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Mean field rough differential equations

I. BAILLEUL1 and R. CATELLIER and F. DELARUE2

Abstract. We provide in this work a robust solution theory for random rough differential
equations of mean field type

dXt “ V
`

Xt,LpXtq
˘

dt` F
`

Xt,LpXtq
˘

dWt,

where W is a random rough path and LpXtq stands for the law of Xt, with mean
field interaction in both the drift and diffusivity. Propagation of chaos results for
large systems of interacting rough differential equations are obtained as a consequence,
with explicit optimal convergence rate. The development of these results requires the
introduction of a new rough path-like setting and an associated notion of controlled
path. We use crucially Lions’ approach to differential calculus on Wasserstein space
along the way.
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Introduction

The first works on mean field stochastic dynamics and interacting diffusions /
Markov processes have their roots in Kac’s simplified approach to kinetic theory
[30] and McKean’s work [37] on nonlinear parabolic equations. They provide the
description of evolutions pµtqtě0 in the space of probability measures under the form
of a pathspace random dynamics

dXtpωq “ V
`

Xtpωq, µt
˘

dt` F
`

Xtpωq, µt
˘

dWtpωq,

µt :“ LpXtq,
(0.1)
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(where LpAq stands for the law of a random variable A) and relate it to the empirical
behaviour of large systems of interacting dynamics. The main emphasis of subse-
quent works has been on proving propagation of chaos and other limit theorems,
and giving stochastic representations of solutions to nonlinear parabolic equations
under more and more general settings; see [38, 39, 28, 17, 18, 5, 6] for a tiny sample.
Classical stochastic calculus makes sense of equation (0.1), in a probabilistic setting
pΩ,F ,Pq, only when the process W is a semi-martingale under P, for some filtration,
and the integrand is predictable. However, this setting happens to be too restrictive
in a number of situations, especially when the diffusivity is random. This prompted
several authors to address equation (0.1) by means of rough paths theory. Indeed,
one may understand rough paths theory as a natural framework for providing prob-
abilistic models of interacting populations, beyond the realm of Itô calculus. Cass
and Lyons [12] did the first study of mean field random rough differential equations
and proved the well-posed character of equation (0.1), and propagation of chaos for
an associated system of interacting particles, under the assumption that

‚ there is no mean field interaction in the diffusivity, Fpx, µq “ Fpxq,

‚ the drift depends linearly on the mean field interaction

V px, µq “

ż

V px, yqµpdyq,

for some function V p¨, ¨q on Rd ˆ Rd.

The method of proof of Cass and Lyons depends crucially on both assumptions.
Bailleul extended partly these results in [3] by proving well-posedness of the mean
field rough differential equation (0.1) in the case where the drift depends nonlinearly
on the interaction term and the diffusivity is still independent of the interaction,
and by proving an existence result when the diffusivity depends on the interaction.
The naive approach to showing well-posedness of equation (0.1) in its general form
consists in treating the measure argument as a time argument. However, this is of a
rather limited scope since, in this generality, one cannot expect the time dependence
in F to be better than 1

p -Hölder if the rough path W is itself 1
p -Hölder. Clearly, such

a time regularity is not sufficient to make sense of the rough integral
ş

Fp¨ ¨ ¨ q dW in
the case p ě 2. This serious issue explains why, so far in the literature, the coefficient
F has been assumed to be a function of the sole variable x.

Including the time component as one of the components of W brings back the
study of equation (0.1) to the study of equation

dXtpωq “ F
`

Xtpωq,LpXtq
˘

dWtpωq,

µt :“ LpXtq;
(0.2)

this is the precise purpose of the present paper. Treating the drift as part of the
diffusivity has the drawback that we shall impose on V some regularity conditions
stronger than needed. Our method accommodates the general case but we leave the
reader the pleasure of optimizing the details and concentrate on the new features
of our approach, working on equation (0.2). The raw driver

`

Wtpωq
˘

tě0
will be

assumed to take values in some Rm and to be 1
p -Hölder continuous, for p P r2, 3q,

and the one form F will be an LpRm,Rdq-valued function on Rd ˆ P2pRdq, where
P2pRdq is the so-called Wasserstein space of probability measures µ with a finite
second-order moment. Inspired by Lions’ approach [34, 7, 9] to differential calculus
on P2pRdq, one of the key point in our analysis is to lift the function F into a function



3

pF defined on the space Rd ˆ L2
`

Ω,F ,P; Rd
˘

, given by the formula

pF
`

x, Z
˘

“ Fpx,LpZq
˘

, (0.3)

for x P Rd and Z P L2pΩ,F ,P; Rdq. So, we may rewrite equation (0.2) as

dXtpωq “ pF
`

Xtpωq, Xtp¨q
˘

dWtpωq. (0.4)

We used the notation Xtp¨q to distinguish the realization Xtpωq of the random vari-
able Xt at point ω from the random variable itself, seen as an element of the space
L2
`

Ω,F ,P; Rd
˘

. So, Xtp¨q is a random variable, and thus an infinite-dimensional
object, whilst Xtpωq is a finite-dimensional vector. We feel that this writing is
sufficiently explicit to remove the hat over F.

Our main well-posedness result is stated below, in a preliminary form only. The
precise statement requires additional ingredients that we introduce later on in the
text. In this first formulation

‚ the quantity wp¨, ¨q “
`

wps, tq
˘

0ďsăt
is a random control function that is used

to quantify the regularity of the solution path on subintervals rs, ts of a given
finite interval r0, T s, using some associated notion of p-variation for the same
p as above,

‚ the quantity Npr0, T s, αq is some local accumulated variation of the ‘rough
lift’ of W that counts the increments of w of size α over a bounded interval
r0, T s for a given positive α;

see Section 1 for the set-up. The regularity assumptions on the diffusivity F are
spelled-out in Section 3.

1. Theorem – Let F satisfy the regularity assumptions Assumption 1 and Assump-
tion 2. Assume there exists a positive time horizon T such that the random variables
wp0, T q and

`

N
`

p0, T q, α
˘˘

αą0
have ’sub’ and super exponential tails, respectively,

‚ P
`

wp0, T q ě t
˘

ď c1 exp
`

´tε1
˘

,

‚ P
`

N
`

r0, T s, α
˘

ě t
˘

ď c2pαq exp
`

´t1`ε2pαq
˘

, α ą 0,

for some positive constants c1 and ε1 and possibly α-dependent positive constants
c2pαq and ε2pαq. Then for any d-dimensional square-integrable random variable X0,
the mean field rough differential equation

dXt “ F
`

Xt,LpXtq
˘

dWt

has a unique solution defined on the whole interval r0, T s.

Results of that form seem out of reach of the methods used in [12, 3]. Theorem
1 applies in particular to mean field rough differential equations driven by some
fractional Brownian motion with Hurst parameter greater than 1

3 , other Gaussian
processes or some Markovian rough paths; see Section 1. It is important that the
solution depends continuously on the driving ‘rough path’, in a quantitative sense
detailed in Theorem 20. As an example that fits our regularity assumptions, one
can solve the above mean field rough differential equation with

Fpx, µq “

ż

fpx, yqµpdyq

for some fuction f of class C2
b (meaning that f is bounded and has bounded deriva-

tives of order 1 and 2), or with

Fpx, µq “ g

ˆ

x,

ż

Rd
yµpdyq

˙
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for some function g of class C2
b . The Curie-Weiss model, where F is of the form

Fpx, µq “ ∇Upxq `
ş

px ´ yqµpdyq, falls outside the scope of what is written here,
because of the linear growth rate in x, but is within reach of our method.

One of the difficulties in solving equation (0.2) comes from the fact that it
happens not to be sufficient to consider each signal W‚pωq as the first level of a
rough path; one somehow needs to consider the whole family

`

W‚pωq
˘

ωPΩ
as an

infinite-dimensional rough path. This leads us to defining in Section 1 a rough set-
ting where

`

Wtpωq,Wtp¨q
˘

0ďtďT
is, for each ω, the first level of a rough path over

Rm ˆ Lq
`

Ω,F ,P; Rm
˘

; seemingly, the natural choice for q, as dictated by the afore-
mentioned lifting procedure of the Wasserstein space, is q “ 2; we shall actually need
a larger value. Unlike the seminal works [12, 3] that set the scene in Davie’s ap-
proach of rough differential equations, such as reshaped by Friz-Victoir and Bailleul
respectively, we use here Gubinelli’s versatile approach of controlled paths to make
sense of equation (0.2). Our mixed finite/infinite dimensional setting introduces an
interesting twist in the notion of controlled path presented in Section 2.1. Defin-
ing the rough integral of a controlled path with respect to a rough driver is done
classically in Section 2.2 using the sewing lemma. We prove stability of a certain
class of controlled paths by nonlinear mappings in Section 3.1, which is precisely the
place where Lions’ differential calculus on P2pRdq comes in. One then has all the
ingredients needed to formulate in Section 3 equation (0.2) as a fixed point problem
in some space of controlled paths. Local well-posedness is proved, and sufficient
conditions on the law of the driver are given to get well-posedness on any fixed time
interval. As expected from any solution theory for rough differential equations, the
solution depends continuously on all the parameters in the equation, most notably
its law depends continuously on the law of the driving rough path. This point is
used in Section 4 to provide a proof of propagation of chaos for an interacting par-
ticle system associated with equation (0.2) and quantify the convergence rate; see
equation (4.1) for the particle system. Among others, it recovers Sznitman’ seminal
work [38] on the case where the noise is a Brownian motion. We formulate this
result here for the case of Gaussian rough signals and refer the reader to Theorem
22 and Theorem 24 for finer and more general statements.

2. Theorem – Let W be a continuous centered Gaussian process defined over some
time interval r0, T s. Assume it has independent components and its covariance func-
tion has finite ρ-two dimensional variation, for some ρ P r1, 3{2q. Let the diffu-
sivity F satisfy Assumption 1 and Assumption 2 and some further mild regular-
ity assumptions satisfied by the above two examples. Then the empirical measure
1
n

řn
i“1 δXi,pnqpωq of the interacting n-particle system associated with the mean field

rough differential equation (0.2), converges almost surely to L
`

Xp¨q
˘

. The marginals
of the empirical measure converge at the same mean speed in 1-Wasserstein distance
as an empirical sample of independent, identically distributed, random variables with
the same law as X0, provided the latter is sufficiently integrable.

While Lyons formulated his theory in a Banach setting from the begining [35], the
theory has mainly been explored for finite dimensional drivers, with the noticeable
exception of the works of Ledoux, Lyons and Qian on Banach space valued rough
paths [33, 36], Dereich follow-up works [19, 20], Kelly and Melbourne application
to homogenization of fast/slow systems of ordinary differential equations [31], and
Bailleul and Riedel’s work on rough flows [2]. One can see the present work as
another illustration of the strength of the theory in its full generality. However,
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although the underlying rough set-up associated to pWtpωq,Wtp¨qq0ďtďT is a mixed
finite/infinite dimensional object, a solution to the mean field rough differential
equation is more than a solution to a rough differential equation driven by an infinite
dimensional rough path. Indeed, the mean field structure imposes an additional
fixed point condition, which is to identify the finite dimensional component of the
solution as the ω-realization of the infinite dimensional component. This is precisely
this constraint that makes the equation difficult to solve and that explains the need
for a specific analysis.

