 

if h ,; 0. 
(18) 

Note that the right-side terms of equations (16) are calculated with the accuracy up to the 
second order of smallness, but the conditions (18) of the switch are precise. Equations (16) 
are derived with the assumption (14) of the thermal process slowness. The latter can also 
be incorporated in equations (6), (8) as follows: 

( 19) 

where r = Rr, 

and 

J.
2TT L 

T(r, t) = d'ljJJ TeiV'dl. 
0 0 

~ncer' ,.._according to equation (12), PT is proportional to the function of temperature 
T = J 6Tr2 dr, it follows from the first equation (19) that d,Or/dr = O(f.lPr) = O(tt3). As a 
consequence, equations (16) contain the thermal bow as a parameter, and the system 
mechanical model is thus essentially decoupled from the thermal part of the problem. 

3. PRESENTATION OF THE SYSTEM MATHEMATICAL MODEL IN THE FORM CONTAINING 
A MULTI-DIMENSIONAL ROTATING PHASE 

Since the right-side terms of equations (16) have higher order of smallness than the 
left-side ones, the generating system defined as equations (16) without right-side terms is as 
follows: 

h" + n 1
2(1 + t'tp2)h - n 1

2 = 0 

u" + n/u = 0. 

The second equation (20) has a very simple solution: 

u = pcos 8, p' = 0, 

(20) 

(21) 

The first equation (20), together with the switch conditions (18), is more complex. Its 
solution can be built using piecewise integration, and connecting conditions at the ends of 
continuity intervals: 

h = cl~ [ 1(1 + x(<i>)p2(1 - - 1
-)) sin 8 + - 1

-(1 - cos s)] (22) 
1 + x(~)p2 "V C12 C1 
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where 

uXCt) = ----------------------------------------------------

1(
1 

1 ( 1)' 1'), 1 + -- .. ~ arccos - arccos -
rr \' 1 + r VI '( 1 ) cl cl 1 + P~ 1---c2 

' ' 1 ' 
(23) 

3 = n1 v'1 +w x(4>)p
2 

{ ~ _ 2rr([:] + x(4>))}, 

4> = ci> - 21r[~] - 2(rr - arccos -1-)~. 
21r C1 n1 

The relation between h and C1 and~ is shown graphically in Fig. 5. 
Equation (22) with the notation (23) constitutes the transformation of variables. This 

transformation produces the rotor vertical response 'amplitude' C1 and 'phase' ~. Since the 
zero value of ~ is determined at the instant the rotor breaks the contact with the stator, ci> 
is related in a certain way to the rotating phase cp which serves as a time reference. 

no contact contact 

~c12 +l+l 
·························~ 

/\ 
/ \ 

// 
2;r <1> 

/ 

Fig. 5. The nondimensional distance between the rotor and stator 

h = ..!_(1 _ /xi + Yi) 
A \j c2 

as a function of 'amplitude' C1 and 'phase' tl>. 

9



Equations (22), (23) are used to transform the original system (16) into the form with 
rotating phases: 

where: 

c'1 == llQ + O(.ti), 

p' == _ll U sine + O(,uz), 
nt 

<P' == w -wllF + O(,u2
) 

8' == n
1 

_ ll U cos 8 + O(,u2), 

pnl 
q/ == 1 

Q == H( /1- ~cosS + 1 
A ~sins)== 0(1), 

n1 \j C1 CJ\11 + x(<P)p· 

( 
a+sT(n/==K)cosf3 ) 

v == arccos . 
ya2 + 2asT(n1

2 
- K) cos f3 + sT 2(n/ - K)2 

(24) 

Note that the variables p and C1 are slow, which conforms with their meaning of 
amplitudes. Equations (24) for variables e, <P differ from those for rotations with a 
constant speed by small terms, and all right-side terms are 217-periodic functions of them; 
therefore, e, <P have the meaning of phases. The important difference between the phases 
e and <P is that e has a constant frequency n 1 (see equation (17)), which means that the 
rotor horizontal motion is quasi-linear, while <P has a frequency w == w(C1), dependent on 
the 'amplitude' C1 • Such a disparity is due to the assumed vertical-down direction of the 
radial (side-load) force P. 