The present work leaves wide open the question of refining the strong law of large
numbers given by the propagation of chaos result stated in Theorem 2 – Theorem
22 in its full form. A central limit theorem for the fluctuations of the empirical
measure of the particle system is expected to hold under reasonable conditions on
the common law of the rough drivers. Large and moderate deviation results would
also be most welcome. In a different direction, it would be interesting to investigate
the propagation of chaos phenomenon for systems of interacting rough dynamics
subject to a common noise. Very interesting things happen in the Itô setting in
relation with mean field games [8, 32]. Also, one would get a more realistic model of
natural phenomena by working with systems of particles driven by non-independent
noises. Individuals with close initial conditions could have drivers strongly correlated
while individuals started far apart could have (almost-)independent drivers. Limit
mean field dynamics are likely to be different from the results obtained here – see
[14] for a result in this direction in the Itô setting. We invite the reader to make his
own mind about these problems.

Notations. We gather here a number of notations that will be used throughout the
text.

‚ We denote by S2 the simplex
 

ps, tq P r0,8q2 : s ď t
(

, and set

ST2 :“
 

ps, tq P r0, T s2 : s ď t
(

.

‚ We denote by pΩ,F ,Pq an atomless Polish probability space, F standing for the
completion of the Borel σ-field under P, and denote by x¨y the expectation operator
and by x¨yr, for r P r1,`8s, the Lr-norm on pΩ,F ,Pq and by ⟪¨⟫ and ⟪¨⟫r the
expectation operator and the Lr-norm on

`

Ω2,Fb2,Pb2
˘

.

Importantly, when r is finite, LrpΩ,F ,P; Rq is separable as Ω is Polish.

‚ When dealing with processes X‚ “ pXtqtPI , defined on some time interval I, we
often write X for X‚.

1 – Probabilistic Rough Structure

We define in this section a notion of rough path appropriate for the study of
mean field rough differential equations. It happens to be a mixed finite/infinite
dimensional object. Throughout the section, we work on a finite time horizon r0, T s,
for a given T ą 0.

‚ We define the first level of our rough path structure as an ω-indexed pair of
paths

`

Wtpωq,Wtp¨q
˘

0ďtďT
, (1.1)
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where
`

Wtp¨q
˘

0ďtďT
is a collection of q-integrable Rm-valued random variables on

pΩ,F ,Pq, which we regard as a deterministic LqpΩ,F ,P; Rmq-valued path, for some
exponent q ě 1, and

`

Wtpωq
˘

0ďtďT
stands for the realizations of these random vari-

ables along the outcome ω P Ω; so the pair (1.1) takes values in RmˆLqpΩ,F ,P; Rmq.
As we already explained, a natural choice would be to take q “ 2, but for technical
reasons that will get clear below we shall require q ě 8.

The second level of the rough path structure contains a two-parameter path
`

Ws,tpωq
˘

0ďsďtďT
with values in Rmˆm, obtained as the ω-realizations of a collection

of q-integrable random variables
`

Ws,tp¨q
˘

0ďsďtďT
defined on Ω; importantly, this

second level also comprises the sections
`

WKK
s,tpω, ¨q

˘

0ďsďtďT
and

`

WKK
s,tp¨, ωq

˘

0ďsďtďT

of a collection of Rmˆm-valued random variables defined on the product space
`

Ω2,Fb2,Pb2
˘

and considered as a deterministic Lq
`

Ω2,Fb2,Pb2; Rmˆm
˘

-valued

path
`

WKK
s,tp¨, ¨q

˘

0ďsďtďT
. Each WKK

s,tp¨, ¨q, for ps, tq P ST2 , belonging to the space

Lq
`

Ω2,Fb2,Pb2; Rmˆm
˘

, we have
@

WKK
s,tpω, ¨q

D

q
ă 8,

@

WKK
s,tp¨, ωq

D

q
ă 8, (1.2)

for P-almost every ω P Ω. Below, we shall assume (1.2) to be true for every ω P Ω.
This is not such a hindrance since we can modify in a quite systematic way the
definition of the rough path structure on the null event where (1.2) fails; this is
exemplified in Proposition 4 below. Taken this assumption for granted, we can
regard Ω Q ω ÞÑ WKK

s,tpω, ¨q and Ω Q ω ÞÑ WKK
s,tp¨, ωq as random variables with values in

LqpΩ,F ,P; Rmˆmq: Since LqpΩ,F ,P; Rmˆmq is separable, it suffices to notice from
Fubini’s theorem that, for any Z P LqpΩ,F ,P; Rmˆmq, Ω Q ω ÞÑ

@

WKK
s,tpω, ¨q ´ Z

D

q
is

measurable, and similarly for WKK
s,tp¨, ωq.

Hence, the entire second level has the form of an ω-dependent two-index path

with values in
`

Rm ˆ LqpΩ,F ,P; Rmq
˘b2

and is encoded in matrix form as
ˆ

Ws,tpωq WKK
s,tpω, ¨q

WKK
s,tp¨, ωq WKK

s,tp¨, ¨q

˙

0ďsďtďT

. (1.3)

Here,

‚ Ws,tpωq is in pRmqb2 » Rmˆm,

‚ WKK
s,tpω, ¨q is in Rm b Lq

`

Ω,F ,P; Rm
˘

» Lq
`

Ω,F ,P; Rmˆm
˘

,

‚ WKK
s,tp¨, ωq is in Lq

`

Ω,F ,P; Rm
˘

b Rm » Lq
`

Ω,F ,P; Rmˆm
˘

,

‚ WKK
s,tp¨, ¨q is in Lq

`

Ωb2,Fb2,Pb2; Rmˆm
˘

, the realizations of which read in the

form Ω2 Q pω, ω1q ÞÑ WKK
s,tpω, ω

1q P Rmˆm and the two sections of which are

precisely given by WKK
s,tpω, ¨q : Ω Q ω1 ÞÑ WKK

s,tpω, ω
1q, and WKK

s,tp¨, ωq Q ω
1 ÞÑ

WKK
s,tpω

1, ωq, for ω P Ω.

As usual with rough paths, algebraic consistency requires that Chen’s relations

Wr,tpωq “ Wr,spωq `Ws,tpωq `Wr,spωq bWs,tpωq,

WKK
r,tp¨, ωq “ WKK

r,sp¨, ωq `WKK
s,tp¨, ωq `Wr,sp¨q bWs,tpωq,

WKK
r,tpω, ¨q “ WKK

r,spω, ¨q `WKK
s,tpω, ¨q `Wr,spωq bWs,tp¨q,

WKK
r,tp¨, ¨q “ WKK

r,sp¨, ¨q `WKK
s,tp¨, ¨q `Wr,sp¨q bWs,tp¨q,

(1.4)

hold for any 0 ď r ď s ď t ď T . We used here the very convenient notation

fr,s :“ fs ´ fr,
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for a function f from r0,8q into a vector space. In (1.4) and throughout, we denote
by Xp¨q b Y p¨q, for any two X and Y in LqpΩ,F ,P; Rmq, the random variable

`

ω, ω1q ÞÑ
`

XipωqYjpω
1q
˘

1ďi,jďm

defined on the product space Ω2. It defines an element of Lq
`

Ω2,Fb2,Pb2; Rmˆm
˘

.

Remark – The last three lines in Chen’s relations (1.4) are somewhat redundant.
Assume indeed that we are given a collection of random variables

`

WKK
s,tp¨, ¨q

˘

0ďsďtďT

satisfying the last line of (1.4). Then, for all 0 ď r ď s ď t ď T and for Pb2-almost
every pω, ω1q P Ω2, it holds

WKK
r,tpω, ω

1q “ WKK
r,spω, ω

1q `WKK
s,tpω, ω

1q `Wr,spωq bWs,tpω
1q.

Clearly, for P-almost every ω P Ω, the second and third lines in (1.4) hold true
as well. This is slightly weaker than the formulation (1.4) as, therein, the second
and third lines are required to hold for all ω P Ω. As exemplified in the proof of
Proposition 4, one may modify the definition of WKK so that the second and third
lines in (1.4) hold true for all ω and for all 0 ď r ď s ď t ď T .

Definition – We shall denote by W pωq the rough set-up specified by the ω-dependent
collection of maps given by (1.1) and (1.3).

As for the component WKK of W pωq, the notation KK is used to indicate, as we
shall make it clear below, that WKK

s,tp¨, ¨q should be thought of as the random variable

pω, ω1q ÞÑ

ż t

s

´

Wrpωq ´Wspωq
¯

b dWrpω
1q.

Since Ω2 Q pω, ω1q ÞÑ pWtpωqqtě0 and Ω2 Q pω, ω1q ÞÑ pWtpω
1qqtě0 are independent

under Pb2, we then understand WKK
s,t as an iterated integral for two independent

copies of the noise. While such a construction is elementary for a random C1 path,
the well-defined character of this integral needs to be proved for more general prob-
ability measures P.

3. Example – Let W stand for an Rm-valued Brownian motion defined on some prob-
ability space pΩ,F ,Pq. Denote by Wtp¨q the equivalence class of Ω Q ω ÞÑ Wtpωq
in Lq

`

Ω,F ,P; Rm
˘

, and extend Wt on the product space
`

Ω2,Fb2,Pb2
˘

, setting
Wtpω, ω

1q :“Wtpωq. Define also on the product space the random variable W 1
tpω, ω

1q

:“Wtpω
1q. Then, W and W 1 are two independent m-dimensional Brownian motions

under Pb2, and one can construct the time-indexed Stratonovich stochastic integral

Ω2 Q pω, ω1q ÞÑ

ˆ"
ż t

s
pWr ´Wsq b ˝dW

1
r

*

pω, ω1q

˙

0ďsďtďT

P C
`

S2; Rmˆm
˘

.

The stochastic integral is uniquely defined up to an event of zero measure under Pb2.
Up to an exceptional event (of pΩ2,Fb2,Pb2q), we then let

WKK
s,tpω, ω

1q :“

ˆ
ż t

s

`

Wr ´Ws

˘

b ˝dW 1
r

˙

pω, ω1q, 0 ď s ď t ď T.

We can specify the definition of WKK on the remaining exceptional event and then
modify the definition of W on a null event of pΩ,F ,Pq in such a way that Chen’s
relations (1.4) hold everywhere –see the end of the proof of Proposition 4 below for a
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detailed proof of this fact–. The process
`

Ws,tpωq
˘

0ďsďt
is defined in a standard way

from a Stratonovich integral defined outside a set of null measure:

Ws,tpωq :“

ˆ
ż t

s
pWr ´Wsq b ˝dWr

˙

pωq, 0 ď s ď t ď T.

The principle underpinning the above example may be put in a more general
framework which will be useful to prove continuity of the Itô-Lyons solution map to
the mean field rough differential equation (0.2). We advise the reader to come back
to this proposition later on.

4. Proposition – Let pΞ,G,Qq be a probability space, and W 1 :“
`

W 1
t

˘

0ďtďT
and

W 2 :“
`

W 2
t

˘

0ďtďT
be two independent and identically distributed Rm-valued pro-

cesses defined on Ξ. Assume they have continuous trajectories and

EQ

„

sup
0ďtďT

ˇ

ˇW 1
t

ˇ

ˇ

q


ă 8.

Let also
`

pW i,j
s,t q0ďsătďT

˘

i,j“1,2
be four Rm b Rm – Rmˆm-valued continuous paths

such that

EQ

„

sup
0ďsătďT

ˇ

ˇW i,j
s,t

ˇ

ˇ

q


ă 8,

for i, j “ 1, 2, and
`

W 1,W 1,1
˘

is independent of W 2. Last, assume that, for almost
every ξ P Ξ, the pair

ˆ

´

W 1pξq
W 2pξq

¯

,
´

W 1,1pξq W 1,2pξq
W 2,1pξq W 2,2pξq

¯

˙

satisfies Chen’s relation. Set

Ω :“ Ξˆ r0, 1s

with r0, 1s equipped with its Borel σ-algebra B
`

r0, 1s
˘

, and denote by Leb the Lebesgue

measure on r0, 1s. Then we can find a triple of random variables
`

W,W,WKK
˘

, the

first two components being defined on
`

Ω,FbBpr0, 1sq,QbLeb
˘

, the last component
being constructed on the product space, and the whole family satisfying all the above
requirements for a rough set-up, such that

P
´!

pξ, uq :
`

W,W
˘

pξ, uq “
`

W 1,W 1,1
˘

pξq
)¯

“ 1,

and, for P-almost every ω “ pξ, uq, the law of WKKp¨, ωq is the same as the conditional
law of W 2,1 given

`

W 1pξq,W 2pξq,W 1,1pξq
˘

.

Proof – Recall first from Blackwell and Dubins [4] the following form of Skorokhod
representation theorem. There exists a function

Ψ : r0, 1s ˆ P
´

C
`

ST2 ; Rm b Rm
˘

¯

Ñ C
`

ST2 ; Rm b Rm
˘

such that
‚ for every probability µ on CpST2 q, equipped with its Borel σ-field, r0, 1s Q u ÞÑ

Ψpu, µq is a random variable with µ as distribution – r0, 1s being equipped with
Lebesgue measure,

‚ the map Ψ is measurable.
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Let now
`

qpw1, w2, w1,1, ¨q
˘

w1,w2PCpr0,T s;Rmq;w1,1PCpST2 ;RmbRmq be a regular conditional

probability of W 2,1 given pW 1,W 2,W 1,1q. Define on Ω the random variables

W pξ, uq :“W 1pξq, Wpξ, uq :“W 1,1pξq,

and, on Ω2,

W 1
`

pξ, uq, pξ1, u1q
˘

:“W 1pξ1q,

WKK
`

pξ, uq, pξ1, u1q
˘

:“ Ψ
´

u1, q
`

W 1pξ1q,W 1pξq,W 1,1pξ1q, ¨
˘

¯

.

Since the law of
`

W,W 1,W
˘

under Pb2 is the same as the law of
`

W 1,W 2,W 1,1
˘

under Q, we deduce that the law of
`

W,W 1,W,WJJ
˘

under Pb2, with WJJpω, ω1q :“

WKKpω1, ωq, is the same as the law of
`

W 1,W 2,W 1,1,W 2,1
˘

under Q. In particular,

with probability 1 under Pb2, for all 0 ď r ď s ď t ď T ,

WJJ
r,tpω, ω

1q “ WJJ
r,spω, ω

1q `WJJ
s,tpω, ω

1q `Wr,spω
1q bWs,tpωq,

that is

WKK
r,tpω, ω

1q “ WKK
r,spω, ω

1q `WKK
s,tpω, ω

1q `Wr,spωq bWs,tpω
1q.

Call now A P F the set of those ω’s in Ω for which the above relation fails for ω1 in
a set of positive probability measure under P. Clearly, PpAq “ 0. Define in a similar
way A1 by exchanging the roles of ω and ω1. For ω P A Y A1, set W pωq ” 0; and
whenever ω P A or ω1 P A1, set WKKpω, ω1q ” 0. If ω R A, we have, by definition of
A, the third identity in (1.4) – pay attention that we use the fact that the identity
is understood as an equality between classes of random variables that are P-almost
surely equal. If ω P A, it is also true since all the terms are zero. The second
identity in (1.4) is checked in the same way. As for the first one, it holds on the
complementary BA of a null event B. We then replace A by AYB and A1 by A1YB
in the previous lines and set W pωq ” 0 and Wpωq ” 0 on AYA1 YB. B

We use in this work the notion of p-variation to handle the regularity of the various
trajectories in hand. The choice of the p-variation, instead of the simplest Hölder
(semi-)norm, is dictated by the arguments we use below to prove well-posedness of
equation (0.4). As we make it clear in the text, we shall indeed invoke some integra-
bility results due to Cass, Litterer and Lyons [11] which are explicitly based upon
the notion of p-variation and are not proved in Hölder (semi-)norm. Several types
of p-variations are needed to handle differently the finite and infinite dimensional
components of a rough set-up W . Throughout, the exponent p is taken in the in-
terval r2, 3q. For a continuous function G from the simplex ST2 into some R`, we set,
for any p1 ě 1,

}G}p
1

r0,T s,p1´var :“ sup
0“t0ăt1¨¨¨ătn“T

n
ÿ

i“1

|Gti´1,ti |
p1 ,

and define for any function g from r0, T s into R`,

}g}p
r0,T s,p´var :“ }G}p

r0,T s,p´var

as the p-variation semi-norm of its associated two index function Gs,t :“ gt ´ gs.

Similarly, for a random variable Gp¨q on Ω with values in CpST2 ; R`q, and p1 ě 1, we
define its p1-variation in Lq as

xGp¨qyp
1

q;r0,T s,p1´var :“ sup
0“t0ăt1¨¨¨ătn“T

n
ÿ

i“1

@

Gti´1,tip¨q
Dp1

q
, (1.5)
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and define for a random variable Gp¨q on Ω, with values in Cpr0, T s; R`q
@

Gp¨q
Dp

q;r0,T s,p´var
:“

@

Gp¨q
Dp

q;r0,T s,p´var
,

as the p-variation semi-norm in Lq of its associated two-index function ST2 Q ps, tq ÞÑ
Gs,tp¨q “ Gtp¨q ´ Gsp¨q. Last, for a random variable Gp¨, ¨q from pΩ2,Fb2q into

CpST2 ; R`q, we set

⟪Gp¨, ¨q⟫p{2q;r0,T s,p{2´var :“ sup
0“t0ăt1¨¨¨ătn“T

n
ÿ

i“1

⟪Gti´1,tip¨, ¨q⟫p{2q
. (1.6)

Given these definitions, we require from the rough set-up W that

‚ For any ω P Ω, the path W pωq is in the space Cpr0, T s; Rmq, and the map
W : Ω Q ω ÞÑ W pωq P Cpr0, T s; Rmq is Borel-measurable and q-integrable
(meaning that the supremum of W over r0, T s is q-integrable).

‚ For any ω P Ω, the two-index path Wpωq is in CpST2 ; Rmˆmq, and the map
W : Ω Q ω ÞÑ Wpωq P CpST2 ; Rmˆmq is Borel-measurable and q-integrable (i.e.,
the supremum of W over ST2 has a finite q-moment).

‚ For any pω, ω1q P Ω2, the two-index path WKKpω, ω1q is an element of the space
CpST2 ; Rmˆmq, and the map WKK : Ω2 Q pω, ω1q ÞÑ WKKpω, ω1q P CpST2 ; Rmˆmq is
Borel-measurable and q-integrable. In particular, for almost every ω P Ω, the
two-time parameter path WKKpω, ¨q is in C

`

ST2 ; LqpΩ,F ,P; Rmˆmq
˘

, and the

map Ω Q ω ÞÑ WKKpω, ¨q is Borel-measurable and q-integrable, and similarly
for WKKp¨, ωq; as before, we assume the latter to be true for every ω P Ω. Also,
the two-time parameter deterministic path WKKp¨, ¨q is a continuous mapping
from ST2 into Lq

`

Ω2,Fb2,Pb2; Rmˆm
˘

.

We then set, for all 0 ď s ď t ď T and ω P Ω,

vps, t, ωq :“
›

›W pωq
›

›

p

rs,ts,p´var
`
@

W p¨q
Dp

q;rs,ts,p´var

`
›

›Wpωq
›

›

p{2

rs,ts,p{2´var
`
@

WKKpω, ¨q
Dp{2

q;rs,ts,p{2´var

`
@

WKKp¨, ωq
Dp{2

q;rs,ts,p{2´var
` ⟪WKKp¨, ¨q⟫p{2

q;rs,ts,p{2´var
,

(1.7)

and we assume that, for any positive finite time T and any ω P Ω, the quantity
vp0, T, ωq is finite. Importantly, we have the following super-additivity property.
For any 0 ď r ď s ď t ď T , and ω P Ω, we have

vpr, t, ωq ě vpr, s, ωq ` vps, t, ωq.

Observe also from [27, Proposition 5.8] that ω ÞÑ pvps, t, ωqqps,tqPST2
is a random

variable with values in CpST2 ; R`q. Throughout the analysis, we assume
@

vp0, T, ¨q
D

q
ă 8,

for any rough set-up considered on the interval r0, T s. By Lebesgue’s dominated
convergence theorem, the function

ST2 Q ps, tq ÞÑ
@

vps, t, ¨q
D

q

is continuous. We shall actually assume that it is of bounded variation on r0, T s,
i.e.,

xvp¨qyq;rs,ts,1´var :“ sup
0ďt1ă¨¨¨ătKďT

K
ÿ

i“1

xvpti´1, ti, ¨qyq ă 8.
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Below, we set

wps, t, ωq :“ vps, t, ωq ` xvp¨qyq;rs,ts,1´var. (1.8)

Note the useful inequality

xwps, t, ¨qyq ď 2wps, t, ωq, (1.9)

and the super-additivity property satisfied by w

wpr, t, ωq ě wpr, s, ωq ` wps, t, ωq.

Below, we often check that ST2 Q ps, tq ÞÑ xvps, t, ¨qyq is of bounded variation by
proving that it is Lipschitz continuous.

5. Example – Gaussian processes – Start from an Rm-valued collection W :“
pW 1, ¨ ¨ ¨ ,Wmq of independent and centered continuous Gaussian processes, defined
on some finite time interval r0, T s, such that the two-dimensional covariance of W
is of finite ρ-variation for some ρ P r1, 3{2q and there exists a constant K such that,
for any subinterval rs, ts Ă r0, T s and any k “ 1, ¨ ¨ ¨ ,m, one has

sup
ÿ

i,j

ˇ

ˇ

ˇ
E
”

`

W k
ti`1

´W k
ti

˘`

W k
sj`1

´W k
sj

˘

ıˇ

ˇ

ˇ

ρ
ď K|t´ s|, (1.10)

where the supremum is taken over all dissections ptiqi and psjqj of the interval rs, ts.
See Definition 5.54 in [27]. This setting includes the case of fractional Brownian
motion, with Hurst index greater than 1{4. Without any loss of generality, we may
assume that the process W is constructed on the canonical space pΩ,F ,Pq, where Ω “
W, with W :“ Cpr0, T s; Rmq, F is the Borel σ-field, and W is the coordinate process.
We then denote by pΩ,H,Pq the abstract Wiener space associated with W , where H is
a Hilbert space, which is automatically embedded in the subspace C%´var

`

r0, T s; Rm
˘

of

C
`

r0, T s; Rm
˘

consisting of continuous paths of finite %-variation. By Theorem 15.34
in [27], we know that, for ω outside an exceptional event, the trajectory W pωq may
be lifted into a rough path pW pωq,Wpωqq with finite p-variation for any p P p2ρ, 3q,
namely W pωq has a finite p-variation and Wpωq has a finite p{2-variation. We lift
arbitrarily (say onto the zero path) on the null set where the lift is not automatic.
The pair pW,Wq, indexed by ω is part of our rough set-up. In this regard, we recall
from Theorem 15.34 and Theorem 7.44 in [27] that the random variables

Ω Q ω ÞÑ
›

›W pωq
›

›

r0,T s,p´var
, Ω Q ω ÞÑ

›

›Wpωq
›

›

r0,T s,p{2´var
, (1.11)

have Gaussian tails, and thus have a finite Lq-moment.