The systems of the type (24) are known in the literature [21) as the systems with 
multi-dimensional rotating phases, and according to the corresponding theorem, allow the 
application of the Averaging Method. The latter produces a variable transformation close 
to identical, which converts the original equations (24) with accuracy up to the small terms 
of the assumed power of the small parameter into a system with its right-side terms 
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dependent only on slow variables. The first approximation of the new system right-side 
terms is the result of simple averaging of the corresponding right-side terms of equation 
(24) over the independent rotating phases. 

4. RESONA~CES IN THE SYSTEM WITH THREE ROTATING PHASES 

The Fourier analysis of the right-side terms of (24) shows that they include the following 
combinations of the phases <I>' e' q;: 

q;·. <~>. e. q;· ± k<t>, e ± k<t>, 2e ± k<t>, q; ± e (k = 1. 2. 3, ... ). (26) 

This means that possible resonances occur when: 

1 ::1: kw = 0. n 1 ± kw = 0, 2n 1 ± kw = 0, 1 ± n 1 = 0 (k = 1. 2. 3, . ' .). 

(27) 

As it results from the expression (23), the ratio w/n 1 is contained within the following 
limits: 

(!) ,' ' 
1 :S:- :S: \/1 + p". (28) 

nJ 

Taking the inequality (28) into account, the number of possible resonances (27) is reduced 
to the follO\ving: 

1 ± H1 = 0, 2n 1 ± w = 0, 1 ± kw = 0 (k = 1, 2, 3 .... } (29) 

and their linear combinations. In order to find stationary resonance regimes, the neighbor­
hood of each resonance will be investigated by the averaging method. The steady state can 
only be achieved under the conditions of balance between the supplied and dissipated 
energies. From this standpoint especially important are the equations (24) for c; and p', 
since these variables, in the very real sense, are the amplitudes of the corresponding 
vertical and horizontal vibrations (in a general case, amplitudes of vibration in the direction 
of the radial (side-load) force and in the orthogonal direction). A simple analysis shows 
that all right-side terms of these equations can be split into three groups: 

(1) terms responsible for the energy delivery from the external source; 
(2) terms responsible for the energy dissipation; 
(3) terms responsible for the energy exchange between vertical and horizontal modes. 

It is important to note that if, after averaging, equation (24) for c; includes as a right-side 
term only a dissipative term, the corresponding stationary regime does not exist, because 
the system does not allow for a trivial solution C1 = 0. On the other hand, the 
corresponding equation for p' allows the zero solution; therefore, the stationary resonance 
regime is possible if there is only a dissipation term in the equation for p'. 

The above consideration can be summarized in the form of the following conditions for 
the stationary resonance solution. 

• If there exists a source of energy in one of the equations (24), the resulting regimes are: 
1 ± n 1 = 0 and/or 1 ± kw = 0 (k = 1, 2, 3, ... ). 

• If there exists at least one more term besides the dissipative term in the equation (24) 
for c;, the resulting regimes are: 1 ± kw = 0 (k = 1, 2, 3, ... ) and/or 2n 1 ± w = 0. 

Taking into account the inequality (28), this means that the system possibly allows the 
stationary resonant solutions for the case of 1 ± k w = 0 ( k = 1, 2, 3, ... ) , or for the case 
of a combinational resonance: 1 ± n1 = 0 and 2n 1 ± w = 0. 
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The first resonance occurs when the rotative speed of the shaft Q is close to the rotor 
first natural frequency vi> and the vertical response frequency wQ is close to 2v 1 

(horizon tal mode). This closeness can be described by the follo·wing relations: 

n1 - 1 = ~ = 0(/l) 

C1 - Ca = O(V'Il) 

where ~is a frequency detuning, and Ca is a solution of the following equation: 

(30) 

(31) 