One can proceed as follows to construct the other elements
`

WKKpω, ¨q
˘

ωPΩ
,

`

WKKp¨, ωq
˘

ωPΩ
, WKKp¨, ¨q

of our rough set-up. We extend the space into pΩ2,Fb2,Pb2q, with Ω embedded
in the first component say, and denote by pW,W 1q the canonical coordinate process
on Ω2. They are independent and have independent Gaussian components under
P2. The associated abstract Wiener space is nothing but

`

Ω2,H ‘ H,Pb2
˘

. The
process pW,W 1q also satisfies Theorem 15.34 in [27] for the same exponent ρ as
before, so, we can enhance pW,W 1q into a Gaussian rough path, with some arbi-
trary extension outside the Pb2-exceptional event on which we cannot construct the
enhancement. To ease the notations, we merely write W pωq for W pω, ω1q as it is
independent of ω; similarly, we write W 1pω1q for W 1pω, ω1q. Proceeding as before, we
call

`

WKKpω, ω1q
˘

ω,ω1PΩ
, the upper off-diagonal m ˆm block in the decomposition of

the second-order tensor of the rough path in the form of a p2mq ˆ p2mq-matrix with
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flour blocks of size m ˆ m. Chen’s relationship then yields, for Pb2-almost every
pω, ω1q,

WKK
r,tpω, ω

1q “ WKK
r,spω, ω

1q `WKK
s,tpω, ω

1q `Wr,spωq bWs,tpω
1q,

for all r ď s ď t. As before, the paths of
`

WKKpω, ω1q
˘

ω,ω1PΩ
are almost surely

of finite p{2-variation and the p{2-variation semi-norm has we know from Theo-
rem 15.33 in [27] that the 1{p-Hölder semi-norm of W pωq, which we denote by
}W pωq

›

›

r0,T s,p1{pq´Hölder
, and the 2{p-Hölder semi-norm of WKKpω, ω1q, which we de-

note by
›

›WKKpω, ω1q
›

›

r0,T s,p2{pq´Hölder
, have respectively Gaussian and exponential tails,

when considered as random variables on the spaces pΩ,F ,Pq and
`

Ω2,Fb2,Pb2
˘

. In

particular, for almost every ω P Ω, we may consider
`

WKK
s,tpω, ¨q

˘

ps,tqPST2
as a contin-

uous process with values in Lq. Moreover,

@

WKKpω, ¨q
Dp{2

q;r0,T s,p{2´var
“ sup

0“t0ăt1ă¨¨¨ătn“T

n
ÿ

i“1

@

WKK
ti´1,tipω, ¨q

Dp{2

q

ď T
A

}WKKpω, ¨q}r0,T s,p2{pq´Hölder

Ep{2

q

ď T
A

}WKKpω, ¨q}
p{2
r0,T s,p2{pq´Hölder

E

q
,

which shows that the left-hand side has finite moments of any order. Arguing in the
same way for

`

WKKp¨, ωq
˘

ωPΩ
and for WKK, we deduce that v in (1.7) is almost surely

finite and q-integrable. Obviously, by replacing r0, T s by rs, ts Ă r0, T s, we obtain
that the q-moment of v is Lipschitz, as required.

All these properties (that hold true on a full event) may be extended to the full set
Ω2 by arguing as in the proof of Proposition 4.

To use that rough set-up in our machinery for solving mean field rough differential
equations we need a version of an integrability result of Cass, Litterer and Lyons
[11] whose proof is postponed to Appendix A. Given a continuous positive valued
function $ on S2, a non-negative parameter s and a positive threshold α, we define
inductively a sequence of times setting τ0ps, αq :“ s, and

τ$n`1ps, αq :“ inf
!

u ě τ$n ps, αq : $
`

τ$n ps, αq, u
˘

ě α
)

, (1.12)

with the understanding that infH “ `8. For t ě s, set

N$

`

rs, ts, α
˘

:“ sup
!

n P N : τ$n ps, αq ď t
)

. (1.13)

Below, we call N$ the local accumulation of $ (of size α if we specify the value of
the threshold). When $ps, tq “ wps, t, ωq with w as in (1.8) and when the framework
makes it clear, we just write Nprs, ts, ω, αq for N$prs, ts, αq. Similarly, we also write
τnps, ω, αq for τ$n ps, αq when $ps, tq “ wps, t, ωq. We will also use the convenient
notation

τ$n ps, t, αq :“ τ$n ps, αq ^ t.

The proof of the following statement is given in Appendix A.1. Recall that a
positive random variable A has a Weibull tail with shape parameter 1{% if A1{ρ has
a Gaussian tail.
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6. Theorem – Let W be a continuous centered Gaussian process, defined over some fi-
nite interval r0, T s. Assume it has independent components, and denote by pW,H,Pq
its associated Wiener space. Suppose that the covariance function is of finite two
dimensional %-variation for some % P r1, 3{2q and satisfies the Lipschitz estimate
(1.10). Then, for p P p2%, 3q and α ą 0, the process Np¨, αq :“ pNpr0, T s, ω,αqqωPΩ
associated to the rough-set up built from W has a Weibull tail with shape parameter
1{%.

The integrability estimate on N required in Theorem 1 is satisfied in this setting.
For the same value of p, the quantity wp0, T q in (1.8) also satisfies the integrability
statement of Theorem 1; the latter then applies in the above Gaussian setting.
Building on Cass-Ogrodnik’s work [13] on Markovian rough paths one can prove a
similar result as Theorem 6 for Markovian rough paths.

2 – Controlled Trajectories and Rough Integral

With a rough set-up at hands on a given finite time interval r0, T s, one can follow
Gubinelli [29] and define an associated notion of controlled path and rough integral.
This section is dedicated to that task, for which we follow a now classical approach.

2.1 – Controlled Trajectories

We first define the notion of controlled trajectory for a given outcome ω P Ω.

7. Definition – An ω-dependent continuous Rd-valued path pXtpωqq0ďtďT is called an
ω-controlled path on r0, T s if its increments can be decomposed as

Xs,tpωq “ δxXspωqWs,tpωq ` E
“

δµXspω, ¨qWs,tp¨q
‰

`RXs,tpωq, (2.1)

where

‚
`

δxXtpωq
˘

0ďtďT
belongs to C

`

r0, T s; Rdˆm
˘

,

‚
`

δµXtpω, ¨q
˘

0ďtďT
belongs to C

`

r0, T s; L4{3pΩ,F ,P; Rdˆmq
˘

,

‚
`

RXs,tpωq
˘

s,tPST2
is in CpST2 ; Rdq,

and

~Xpωq~‹,r0,T s,w,p :“ |X0pωq| `
ˇ

ˇδxX0pωq
ˇ

ˇ`
@

δµX0pω, ¨q
D

4{3
` ~Xpωq~r0,T s,p ă 8,

with

~Xpωq~r0,T s,w,p :“ }Xpωq}r0,T s,w,p ` }δxXpωq}r0,T s,w,p `
@

δµXpω, ¨q
D

r0,T s,w,p,4{3

` }RXpωq}r0,T s,w,p{2,

and

}Xpωq}r0,T s,w,p :“ sup
rs,tsĂr0,T s

ˇ

ˇXs,tpωq
ˇ

ˇ

wps, t, ωq1{p
,

}δxXpωq}r0,T s,w,p :“ sup
rs,tsĂr0,T s

ˇ

ˇδxXs,tpωq
ˇ

ˇ

wps, t, ωq1{p
,

@

δµXpω, ¨q
D

r0,T s,w,p,4{3
:“ sup

rs,tsĂr0,T s

@

δµXs,tpω, ¨q
D

4{3

wps, t, ωq1{p
,
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}RXpωq}r0,T s,w,p{2 :“ sup
rs,tsĂr0,T s

ˇ

ˇRXs,tpωq
ˇ

ˇ

wps, t, ωq2{p
.

We call δxXpωq and δµXpω, ¨q in the decomposition (2.1) the derivatives of the
controlled path Xpωq.

The value 4{3 is somewhat arbitrary here. The analysis provided below could be
managed, if needed, with another exponent strictly greater than 1, but this would
require higher values for the exponent q than that one we use in the definition of
the rough set-up – recall q ě 8. It seems that the value 4{3 is pretty convenient,
as 4{3 is the conjugate exponent of 4. It follows from the fact that ~Xpωq~‹,r0,T s,p
is finite that an ω-controlled path is controlled in the usual sense by the first level
`

Wtpωq,Wtp¨q
˘

0ďtďT
of our rough set-up, provided the latter is considered as taking

values in an infinite dimensional space.

We now define the notion of random controlled trajectory, which consists of a
collection of ω-controlled trajectories indexed by the elements of Ω.

8. Definition – A family of ω-controlled paths pXpωqqωPΩ such that the maps

Ω Q ω ÞÑ
`

Xtpωq
˘

0ďtďT
P C

`

r0, T s; Rd
˘

Ω Q ω ÞÑ
`

δxXtpωq
˘

0ďtďT
P C

`

r0, T s; Rdˆm
˘

Ω Q ω ÞÑ
`

δµXtpωq
˘

0ďtďT
P C

`

r0, T s; L4{3pΩ,F ,P; Rdˆmq
˘

Ω Q ω ÞÑ
`

RXs,tpωq
˘

ps,tqPST2
,

are measurable and satisfy
@

X0p¨q
D

2
`
@

~Xp¨q~r0,T s,w,p
D

8
ă 8 (2.2)

is called a random controlled path on r0, T s.

Note from (1.9) the following elementary fact, whose proof is left to the reader.

9. Lemma – Let
`

pXtpωqq
˘

0ďtďT
qωPΩ be a random controlled path on a time interval

r0, T s. Then, for any 0 ď s ă t ď T , we have

@

Xs,tp¨q
D

2
ď

A

~Xp¨q~2
r0,T s,w,pwps, t, ¨q

2{p
E1{2

ď
@

~Xp¨q~r0,T s,w,p
D

4

@

wps, t, ¨q
D1{p

4
ď 2

@

~Xp¨q~r0,T s,w,p
D

4
wps, t, ωq1{p.

Similarly,
@

Xs,tp¨q
D

4
ď

@

~Xp¨q~r0,T s,w,p
D

8

@

wps, t, ¨q
D1{p

8
ď 2

@

~Xp¨q~r0,T s,w,p
D

8
wps, t, ωq1{p.

A straightforward consequence of Lemma 9 is that a random controlled trajectory
induces a continuous path from r0, T s to L2pΩ,F ,P; Rdq.