Equations (24) are averaged over the sole independent rotating phase q; in the described 
proximity of the vertical resonance, and then stable stationary solutions of the averaged 
equations are found (for averaging technique and stability criteria, see for example 
ref. [26]): 

In the range '-./3 < p < '1./6: 

(
. [ ~ c ]2\ 4!LG - + _a ( G - Ca) + B 

d d 2 1 
¢ = rr - arcsin ) - 2arccos- + 2u 

1 b2A Ca 

+ 2arctan 

- 1 - 4G- - + -( G - Ca) + B 11 { B [ ~ Ca ]
2

} 

~ Ab2 Ll 2 

(32) 

tan(y- v) = 
!L{1 - 4G_!!_[_£ + _s_(G- Ca) + s]2

} 

~ Ab2 ts. 2 

[!+~a(G-Ca)+B] 

J 

b2 + 8..!i_G!!._{1 + ZGB [ ~ + Ca (G- Ca)][ ~ + _s_(G - Ca) + B]
2

} 
ts.2 A b2 A ~ 2 Ll 2 

p- =-------------------------------------------------------

In the range p > '1/6: 

(

1 

"Y/ [ ~ Ca ( ) 12)" 4-G - + - G - C - B 
d d 2 a 1 

¢ = arcsin - 2 arccos - + 2 v 
b2A Ca 

+ 2arctan 

'1 { B [ ~ Ca ]
2

} - 1- 4G-- + -(G- Ca)- B 
~ Ab2 ts. 2 
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!L{1 - 4G____!!__[_f + ~(G- C11)- s]2

} 
1'1 Ab2 1'1 2 

tan(y- v)"" --- , 

[ 
g Ca ] - + -(G- C)- B t'1 2 a. 

<l> "" 2r:p + cp; e"" rp + y, 

where: 

3( 1- ~ 2r\6- p
2

) 

A(C 2) == ----"----
"' p 7T(p2 - 3) 

2 Cap2 ~ 1 - ~/ [· 2 1 2 ] 
B( C", p ) == 

2 
1 + p - -(3p - 5) , 

1r(l + p )(p2 
- 3) C} 

(33) 

G(Ca, p 2
) == {c" + 2

P
2 

[_!_arccos( /1- _! __ ) + /1- -
1
-]}-

17(1 + p 2
) Ca 'Y C} 'Y Ca 2 

A numerical example of p calculated by using equations (32) is given in Fig. 6. The relative 
magnitudes of the horizontal and vertical amplitudes are presented in Fig. 7. An example 
of vertical and horizontal phase behavior based on (32) is presented in Fig. 8. 

The vertical resonance, m = 1 occurs at higher rotative speed then the horizontal one. 

p I 
50 

........ L ______ .... 

~0 1-----+---

10~~~~~~-~~~~~.-----r----1 

r·":':·\_.$_;:.:.-
""1).05 0 0.05 0.1 0.15 

Detunlng 1- ;; 

1· p=1.75 
3- p=1.8 
5- p=6 
2- p=1.78 
4- p=2 

Fig. (l. The rotor overall horizontal amplitude-to-nondimensional clearance ratio versus detuning for the horimntal 
mode, calculated for the following set of parameters: A"' 0.2, '1 = 0.03, b = 16 and variable p. 
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L __ ll~====~~ ====~r __ _j 

0 
·1U -o.l 0 0.1 

Detunlng 1- " 1 

0 

0.2 

Fig. 7. The overall horizontal and vertical amplitudes-to-nondimcnsional clearance ratios vcrsuo dctuning for the 
horizontal mode, calculated for the follov,ing set of parameters: L'l. = 0.2, p = 4, IJ = 0.03, h = lfi. 

A) Ji <p < .}6 
120 ,.-----..,,....--........ ----:------. 

0 

-],0~-~--~---~--~ 
-il.l -o.05 0 0.05 0.1 

Detun lno 1- " 1 
Q 

~~L--~-~~--~--~ 
-o .1 -1l.05 0 0.05 0.1 

D t!tunlno 1-~ n 
Fig. 8. The horiwntal y - v and vertical ¢ - 2v phase> of the rotor response versus dctuning for the horizontal 
mode, cakulated using the following sets of parameters: L'l. = 0.2, IJ = 0.03, h = lfi and p = 2 for case I A). !' --,· 4 

for case (B). 

The area around this resonance is referred to as a main vertical mode. The vertical 
resonances 1 ± k w "" 0 ( k "" 2, 3, ... ) , together wi t.h their vicinities, are referred to as 
fractional vertical modes. Jn general all areas around the resonances can be described hy 
the second equation (30), where Ca is a root of the following equation (Fig. 9): 

1-kw=O (k~1.2,3 .... ). (34) 

Equations (24) after the averaging in proximities of vertical resonances (main and 
fractional) allow for the following stable stationary solutions: 

p = 0, 
and for G > 0 (33): 

rp i.B+v 1 
c}l = - - 2rr- + ---- - -arccos 

k k k k bn 1p2(- /1- -1-cose +~sine) 
\j ca2 c(/ 

(i = 0, 1, .... k - 1) 

p = 0, cp = r + b, C1 = c" (35) 
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Fig. 9. The overall vertical amplitude-to-nondimensional clearance ratio versus rotative speed to k times natural 
frequency u1 ratio for different values of stiffening coefficient p for the vertical modes. Other parameters do not 

affect vertical amplitudes. 

while for G < 0: 

1Tk(1 - n 1
2)[(1 + p 2)n 1

2 
- 1]_]_G 

rp i 0+v 1 L! 
~ =--- 21T-- +-----+--arccos-------------------------------

k k k k bn 1 p2(~1- ~cose +~sine) 
Ca Ca 

(i = 0, 1, ... , k - 1) 

p = 0, rp = T + D, 

where: 

e = -
1-(1T - arccos -

1
-). 

n 1 Ca 
(36) 

The boundary between positive and negative values of the function G (Eqns (33)) in the 
plane of parameters p, Qjkv1 is shown in Fig. 10. 

The relationship of the vertical response phase ~ - ( rp + v) / k versus rotative speed ratio 
for the vertical modes k = 1 and k = 2, calculated for a particular set of parameters 1!, p, 
11 and b, is presented in Fig. 11. 

As it results from the resonance relation (34), Fig. 9 and equation (35) the vertical 
modes are displayed as a sequence of rotor vertical overall vibration amplitude peaks 
occurring at the rotative speed-to-natural-frequency v1 ratios close to integer numbers 
k = 1, 2, 3, .... Amplitudes of the horizontal responses are much smaller than those of 
vertical responses. The periods of oscillations in each case is equal to k times rotations, 
which corresponds to fractional 1/k x regimes. The number of possible stable regimes 
starts from one and increases with k. These regimes differ from each other by the constant 
phase~ shift 21Ti/k (i = 0, 1, 2, ... , k- 1). 
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Fig. 10. The boundary between positive and negative values of G (equations (33)) as a function of the parameters 
p and R./ku1• 

137.S 1.7!i :Ul.S l..S 

Q 

Fig. 11. Vertical phase <I>- ( Q?- v)/k of the rotor response versus rotative speed to k times natural frequency v, 
ratio for vertical modes k = 1 and k = 2, calculated for the following set of parameters: ,',. = 0.2. p = 2, 11 = 0.03. 

b = 16. 

5. THERMAL BOW 

After solving the mechanical problem in the vicinities of the horizontal and vertical 
resonances, the expressions for the heat rate g can be obtained. This allows for 
approaching the problem of thermal bow behavior in the slow time scale. In order to 
accomplish it, the first equation (19) is multiplied by i' 2 and integrated over r from 0 to 1. 
After some transformations, this leads to the following expression: 

dt = E[~g - ( ii!! + 1)rl ]· (37) 
dr k k r=1 

Equation (37) has a standard form for which the averaging method [21] can be applied. At 
the first approximation, the application of this method means averaging of the right-side 
term of (37) over independent rotating phases: 

dT [ R(g) ( Rh ) ~ 1 ct-;=£------,;-- T+1 <nlr=l + ... (38) 
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where ( ... ) is a notation for the average value of the variable over the mechanical 
oscillation period. 