2.2 – Rough Integral

Set U :“ RmˆLqpΩ,F ,P; Rmq and note that U bU can be canonically identified
with

`

Rm b Rm
˘

‘

´

Rm b LqpΩ,F ,P; Rmq
¯

‘

´

LqpΩ,F ,P; Rmq b Rm
¯

‘

´

LqpΩ,F ,P; Rmq b LqpΩ,F ,P; Rmq
¯

.
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We take as a starting point of our analysis the fact that W pωq may be considered
as a rough path with values in U ‘ Ub2, for any given ω. Indeed the first level
W p1qpωq :“

`

Wtpωq,Wtp¨q
˘

tě0
of W pωq is a continuous path with values in U and

its second level

W p2qpωq :“

ˆ

W0,tpωq WKK
0,tpω, ¨q

WKK
0,tp¨, ωq WKK

0,tp¨, ¨q

˙

tě0

,

is a continuous path with values in UbU , with W0,tpωq seen as an element of RmbRm,
with WKK

0,tpω, ¨q seen as an element of RmbLqpΩ,F ,P; Rmq, and WKK
0,tp¨, ωq seen as an

element of LqpΩ,F ,P; Rmq b Rm, and WKK
0,tp¨, ¨q as an element of LqpΩ,F ,P; Rmq b

LqpΩ,F ,P; Rmq. Condition (1.4) then reads as Chen’s relation for W pωq.

We can then use Feyel-de la Pradelle’ sewing lemma [23], in the form given by
Coutin and Lejay in [15, 16], to construct the rough integral of an ω-controlled path
and a Banach-valued rough set-up.

10. Theorem – There exists a universal constant c0 and, for any ω P Ω, there exists a
continuous linear map

`

Xtpωq
˘

0ďtďT
ÞÑ

ˆ
ż t

s
Xs,upωq b dW upωq

˙

ps,tqPST2

from the space of ω-controlled trajectories equipped with the norm ~ ¨ ~‹,r0,T s,p, onto

the space of continuous functions from ST2 into RdbRm with finite norm }¨}r0,T s,w,p{2,
with w being evaluated along the realization ω, that satisfies for any 0 ď r ď s ď t ď
T the identity

ż t

r
Xr,upωq b dW upωq

“

ż s

r
Xr,upωq b dW upωq `

ż t

s
Xs,upωq b dW upωq `Xr,spωq bWs,tpωq,

together with the estimate
ˇ

ˇ

ˇ

ˇ

ż t

s
Xs,upωq b dW upωq ´

!

δxXspωqWs,tpωq ` E
“

δµXspω, ¨qW
KK
s,tp¨, ωq

‰

)

ˇ

ˇ

ˇ

ˇ

ď c0 ~Xpωq~r0,T s,w,pwps, t, ωq
3{p.

(2.3)

To make notations clear, δxXspωqWs,tpωq is the product of a d ˆm matrix and
an mˆm matrix, so it gives back a dˆm matrix, with components

`

δxXspωqWs,tpωq
˘i,j

“

m
ÿ

k“1

`

δxX
i
spωq

˘k`
Ws,tpωq

˘k,j
,

for i P t1, ¨ ¨ ¨ , du and j P t1, ¨ ¨ ¨ ,mu. We also stress that the notation

E
“

δµXspω, ¨qW
KK
s,tp¨, ωq

‰

,

which reads as the expectation of a matrix of size dˆm, can be also interpreted as a
contraction product between an element of RdbL4{3pΩ,F ,P; Rmq and an element of
LqpΩ,F ,P; RmqbRm. While this remark may seem anecdotal it is actually important
for the proof below.
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Proof – The proof is a consequence of Proposition 2 in Coutin and Lejay’s work
[15], except for one main fact. In order to use Coutin and Lejay’s result, we consider
W pωq as a rough path with values in U ‘Ub2 and

`

Xpωq, δxXpωq, δµXpωq, R
Xpωq

˘

as a controlled path; this was explained above. When doing so, the resulting integral
is constructed as a process with values in Rd b U , whilst the integral given by the
statement of Theorem 10 takes values in Rd. We denote the RdbU -valued integral by
pItsXs,upωq b dW upωqqps,tqPST2

. We use a simple projection to pass from the infinite

dimensional-valued quantity ItsXs,upωq b dW upωq to the finite dimensional-valued

quantity
şt
sXs,upωq b dW upωq. Indeed, we may use the canonical projection from

Rd b U –
`

Rd b Rm
˘

‘
`

Rd b LqpΩ,F ,P; Rmq
˘

onto Rd b Rm to project ItsXs,upωq b

dW upωq onto
şt
sXs,upωq b dW upωq. B

As usual, we define an additive process setting
ż t

s
Xupωq b dW upωq :“

ż t

s
Xs,upωq b dW upωq `Xspωq bWs,tpωq,

for 0 ď t ď T . We can thus consider the integral process
` şt

0XspωqbdW spωq
˘

0ďtďT

as an ω-controlled trajectory with values in Rdˆm, with x-derivative a linear map
from Rm into Rdˆm, and entries

ˆ

δx

„
ż ¨

0
Xspωq b dW spωq



t

˙

pi,jq,k

“
`

Xtpωq
˘

i
δj,k,

for i P t1, ¨ ¨ ¨ , du and j, k P t1, ¨ ¨ ¨ ,mu, where δj,k stands for the usual Kronecker
symbol, and with null µ-derivative, namely

δµ

„
ż ¨

0
Xspωq b dW spωq



t

“ 0. (2.4)

This property is fundamental for the fixed point formulation of the mean field rough
differential equation (0.2). The remainder R

ş

XbdW can be estimated by combining
(2.3) together with the inequality

ˇ

ˇ

ˇ
δxXspωqWs,tpωq ` E

“

δµXspω, ¨qW
KK
s,tp¨, ωq

‰

ˇ

ˇ

ˇ

ď

#

sup
rPr0,T s

|δxXrpω, ¨q| ` sup
rPr0,T s

xδµXrpωqy4{3

+

wps, t, ωq2{p

ď ~Xpωq~‹,r0,T s,w,p

´

1` wp0, T, ωq1{p
¯

wps, t, ωq2{p,

so that, with the notation as in Definition 7,
�

�

�

�

ż ¨

0
Xspωq b dW spωq

�

�

�

�

r0,T s,w,p

ă 8. (2.5)

When Xpωq is given as the ω-realization of a random controlled path pXpω1qqω1PΩ,
the integral may be defined for any ω1 P Ω. For the integral

ş¨

0Xspωq b dWs to
define a random controlled path, its ~ ¨~r0,T s,w,p-semi-norm needs to have finite 8-th

moment. When the trajectory Xpωq takes in values in Rd b Rm rather than Rd, the
integral

ż t

0
Xspωq b dW spωq P Rd b Rm b Rm
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may be identified with a tuple
˜

ˆ
ż t

0
Xspωq b dW spωq

˙

i,j,k

¸

pi,j,kqPt1,¨¨¨ ,duˆt1,¨¨¨ ,muˆt1,¨¨¨ ,mu

.

We then set for i P t1, ¨ ¨ ¨ , du
ˆ
ż t

0
XspωqdW spωq

˙

i

:“
m
ÿ

j“1

ˆ
ż t

0
Xspωq b dW spωq

˙

i,j,j

,

and consider
şt
0XspωqdW spωq as an element of Rd.

2.3 – Stability of Controlled Paths under Nonlinear Maps

We show in this section that controlled paths are stable under some nonlinear,
sufficiently regular, maps and start by recalling the reader about the regularity
notion used when working with functions defined on Wasserstein space. We refer
the reader to Lions’ lectures [34], to the lecture notes [7] of Cardaliaguet or to
Carmona and Delarue’s monograph [9, Chapter 5] for basics on the subject.

‚ Recall pΩ,F ,Pq stands for an atomless probability space, with Ω a Polish space
and F its Borel σ-algebra. Fix a finite dimensional space E “ Rk and denote by
L2 : “ L2pΩ,F ,P;Eq the space of E-valued random variables on Ω with finite second
moment. We equip the space P2pEq :“

 

LpZq ; Z P L2
(

with the 2-Wasserstein
distance

d2pµ1, µ2q :“ inf
!

}Z1 ´ Z2}2 ; LpZ1q “ µ1, LpZ2q “ µ2

)

.

An Rk-valued function u defined on P2pEq is canonically extended into L2 by setting,
for any Z P L2,

UpZq :“ u
`

LpZq
˘

.

‚ The function u is then said to be differentiable at µ P P2pEq if its canonical
lift is Fréchet differentiable at some point Z such that LpZq “ µ; we denote
by ∇ZU P pL

2qk the gradient of U at Z. The function U is then differentiable
at any other point Z 1 P L2 such that LpZ 1q “ µ, and the laws of ∇ZU and
∇Z1U are equal, for any such Z 1.

‚ The function u is said to be of class C1 on some open set O of P2pEq if its
canonical lift is of class C1 in some open set of L2 projecting onto O. It is
then of class C1 in the whole fiber in L2 above O. If u is of class C1, then
∇ZU is σpZq-measurable and given by an LpZq-dependent function Du from
E to Ek such that

∇ZU “ pDuqpZq; (2.6)

we have in particular Du P L2
µpE;Ekq:“ L2pE,BpEq, µ;Ekq , where BpEq

is the Borel σ-field on E. In order to emphasize the fact that Du depends
upon LpZq, we shall write DupLpZqqp¨q instead of Dup¨q. Sometimes, we
shall put an index µ and write DµupLpZqqp¨q in order to emphasize the fact
that the derivative is taken with respect to the measure argument; this will
be especially useful for functionals u depending on additional variables. Im-
portantly, this representation is independent of the choice of the probability
space pΩ,F ,Pq; in fact, it can be easily transported from one probability
space to another. (A simple proof of the structural equation (2.6) can be
found in [40].)
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As an elementary example, think of a real-valued function u of the form upµq “
f
` ş

x2µpdxq
˘

, for which the lift Z ÞÑUpZq “ f
`

ErZ2s
˘

has differential pdZUqpHq “

2f 1
`

ErZ2s
˘

ErZHs and gradient 2f 1
`

ErZ2s
˘

Z, so Dupµqpzq “ 2f 1
` ş

x2µpdxq
˘

z here.
We refer to [7] and [9, Chapter 5] for further examples.

‚ Back to controlled paths. Let F stand here for a map from RdˆL2pΩ,F ,P; Rdq
into the space LpRm,Rdq – Rd b Rm of linear mappings from Rm to Rd. Intuitively,
F should be thought of as the lift of the coefficient driving equation (0.2), or, with

the same notation as in (0.3), as pF itself, with the slight abuse of notation that it

requires to identify F and pF. Our goal now is to expand the image of a controlled
trajectory by F.

Regularity assumptions 1 – Assume that F is continuously differentiable in the
joint variable px, Zq, that BxF is also continuously differentiable in px, Zq and that
there is some positive finite constant Λ such that

sup
xPRd, µPP2pRdq

ˇ

ˇFpx, µq
ˇ

ˇ_
ˇ

ˇBxFpx, µq
ˇ

ˇ_
ˇ

ˇB2
xFpx, µq

ˇ

ˇ ď Λ,

sup
xPRd,LpZqPP2pRdq

›

›∇ZFpx, Zq
›

›

2
_
›

›Bx∇ZFpx, Zq
›

›

2
ď Λ,

(2.7)

and

∇ZFpx, ¨q : L2pΩ,F ,P; Rdq Ñ L2pΩ,F ,P;LpRd,Rd b Rmqq

Z ÞÑ ∇ZFpx, Zq “ DµF px,LpZqqpZq

is a Λ-Lipschitz function of Z P L2pΩ,F ,P; Rdq, uniformly in x P Rd.