Based on (19), the following relationship can be established: 

(39) 

Using (39), (38) can be rewritten in the following form: 

~: == E[ Rig} -4( ~ + 1)f] + .... (40) 

Using (12), (40) can be presented as follows: 

dpy + PT = ~ XTL ~ (/ + lz - ll - lzl _ _!!2_) (g) + ... , (41) 
dt DT hR + k 2L L2 DT 

where the constant 

has a physical meaning of time constant of the thermal system. Equation (41) has almost 
the same structure as the equation in ref. [6), but differs from it by its vectorial (in a sense 
of complex numbers) character and distributed thermal bow of the shaft. As follows from 
(19) and (22), g is a function of the 'fast' variables cp and <I> and the 'slow' variable C1 . 

Since ( 41) for the thermal bow contains the function (g), an averaging of g over phases cp 
and <I> has to be performed. Using (22) and (32), it is easy to show that the expression (19) 
for g, averaged over two rotations (two rotations constitute one oscillation in the case of 
the horizontal mode) gives zero value for the horizontal mode. It means that in this 
particular mode, the heat is generated symmetrically, and the thermal bow does not 
appear. For the vertical modes, using (19), (22), (35), the following expressions for (g) are 
obtained after averaging: 

[ 

1Tk(1 - n/)[(1 + p 2
)n 1

2 
- 1]--!Lc l 

x exp j v + _!!_ - sign (G) arccos .1 

2 ( / 1 n1 ) bnlp2 -v 1- -2 cose +-sine 
Ca Ca 

(42) 

Taking (42) into account, (41) can be rewritten in terms of vector b = beiv (see (25)): 
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where 

~1- -
1
-cose +!:!_sine 

F = ___ C--'--a-2 -~----::-_c_a __ 

1rk[(1 + p 2)n 1
2 

- 1] 

or in terms of the vector length b and phase v: 

( ~ [ 

n 

0 

]2) 2G(I- n 1") 

· b 1 a A ~ 
b + - = - -

2 
cos v + A sign (G) F 2 

-
2 

, 

Dr Dr ~ n 1bp 

( 
1 G(1 - n/)), 

bv = - 1- _ __!!_sin v + A . 
Dr ~2 nlp2b 

(45) 

At the beginning of rub, the thermal bow does not exist: 

vlr=O = 0. (46) 

In order to describe the behavior of the thermal bow close to the starting point, it is logical 
to assume that I b - a/~ 21 « 1, I vi « 1. According to these assumptions, ( 45) can be 
linearized as follows: 

_d(_b _-_:2_) + _1 [1- sign(G)EJ](b -_a ) =_A sign(G) I fi'- [ 1 G(1 - n12)~2] 
dt Dr ~2 Dr ~ n 1ap 2 

where: 

A 

b=ajf1.2 

~G2(1 - n12)2~4 

n/a3 p4 

Ez = -~ ~ ~ = 2~ YJIGI(l - n/)~s > 0 
[

.]_IGI(l- n12)] 
Dr db n 1bp2 Dr n 1a

3 p 2 . 
b=ajf1.2 

(47) 

(48) 

Together with the initial conditions (46) equations (48) determine the following solution: 
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+ A£2 sign(G) [exp[-[t- E 1sign(G)]_!-·]- exp(--1 
)] 

£ 1[1 - E 1 sign(G)] Dr D7 

There are three possible cases of the thermal bow behavior, described by ( 49). They 
depend on the sign of the function G and the function 1 - E 1 sign (G): 

(l) c > 0, 1 - £1 > 0. 

In this case, according to (49), the thermal bow is exponentially approaching the 
equilibrium value: 

b --bxei''•, 
,.____,..~ 

(50) 

In this case (49) describe unlimited exponential growth of the thermal bow amplitude with 
an exponential rotation of phase in the direction opposite to the direction of rotor rotation: 

(Sl) 

In this case ( 49) describe exponentially decreasing amplitude of the thermal bow: 

I [!LG(l - n[2)6.2]2 

A "/ p2 - 6. 2 [1 - exp(-[1 + Ed-t )]· 
1 + E 1 Y n 1 ap D 1 

(52) 

19



The rotor vibration amplitude decreases until there is no more rotor-to-stator rubbing, and 
( 49) is not valid any more. At this moment the initial pre-rub conditions may take over and 
lead to the rub, heating and thermal bowing again. The described scenario corresponds to 
the thermal bow oscillating regime. 

All three cases are illustrated in Fig. 12. Note that for a fixed parameter p the low 
values of Qjkv1 (for example, if p = 2(Q/kv1) < 1.4) correspond to one of two regimes: if 
£ 1 < 1 (£ 1 is a function of all parameters of the system as described by (36), (44) and (48), 
the thermal bow is exponentially approaching the equilibrium value (see (50)); if £, > 1, 
the thermal bow behaves as an unwinding spiral (see (51)). In the case of high values of 
the parameter Qjkv1 (for p = 2(Q/kv1) > 1.4), the only possible regime is the thermal bow 
oscillation. 

6. SUMMARY OF RESULTS 

This paper outlines the modeling of thermal/mechanical effects of one of the most 
destructive malfunctions in rotating machinery: the rotor-to-stator rub. The model of an 
isotropic rotor at its first lateral mode, with rotor-to-stator rub at a particular axial location 
is considered (see equation (1) and Fig. 1 ). It is assumed that, due to rub-related, localized 
heating and uneven temperature distribution, the thermal bow of the shaft results. This 
assumption correlates the thermal bow with the temperature distribution (see Fig. 4 and 
equation (12)). The temperature distribution due to the rub-related heating is given by the 
heat transfer equation with corresponding boundary conditions (see (6)-(8)), where the 
heat rate density per unit area is determined by the normal force and rotor rotation­
generated friction during the rotor-to-stator contact. The thermal/mechanical problem is 
partially uncoupled by the assumption that the thermal process is relatively slow. As a 
result, the thermal bow remains in the mechanical equations as a parameter which can be 
considered as a constant. In addition, the assumption is made that the radial (side-load) 
force keeps the centerline position of the rotor close to the location of contact with the 
stator. The rotor static position is perturbed by small forces generated by the thermal bow 
and the original unbalance. The coefficient of surface dry friction between the rotor and 
the stator is assumed small. In order to reduce the system equations of motion into a 
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Fig. 12. Behavior of the combined unbalance vector b as a function of the thermal system function E 1 , stirrncs> 
parameter p, and rotative speed ratio Qj k v1. Note that E 1 depends on several system parameters (see ( 48)). 
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standard form required for further analysis, new variables were introduced, one as the 
nondimensionalized distance from the rotor to stator at the axial location of the rub, and 
the other as an approximation to the nondimensionalized horizontal displacement (see (7)). 
The analysis of relative smallness of separate terms allows the presentation of the model in 
the form of equations with piecewise variable stiffness and 'small' right-side expressions 
(see ( 15)). These equations are then integrated using the generating approximation 
(neglecting right-side terms; see (20)). The obtained solution (see (22), (23) and Fig. 5) is 
used as a variable transformation which allows the presentation of the original system in 
the form with slow variables and rotating phases (see (24)). As it is shown in the Fig. 5, 
the nondimensionalized amplitude of the vertical response of the rotor can be expressed 
through the slow variable C1 while p represents nondimensionalized amplitude of the 
horizontal response. The rotating phase of the horizontal response B bas a constant 
frequency, equal to the rotor natural frequency n1 when there is no contact with the stator. 
The rotating phase of the vertical response <I> bas the frequency w depending on the slow 
variable C1 (see (23)). With assumed vertical direction of the radial force, the frequency of 
the vertical response is always higher than that of horizontal response. The Fourier analysis 
of small right-side terms of (24) and energy balance considerations allow for determination 
of possible resonances. The averaging technique applied to the system (24) in the proximity 
of these resonances, enhanced by the stability analysis, results in stable stationary 
solutions. These solutions describe analytically the rotor behavior in the proximity of the 
horizontal resonances (see (30)) which occur when Q = -(1-1.05)v1 depending on the 
value of the stiffness parameter (see Fig. 6). They also describe the vicinity of the main 
vertical resonance (see (34) vlith k = 1) which occurs when Q == (1.3-1.8)u1 depending on 
the value of p, as well as the vicinities of the sequence of fractional vertical resonances 
(see (34) with k == 2, 3, ... ) which occur when Q = k(l.3-1.8)u 1 (see Fig. 9). According to 
( 15). (22), (23), the original variables, rotor horizontal and vertical displacements x 1 , y t at 
the disk location, can be presented as follows: 