Importantly, the L2-Lipschitz bound required in the second line of (2.7) may be
formulated as a Lipschitz bound on P2pRdq equipped with d2. Moreover, notice
that L2

`

Ω,F ,P;LpRd,Rd b Rmq
˘

can be identified with L2pΩ,F ,P; Rdqdˆm; also,
BxFpx, Zq and ∇ZFpx, Zq will be considered as random variables with values in
LpRd,Rd b Rmq – Rd b Rm b Rd. As an example, the functions

Fpx, µq “

ż

fpx, yqµpdyq

for some fuction f of class C2
b , and

Fpx, µq “ g

ˆ

x,

ż

yµpdyq

˙

for some function g of class C2
b , both satisfy Regularity assumptions 1.

We expand below the path
`

FpXtpωq, Ytp¨qq
˘

0ďtďT
, which we write FpXpωq, Y p¨qq,

where Xpωq is an ω-controlled path and Y p¨q is an Rd-valued random controlled
path, both of them being defined on some finite time interval r0, T s. Identity (2.4)
tells us that a fixed point formulation of the mean field rough differential equation
(0.2) will only involve pairs pXpωq, Y p¨qq such that

δµXpωq ” 0, δµY p¨q ” 0, (2.8)

which prompts us to restrict ourselves to the case when Xpωq and Y have null
µ-derivatives in the expansion (2.1).
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11. Proposition – Let Xpωq be an ω-controlled path and Y p¨q be an Rd-valued random
controlled path. Assume that condition (2.8) hold and we have the ω-independent
bound

M :“ sup
0ďtďT

´

ˇ

ˇδxXtpωq
ˇ

ˇ_
@

δxYtp¨q
D

8

¯

ă 8.

Then, F
`

Xpωq, Y p¨q
˘

is an ω-controlled path with

δx

´

F
`

Xpωq, Y p¨q
˘

¯

t
“ BxF

`

Xtpωq, Ytp¨q
˘

δxXtpωq,

which is understood as
`

Bx`F
i,j
`

Xtpωq, Ytp¨q
˘`

δxX
`
t pωq

˘

k

˘

i,j,k
, with i, k P t1, ¨ ¨ ¨ , du

and j P t1, ¨ ¨ ¨ ,mu, and (with a similar interpretation for the product)

δµ

´

F
`

Xpωq, Y p¨q
˘

¯

t
“ ∇ZF

`

Xtpωq, Ytp¨q
˘

δxYtp¨q

“ DµF
`

Xtpωq,LpXtq
˘`

Xtp¨q
˘

δxYtp¨q,

and one can find a constant CΛ,M , depending only on Λ and M , such that
�

�F
`

Xpωq, Y p¨q
˘�

�

r0,T s,w,p
ď CΛ,M

´

1` ~Xpωq~2
r0,T s,w,p `

@

~Y p¨q~r0,T s,w,p
D2

8

¯

.

Proof – For 0 ď s ă t, expand FpXpωq, Y p¨qqs,t into

FpXpωq, Y p¨qqs,t “ F
`

Xtpωq, Ytp¨q
˘

´ F
`

Xspωq, Ysp¨q
˘

“

!

F
`

Xtpωq, Ytp¨q
˘

´ F
`

Xspωq, Ytp¨q
˘

)

`

!

F
`

Xspωq, Ytp¨q
˘

´ F
`

Xspωq, Ysp¨q
˘

)

“:
!

(1)` (2)` (3)
)

`

!

(4)` (5)
)

,

(2.9)

where

(1) :“ BxF
`

Xspωq, Ysp¨q
˘

!

δxXspωqWs,tpωq `R
X
s,tpωq

)

,

(2) :“

ż 1

0

”

BxF
´

X
pλq
s;ps,tqpωq, Ytp¨q

¯

´ BxF
´

X
pλq
s;ps,tqpωq, Ysp¨q

¯ı

Xs,tpωq dλ,

(3) :“

ż 1

0

”

BxF
´

X
pλq
s;ps,tqpωq, Ysp¨q

¯

´ BxF
`

Xspωq, Ysp¨q
˘

ı

Xs,tpωq dλ,

(4) :“
A

∇ZF
`

Xspωq, Ysp¨q
˘

Ys,tp¨q
E

,

(5) :“

ż 1

0

A´

∇ZF
`

Xspωq, Y
pλq
s;ps,tqp¨q

˘

´∇ZF
`

Xspωq, Ysp¨q
˘

¯

Ys,tp¨q
E

dλ;

we used here the fact that Xpωq and Y p¨q have null µ-derivative and where we let

X
pλq
s;ps,tqpωq “ Xspωq ` λXs,tpωq, Y

pλq
s;ps,tqp¨q “ Ysp¨q ` λYs,tp¨q. (2.10)

We read on the decomposition (2.9) the formulas for the x and µ-derivatives of

FpXpωq, Y p¨qq. The remainder R
FpX,Y q
s,t in the controlled decomposition of the path

FpXpωq, Y p¨qq is

BxF
`

Xspωq, Ysp¨q
˘

RXs,tpωq `
A

∇ZF
`

Xspωq, Ysp¨q
˘

RYs,tp¨q
E

` (2)` (3)` (5). (2.11)

We now compute
�

�F
`

Xpωq, Y p¨q
˘�

�

‹,r0,T s,w,p
.



20

‚ We have first from the regularity assumptions on F that the initial conditions
for the quantities

F
`

Xpωq, Y p¨q
˘

, δx

´

F
`

Xpωq, Y p¨q
˘

¯

, δµ

´

F
`

Xpωq, Y p¨q
˘

¯

,

are all bounded above by ΛM .

‚ Variation of FpXpωq, Y p¨qq. Using the Lipschitz property of F and Lemma 9,
we have

ˇ

ˇ

ˇ

“

F
`

Xpωq, Y p¨q
˘‰

s,t

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

“

F
`

Xpωq, Y p¨q
˘‰

t
´
“

F
`

Xpωq, Y p¨q
˘‰

s

ˇ

ˇ

ˇ

ď Λ
´

ˇ

ˇXs,tpωq
ˇ

ˇ`
@

Ys,tp¨q
D

2

¯

ď 2Λ
´

~Xpωq~r0,T s,w,p `
@

~Y p¨q~r0,T s,w,p
D

4

¯

wps, t, ωq1{p,

‚ Variation of δx
`

FpXpωq, Y p¨qq
˘

and δµ
`

FpXpωq, Y p¨qq
˘

. The Lipschitz proper-
ties of BxF and ∇ZFpx, ¨q also give

ˇ

ˇ

ˇ
δx
“

F
`

Xpωq, Y p¨q
˘‰

s,t

ˇ

ˇ

ˇ
ď 2ΛM

´

~Xpωq~r0,T s,w,p `
@

~Y p¨q~r0,T s,w,p
D

4

¯

wps, t, ωq1{p

` Λ~Xpωq ~r0,T s,w,pwps, t, ωq
1{p,

and, applying Hölder’s inequality with exponents 3{2 and 3,
A

δµ
“

F
`

Xpωq, Y p¨q
˘‰

s,t

E

4{3

ď 2Λ
@

δxYtp¨q
D

8

´

~Xpωq~r0,T s,w,p ` x~Y p¨q~r0,T s,w,py4

¯

wps, t, ωq1{p

` Λ xδxYs,tp¨qy4

ď 2ΛM
´

~Xpωq~r0,T s,w,p ` x~Y p¨q~r0,T s,w,py4

¯

wps, t, ωq1{p

` 2Λ
@

~Y p¨q~r0,T s,w,p
D

8
wps, t, ωq1{p.

‚ Remainder (2.11). The first two terms in (2.11) are less than

Λ~X~r0,T s,w,pwps, t, ωq
2{p ` Λ

@

RYs,tp¨q
D

2

ď Λ~X~r0,T s,w,pwps, t, ωq
2{p ` Λ

@

~Y p¨q~r0,T s,w,pwps, t, ¨q
2{p

D

2

ď Λ~X~r0,T s,w,pwps, t, ωq
2{p ` Λ

@

~Y p¨q~r0,T s,w,p
D

4

@

wps, t, ¨q
D2{p

4

ď Λ~X~r0,T s,w,pwps, t, ωq
2{p ` 2Λ

@

~Y p¨q~r0,T s,w,p
D

4
wps, t, ωq2{p,

from Lemma 9. We also have
ˇ

ˇ(2)
ˇ

ˇ ď Λ
ˇ

ˇXs,tpωq
ˇ

ˇ

@

Ys,tp¨q
D

2

ď 2Λ
�

�Xpωq
�

�

r0,T s,w,p

@

~Y p¨q~r0,T s,w,p
D

4
wps, t, ωq2{p.

and
ˇ

ˇ(3)
ˇ

ˇ ď Λ
ˇ

ˇXs,tpωq
ˇ

ˇ

2
ď Λ

�

�Xpωq
�

�

2

r0,T s,w,p
wps, t, ωq2{p.

Last, since ∇ZF is a Lipchitz function of its second argument,

(5) ď Λ
@

Ys,tp¨q
D2

2
ď 4Λ

@

~Y p¨q~r0,T s,w,p
D2

4
wps, t, ωq2{p.

B
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3 – Solving the Equation

We now have all the tools to formulate the mean field rough differential equation
(0.4) (or (0.2)) as a fixed point problem and solve it by Picard iteration. Our
definition of the fixed point is given in the form of a two-step procedure: The first
step is to write a frozen version of the equation, in which the mean field component
is seen as a mere exogenous collection of ω-controlled trajectories; the second step is
to regard the family of exogenous controlled trajectories as an input and to map it to
the collection of controlled trajectories solving the frozen version of the equation. In
this way, we define a solution as a collection of ω-controlled trajectories. In order to
proceed, recall the generic notation

`

Xpωq; δxXpωq; BµXpω, ¨q
˘

for an ω-controlled
path and its derivatives; we sometimes abuse notations and talk of Xpωq as an
ω-controlled path.

12. Definition – Let W together with its enhancement W satisfy the assumption of
Section 1 on a finite nontrivial time interval r0, T s, and let Y p¨q stand for some Rd-
valued random controlled path on r0, T s, with the property that δµY p¨q ” 0 and that

sup0ďtďT xδxYtp¨qy8 ă 8. For a given ω P Ω, let Xpωq be an Rd-valued ω-controlled
path on r0, T s, with the properties that δµXpωq ” 0 and sup0ďtďT |δxXtpωq| ă 8.
We associate to ω and Xpωq an ω-controlled path by setting

Γ
`

ω,Xpωq, Y p¨q
˘

:“

ˆ

X0pωq `

ż t

0
F
`

Xspωq, Ysp¨q
˘

dW spωq ; F
`

Xtpωq, Ytp¨q
˘

; 0

˙

0ďtďT

.