(53) 
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where for the case of the horizontal mode fJ = rp + y, <P = 2rp + </J; p, C 1, y, <Pare given by 
(32). For the sequence (k = 1, 2, ... ) of vertical modes there is p = 0, <P = (rp + <P)/k; Ch 
<P are determined by (35). A sequence of typical orbits of the rotor centerline for the 
horizontal mode, and two vertical modes ( k = 1) and ( k = 2), calculated using (53) is 
shown in Fig. 13. 

The developed analytical technique describes the system behavior in the narrow 
frequency zones in the vicinity of the resonances. As it follows from the obtained results, 
the motion in these zones has periodical (or quasi-periodical) character. In the remaining 
frequency range chaotic motion may occur. The chaotic motion is usually preceded by 
more complex periodic regimes which can be obtained by the same technique from the 
higher approximations consideration. It can be modeled numerically (see [23]). Note that 
the results regarding the mechanical behavior of the rubbing rotor arc independent from 
the thermal problem, and represent a new approach to analytical modeling of such systems. 

An application of the averaging technique allows derivation of the thermal bow equation 
(see ( 43) ). It includes an average heat generation ratio. The latter was calculated based on 
the results obtained from the mechanical problem solution, as the friction force power per 
area unit averaged over the rotor largest vibration period of the rotor. Depending on the 
system parameters, the resulting vectorial relationship for the thermal bow exhibits one of 
three types of behavior. 

• Asymptotic approach to the equilibrium state of the thermal bow; 
• Increasing spiraling motion of the thermal bow in the direction opposite to rotation; 
• Slow oscillations of the thermal bow. 
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The results of the thermal bow behavior stand in qualitative agreement with results 
presented in refs [4] and [6]. They differ from them, however, in the conditions of 
transitions from one regime to the other (see (50)-(52) and Fig. 12). This difference is due 
to the more accurate description of the system's dynamics during rubbing that is presented 
in this paper. 

REFERENCES 

I. H. D. Taylor, Rubbing shafts above and below resonant speed, GE Technical Information Series, No. 16709 
( 1924). 

2. B. L. Newkirk, Shaft rubbing, Mech. Eng. 48, 830 (1926). 
3. R. P. Kroon and W. A. Williams, Spiral vibration of rotating machinery, Proc. 5th Int. Congr. Appl. Mech. 

John Wiley, New York, 712 (1939). 
4. A. D. Dimarogonas, Newkirk effect: thermally induced dynamic instability of high speed rotors, ASME Paper 

73-GT-26, Gas Turbine Conf., Washington D.C. (1973). 
5. H. F. Black, Interaction on a whirling rotor with a vibrating stator across a clearance annulus, J. Mech. Eng. 