A solution to the mean field rough differential equation

dXt “ F
`

Xt,LpXtq
˘

dW t,

on the time interval r0, T s, with given initial condition X0p¨q P L
2pΩ,F ,P; Rdq is a

random controlled path Xp¨q starting from X0p¨q and satisfying the same prescription
as Y p¨q, such that for P-almost every ω the path Xpωq and Γ

`

ω,Xpωq, Xp¨q
˘

coincide.

We should more properly replace Xpωq in Γ
`

ω,Xpωq, Y p¨q
˘

by
`

Xpωq ; δxXpωq ; 0
˘

and Y p¨q by
`

Y p¨q ; δxY p¨q ; 0
˘

, but we stick to the above lighter notation. Observe
also that our formulation bypasses any requirement on the properties of the map Γ
itself. To make it clear, we should be indeed tempted to check that, for a random
controlled path Xp¨q, the collection

`

Γpω,Xpωq, Y p¨qq
˘

ωPΩ
, for Y p¨q as in the state-

ment, is also a random controlled path. Somehow, our definition of a solution avoids
this question; however, it should not come as a surprise that, at the end of the day,
we need to check this fact carefully; below, we refer to it as the stability properties
of Γ, see Section 3.1.

What remains of the above definition when W is the Itô or Stratonovich en-
hancement of a Brownian motion? The key point to connect the above notion of
solution to the mean field rough differential equation (0.2) with the standard notion
of solution to mean field stochastic differential equation is to observe that the rough
integral therein should be, if a solution exists, the limit of the compensated Riemann
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sums
K´1
ÿ

j“0

ˆ

F
`

Xtj pωq, Xtj p¨q
˘

Wtj ,tj`1pωq

` BxF
`

Xtj pωq, Xtj p¨q
˘

F
`

Xtj pωq, Xtj p¨q
˘

Wtj ,tj`1pωq

`

A

DµF
`

Xtj pωq, Xtj p¨q
˘`

Xtj p¨q
˘

F
`

Xtj pωq, Xtj p¨q
˘

WKK
tj ,tj`1

p¨, ωq
E

˙

,

as the step of the dissection 0 “ t0 ă ¨ ¨ ¨ ă tK “ t tends to 0. When the solution is
constructed by a contraction argument, such as done below, the process pXtp¨qq0ďtďT
is adapted with respect to the completion of the filtration pFtq0ďtďT generated by
the initial condition X0p¨q and the Brownian motion W p¨q. Returning if necessary
to Example 5, we then check that

E
“

WKK
tj ,tj`1

p¨, ωq |Ftj
‰

“ 0,

whatever the interpretation of the rough integral, Itô or Stratonovich. Pay attention
that the conditional expectation is taken with respect to “¨”, while the element ω is
kept frozen. This implies that, for any j P t0, ¨ ¨ ¨ ,K ´ 1u, we have

A

DµF
`

Xtj pωq, Xtj p¨q
˘`

Xtj p¨q
˘

F
`

Xtj pωq, Xtj p¨q
˘

WKK
tj ,tj`1

p¨, ωq
E

“ 0.

This proves that the solution to the rough mean field equation coincides with the
solution that is obtained when the equation (0.2) is interpreted in the standard
McKean-Vlasov sense.

We formulate here the regularity assumptions on Fpx, µq needed to show that Γ
satisfies the required stability properties and to run Picard’s iteration for proving
the well-posed character of the mean field rough differential equation (0.4) (or (0.2))
in small time, or in some given time interval. Recall from (2.6) the definition of
DµFpx, ¨qp¨q as a function from P2pRdqˆRd to LpRd,RdbRmq – RdbRmbRd such that
DµFpx,LpZqqpZq “ ∇ZFpx, Zq, where we emphasize the dependence of DµFpx, ¨q
on µ “ LpZq by writing DµFpx, µqp¨q. In addition to Regularity assumptions 1, we
make the following assumptions on the interaction-dependent diffusivity F.

Regularity assumptions 2 – ‚ The function BxF is differentiable in px, µq in the
same sense as before.

‚ For each px, µq P RdˆP2pRdq, there exists a version of DµFpx, µqp¨q P L2
µpR

d; Rdb
Rmq such that the map

px, µ, zq ÞÑ DµFpx, µqpzq

from RdˆP2pRdqˆRd to Rd b Rm b Rd is of class C1, the derivative in the direction
µ being understood as before.

‚ The function
`

x, Z
˘

ÞÑ B2
xF

`

x,LpZq
˘

from Rd ˆ L2pΩ,F ,P; Rdq to Rd b Rm b Rd b Rd – LpRd b Rd,Rd b Rmq is bounded
by Λ and Λ-Lipschitz continuous.

‚ The following three functions

px, Zq ÞÑ BxDµF
`

x,LpZq
˘

pZp¨qq

px, Zq ÞÑ DµBxF
`

x,LpZq
˘

pZp¨qq

px, Zq ÞÑ BzDµF
`

x,LpZq
˘

pZp¨qq
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from Rd ˆ L2pΩ,F ,P; Rdq to L2
`

Ω,F ,P; Rd b Rm b Rd b Rd
˘

, are bounded by Λ and

Λ-Lipschitz continuous. (By Schwarz’ theorem, the transpose of BxDµFi,j is in fact

equal to DµBxFi,j, for any i P t1, ¨ ¨ ¨ , du and j P t1, ¨ ¨ ¨ ,mu.)

‚ For each µ P P2pRdq, we denote by

D2
µFpx, µqpz, ¨q

the derivative of DµFpx, µqpzq with respect to µ – which is indeed given by a function.

For z1 P Rd, D2
µFpx, µqpz, z1q is an element of Rd b Rm b Rd b Rd.

Denote by
`

rΩ, rF , rP
˘

a copy of pΩ,F ,Pq, and given a random variable Z on

pΩ,F ,Pq, write rZ for its copy on prΩ, rF , rPq. We assume that the function

px, Zq ÞÑ D2
µF

`

x,LpZq
˘`

Zp¨q, rZp¨q
˘

,

from RdˆL2pΩ,F ,P; Rdq to L2
`

Ωˆ rΩ,F b rF ,Pb rP; RdbRmbRdbRd
˘

, is bounded
by Λ and Λ-Lipschitz continuous.

The two functions

Fpx, µq “

ż

fpx, yqµpdyq

for some fuction f of class C2
b , and

Fpx, µq “ g

ˆ

x,

ż

yµpdyq,

ż

y2µpdyq

˙

for some function g of class C2
b , both satisfy Regularity assumptions 2. We refer to

[9, Chapter 5] and [10, Chapter 5] for other examples of functions that satisfy the
above assumptions and for sufficient conditions under which these assumptions are
satisfied. We feel free to abuse notations and write Zp¨q for LpZq in the argument
of the functions BxDµF, BzDµF and D2

µF. We prove in Section 3.1 that the map Γ
sends some large ball of its state space into itself for a small enough time horizon T .
The contractive character of Γ is proved in Section 3.2, and Section 3.3 is dedicated
to proving the well-posed character of equation (0.4) and continuity of the law of its
solution with respect to all the parameters in the problems.

3.1 – Stability of Balls by �

Recall Λ was introduced in Regularity assumptions 1 and 2 as a bound on F and
some of its derivatives. The following lemma, of a technical nature, brings back the
general case to Λ “ 1.

13. Lemma – There is no loss of generality in assuming Λ “ 1 in Regularity assump-
tions 1 and Regularity assumptions 2.

Proof – We may indeed change F into Λ´1F. Doing so, we need to change in
equation (0.4) the driver W into ΛW and W into Λ2W, and also WKK into Λ2WKK.
Importantly, for an ω-controlled path Xpωq and a random controlled path Y p¨q on
a segment r0, T s, for T ą 0, this change of variable leaves invariant the definition of
the integral

ˆ
ż t

0
F
`

Xspωq, Ysp¨q
˘

dW spωq

˙

0ďtďT

.
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Indeed, changing the first-level W p1q of the rough set-up into W p1q,pΛq :“ ΛW p1q

requires to change δxXpωq into δ
pΛq
x Xpωq :“ Λ´1δxXpωq. Also,

δpΛqx

“

Λ´1F
`

Xpωq, Y p¨q
˘‰

s
“ Λ´1BxF

`

Xspωq, Ysp¨q
˘

δpΛqx Xspωq

“ Λ´2BxF
`

Xspωq, Ysp¨q
˘

δxXspωq

“ Λ´2δx
“

F
`

Xpωq, Y p¨q
˘‰

s
,

and, with similar notations,

δpΛqµ

“

F
`

Xpωq, Y p¨q
˘‰

s
“ Λ´2δµ

“

F
`

Xpωq, Y p¨q
˘‰

s
.

Setting W p2q,pΛq :“ Λ2W p2q, for the second level of the rough set up, we then observe
that, up to a small remainder,

ż t

s
Λ´1F

`

Xupωq, Yup¨q
˘

dW pΛq
u pωq

« Λ´1F
`

Xspωq, Ysp¨q
˘

W
pΛq
s,t pωq ` δ

pΛq
x

“

Λ´1F
`

Xpωq, Y p¨q
˘‰

s
WpΛq
s,t pωq

` E
”

δpΛqµ

“

Λ´1F
`

Xpωq, Y p¨q
˘‰

s
WKK,pΛq
s,t p¨, ωq

ı

“ F
`

Xspωq, Ysp¨q
˘

Ws,tpωq ` δx
“

F
`

Xpωq, Y p¨q
˘‰

s
Ws,tpωq

` E
”

δµ
“

F
`

Xpωq, Y p¨q
˘‰

s
WKK
s,tp¨, ωq

ı

.

As the last line is the second order expansion of
şt
s F

`

Xupωq, Yup¨q
˘

dW upωq, this
shows indeed that

ż t

s
Λ´1F

`

Xupωq, Yup¨q
˘

dW pΛq
u pωq “

ż t

s
F
`

Xupωq, Yup¨q
˘

dW upωq.

B

Recall from identity (1.13) the definition of the local accumulated variation

N
`

r0, T s, ω;α
˘

.

We use the notations ~¨~ra,bs,w,p and ~¨~‹,ra,bs,w,p, for some interval ra, bs, to denote
a quantity defined in Definition 8 for paths defined on some interval ra, bs rather
than on the interval r0, T s.

14. Proposition – Let F satisfy Regularity assumptions 1 with Λ “ 1. Consider an
ω-controlled path Xpωq together with a random controlled path Y p¨q satisfying

sup
0ďtďT

´

ˇ

ˇδxXtpωq
ˇ

ˇ_
@

δxYtp¨q
D

8

¯

ď 1. (3.1)

Assume that there exists a positive constant L such that we have
@

}Y p¨q}r0,T s,w,p
D2

8
ď
?
L,

@

~Y p¨q~r0,T s,w,p
D2

8
ď L, (3.2)

and
�

�Xpωq
�

�

2

rti,ti`1s,w,p
ď
?
L, (3.3)

for all 0 ď i ď N , with N :“ Npr0, T s, ω, 1{p4Lqq, and for the sequence
`

ti :“

τip0, T, ω, 1{p4Lqq
˘

i“0,¨¨¨ ,N`1
given by (1.12). Then, these bounds remain true for

possibly larger values of L, and there exists a universal constant L0 such that the
following two properties hold for every L ě L0.
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‚ The path Γ
`

ω,Xpωq, Y p¨q
˘

satisfies for each ω the size estimate (3.3), and
there exist two positive constants c and CL, with c universal and CL depending
only on L, such that the following estimates hold for each ω:

�

�Γ
`

ω,Xpωq, Y p¨q
˘�

�

2

r0,T s,w,p
ď CL

!