Sci. 10(1) (1968). 
6. W. Kellenberger, Spiral vibrations due to the seal rings in turbogenerators. Thermally Induced Interaction 

Between Rotor and Stator, ASME Paper 79-DET-61, Design Engng Tech. Conf., St. Louis (1979). 
7. N. S. N a tho and 0. E. Crenwelge, Case history of a steam turbine rotordynamic problem: theoretical versus 

experimental results, Vibration Institute Proceedings, Machinery Vibration Monitoring & Analysis, pp. 81-89 
(April1983). 

8. A. D. Dimarogonas, A study of the Newkirk effect in turbomachinery, WEAR, 28, 369-382 (1974). 
9. Y. Hashemi, Vibration problems with thermally induced distortions in turbine-generators rotors. vibrations in 

rotating machinery, Third Int. Conf. Proceedings, /MechE, C271/84, York, UK (1984). 
10. A. J. Smalley, The Dynamic Response of Rotors to Rubs During Startup, Rotating Machinery Dynamics, Vol. 

2, Ed. by A. Muszynska and J. C. Simonis (1987). 
1!. A. Muszynska, Thermal/mechanical effect of rotor-to-stator rubs in rotating machinery, vibration of rotating 

systems, DE-vol. 60, ASME Design Technical Conf., Albuquerque, New Mexico (1993). 
12. W. J. Sweets, Analysis of rotor rubbing, GE Technical Information Series, DF-66-LS-70 (1966). 
13. A. D. Dimarogonas and S. A. Paipetis, Analytical Methods in Rotor Dynamics. Applied Science Publishers, 

London and New York (1983). 
14. J. N. Goodier, Formulas for overall thermoelastic deformation, Proc. 3rd Int. Congr. App/. Mech. John 

Wiley, New York, p. 343 (1958). 
15. D. E. Bently, Forced subrotative speed dynamic action of rotating machinery, ASME Paper. 74-DET-16. 

Petroleum Mechanical Engineering Conference, Dallas, TX (1974). 
16. D. W. Childs, Rub-induced parametric excitation in rotors, ASME Journal of Mechanical Design. ASME 

Paper 79-WA, DE-14, ASME Trans., v. 101,649-644 (1979). 
17. D. W. Childs, Fractional frequency rotor motion due to nonsymmetric clearance effects, Journal of 

Engineering for Power, 533-541 (1982). 
1R. Y. S. Choi and S. T. Noah, Nonlinear steady-state response of a rotor-support system, Journal of Vibration, 

Acoustics, Stress and Reliability in Design, 255-261 (1987). 
19. A. Muszynska, W. D. Franklin and R. D. Hayashida, Rotor-to-stator partial rubbing and its effects on rotor 

dynamic response, The Sixth Workshop on Rotordynamic Instability Problem in High Performance Turboma­
chinery, NASA CP 3122, College Station, TX, pp. 345-362 (1990). 

20. A. Muszynska, Rotor-to-stationary element rub-related vibration phenomena in rotating machinery. Literature 
Survey, The Shock and Vibration Digest, 21(3), 3-11 (1989). 

21. N. N. Bogolubov and U. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations (in 
Russian). Nauka, Moskva (1974). 

22. B. F. Zhuravlev, The equations of motion for the systems with ideal one sided restrictions (in Russian), PMM 
(Applied Mathematics and Mechanics), 42(5), 781-788 (1978). 

23. A. Petchenev and A. Fiddling, Hierarchy of the resonant motions of vibroimpacting system excited by the 
inertia source with limited power (in Russian), Mechanika Tverdogo Tela, 4 (1992). 

24. P. Goldman and A. Muszynska, Dynamic effects in mechanical structures with gaps and impacting: order and 
chaos, Transactions of the ASME, Journal of Vibration and Acoustics, (to appear). 

15. A. Muszynska, Shaft crack detection, Proc. of the 7th Machinery Dynamics Seminar, National Research 
Council, Edmonton, Alberta, Canada (1982). 

26. P. Goldman and A. Muszynska, Resonances in the system of the interacted sources of vibration. Formulation 
of problem and general results, Inter. J. Nonlinear Mech. 29(1), 49-63 (1994). 

23