1`N
´

r0, T s, ω, 1{p4Lq
¯2p1´1{pq)

,
�

�Γ
`

ω,Xpωq, Y p¨q
˘�

�

2

‹,r0,T s,w,p
ď c

ˇ

ˇX0pωq
ˇ

ˇ

2

` CL

"

1`N
´

r0, T s, ω, 1{p4Lq
¯2p1´1{pq

*

;

(3.4)

‚ If Xpωq is the ω-realization of a random controlled path Xp¨q “
`

Xpω1q
˘

ω1PΩ1

such that the estimate
�

�Xpω1q
�

�

2

rti,ti`1s,w,p
ď
?
L holds for all ω1, for the ω1-

dependent partition
`

ti :“ τip0, T, ω
1, 1{p4Lqq

˘

i“0,¨¨¨ ,N`1
of r0, T s, with N :“

Npr0, T s, ω1, 1{p4Lqq, and if T is small enough to have
A

N
`

r0, T s, ¨, 1{p4Lq
˘

` 1
E2pp´1q{p

8
ď 2;

then
@

}Γp¨, Xp¨q, Y q}r0,T s,w,p
D2

8
ď
?
L,

@

~Γp¨, Xp¨q, Y q~r0,T s,w,p
D2

8
ď L,

and
A

�

�Γp¨, Xp¨q, Y q
�

�

‹,r0,T s,w,p

E2

2
ď CL

´

1`
@

X0p¨q
D2

2

¯

.

The measurability properties of the function ω ÞÑ Γ
`

ω,Xpωq, Y p¨q
˘

implicitely
required above can all be checked by approximating the integral in the definition of
Γ
`

ω,Xpωq, Y p¨q
˘

by means of (2.3).

Proof – We proceed in three steps.

‚ For a given ω P Ω, consider a subdivision ptiq0ďiďN`1 of r0, T s such that

wpti, ti`1, ωq ď 1

for all i P t0, ¨ ¨ ¨ , Nu, for some integer N ě 0. Then, by Proposition 4 in Coutin
and Lejay [16] (rearranging the terms therein), we know that

�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ ` γwpti, ti`1, ωq
1{p

�

�

�
F
`

Xpωq, Y p¨q
˘

�

�

�

‹,rti,ti`1s,w,p
,

for a universal constant γ ě 1. By Proposition 11 and (3.1), we deduce that
�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ ` C1,1 γ wpti, ti`1, ωq
1{p

´

1` ~X~2
rti,ti`1s,w,p

`
@

~Y p¨q~r0,T s,w,p
D2

8

¯

.

(3.5)

For a given constant L ě 1 that will be fixed later on, assume that we have both
C1,1 γ wpti, ti`1, ωq

1{p ď 1{p4Lγq ď 1 and
@

}Y p¨q}r0,T s,w,p
D2

8
ď
?
L,

@

~Y p¨q~r0,T s,w,p
D2

8
ď L, (3.6)

and
�

�Xpωq
�

�

2

rti,ti`1s,w,p
ď
?
L. (3.7)
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Then
�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď 2γ. (3.8)

Hence,
�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq

�

�

�

�

2

rti,ti`1s,w,p

ď 4γ2 ă
?
L,

if L ą 16γ4, in which case Γ
`

ω,Xpωq, Y p¨q
˘

satisfies (3.3).

‚ We now use a concatenation argument to get an estimate on the whole interval
r0, T s. For all s ă t in r0, T s, we have

ˇ

ˇ

ˇ

“

Γ
`

ω,Xpωq, Y p¨q
˘‰

s,t

ˇ

ˇ

ˇ
ď

N
ÿ

j“0

ˇ

ˇ

ˇ

“

Γ
`

ω,Xpωq, Y p¨q
˘‰

t1j ,t
1
j`1

ˇ

ˇ

ˇ

ď 2γ
N
ÿ

j“0

w
`

t1j , t
1
j`1, ω

˘1{p

ď 2γ

˜

N
ÿ

j“0

wpt1j , t
1
j`1, ωq

¸1{p
`

N ` 1
˘pp´1q{p

ď 2γ wps, t, ωq1{p
`

N ` 1
˘pp´1q{p

,

where we let t1i “ maxps,minpt, tiqq and where used the super-additivity of w in the
last line. In the same way,

ˇ

ˇ

ˇ
δx
“

Γ
`

ω,Xpωq, Y p¨q
˘‰

s,t

ˇ

ˇ

ˇ
ď

N
ÿ

j“0

ˇ

ˇ

ˇ
δx
“

Γ
`

ω,Xpωq, Y p¨q
˘‰

t1j ,t
1
j`1

ˇ

ˇ

ˇ

ď 2γ wps, t, ωq1{p
`

N ` 1
˘pp´1q{p

.

Setting, with a slight abuse of notation,

Fpω, ¨q :“
`

Frpω, ¨q
˘

0ďrďT
:“

`

FpXrpωq, Yrp¨qq
˘

0ďrďT
,

we have

RΓ
s,tpωq

“

ż t

s
Frpω, ¨qdW rpωq ´ Fspω, ¨qWs,tpωq ´ δxFspω, ¨qWs,tpωq ´ E

“

δµFspω, ¨qW
KK
s,tp¨, ωq

‰

“

N
ÿ

j“0

ż t1j`1

t1j

Frpω, ¨qdW rpωq

´ Fspω, ¨qWs,t ´ δxFspω, ¨qWs,tpωq ´ E
“

δµFspω, ¨qW
KK
s,tp¨, ωq

‰

(3.9)

“

N
ÿ

j“0

!

RΓ
t1j ,t

1
j`1
pωq `

`

Ft1j pω, ¨q ´ Fspω, ¨q
˘

Wt1j ,t
1
j`1
pωq

` δxFt1j pω, ¨qWt1j ,t
1
j`1
pωq ` E

“

δµFt1j pω, ¨qW
KK
t1j ,t

1
j`1
p¨, ωq

‰

)

´ δxFspω, ¨qWs,tpωq ´ E
“

δµFspω, ¨qW
KK
s,tp¨, ωq

‰

,

where δxFrpω, ¨q and δµFrpω, ¨q stand here for the x and µ-derivatives of the ω
controlled path

`

Frpω, ¨q
˘

0ďrďT
.
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We recall that the product δxFspω, ¨qWs,tpωq is understood as the result of the action

of an element of Rd b Rm b Rm onto an element of Rm b Rm, i.e., as an element of
Rd with ith coordinate

`

δxFspω, ¨qWs,tpωq
˘

i
“ δxFi,¨s pω, ¨qWs,tpωq

“

m
ÿ

j,k“1

`

δxFi,js
˘k
pω, ¨q

`

Ws,tpωq
˘

k,j
;

a similar notation is used for δµF. Above, Fi,¨s pω, ¨q is an m dimensional vector

obtained by considering the ith line in the dˆm matrix pFi,js pω, ¨qq1ďiďd,1ďjďm, and

δxFi,¨s pω, ¨q is an mˆm matrix.

The most difficult term to handle in (3.9) is
řN
j“0

`

Ft1j pω, ¨q ´ Fspω, ¨q
˘

Wt1j ,t
1
j`1
pωq.

We first notice that the increments Ft1j pω, ¨q ´ Fspω, ¨q, for j “ 0, ¨ ¨ ¨ , N, can be

bounded by
řj´1
i“0

`

|Xt1i`1
pωq ´Xt1i

pωq| `
@

Yt1i`1
p¨q ´ Yt1ip¨q

D

2

˘

, since F is 1-Lipschitz

continuous. Then, |Xt1i`1
pωq ´Xt1i

pωq| is less than }Xpωq}rt1i,t1i`1s,w,p
wpt1i, t

1
i`1, ωq

1{p

and, following Lemma 9, xYt1i`1
p¨q ´ Yt1ip¨qy2 ď 2

@

}Y p¨q}rt1i,t1i`1s,w,p

D

8
wpt1i, t

1
i`1, ωq

1{p.

Invoking the first bound in (3.6) –this is the rationale for it– together with (3.7), we

deduce that the sum
řN
j“0

`

Ft1j pω, ¨q ´ Fspω, ¨q
˘

Wt1j ,t
1
j`1
pωq is bounded by

3γ L1{4
N
ÿ

j“0

˜

N
ÿ

i“0

wpt1i, t
1
i`1, ωq

1{p

¸

wpt1j , t
1
j`1, ωq

1{p

ď 3 γ L1{4pN ` 1q2pp´1q{pwps, t, ωq2{p.

In order to proceed with the other terms in (3.9), we note that since |F|, |BxF| and
@

∇ZF
D

2
are less than Λ “ 1, and |δxXpωq| “

`

|δxXtpωq|
˘

0ďtďT
and

@

δxY p¨q
D

8
“

`@

δxYtp¨q
D

8

˘

0ďtďT
are all less than 1, Proposition 11 ensures that

ˇ

ˇ

ˇ
δx
“

F
`

Xpωq, Y p¨q
˘‰

ˇ

ˇ

ˇ
_

A

δµrFpXpωq, Y p¨qqs
E

2
_

ˇ

ˇ

ˇ
δx
“

Γ
`

ω,Xpωq, Y p¨q
˘‰

ˇ

ˇ

ˇ
ď 1.

The other terms in the last two lines of (3.9) are easily handled using the above
bound. As for the remainder term RΓ

t1j ,t
1
j`1
pωq, it can be estimated by means of

(3.8). Finally, one can find a constant Cγ depending only on γ such that
ˇ

ˇRΓ
s,tpωq

ˇ

ˇ ď Cγ
`

1` L1{4
˘

pN ` 1q2pp´1q{pwps, t, ωq2{p.

Changing the value of Cγ from line to line, we end up with

›

›

›
Γ
`

ω,Xpωq, Y p¨q
˘

›

›

›

2

r0,T s,w,p
ď Cγ pN ` 1q2pp´1q{p,

�

�

�
Γ
`

ω,Xpωq, Y p¨q
˘

�

�

�

2

r0,T s,w,p
ď Cγ

`

1`
?
L
˘

pN ` 1q2pp´1q{p,

which proves the bound (3.4) by choosing the sequence

ptiqi“0,¨¨¨ ,N`1 “
`

τip0, T, ω, 1{p4Lqq
˘

i“0,¨¨¨ ,N`1

defined in (1.12) and N “ N
`

r0, T s, ω, 1{p4Lq
˘

.

‚ Assume now that Xpωq is the realization of a random controlled path Xp¨q “
pXpω1qqω1PΩ1 satisfying the bound (3.3) for any ω1, for the ω1-dependent partition
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ptiqi“0,¨¨¨ ,N`1. Then, integrating with respect to ω the conclusion of the second point
we get

A›

›

›
Γ
`

¨, Xp¨q, Y
˘

›

›

›

r0,T s,w,p

E2

8
ď Cγ

A

N
`

r0, T s, ¨, 1{p4Lq
˘

` 1
E2pp´1q{p

8
,

A
�

�

�
Γ
`

¨, Xp¨q, Y
˘

�

�

�

r0,T s,w,p

E2

8
ď Cγ

`

1`
?
L
˘

A

N
`

r0, T s, ¨, 1{p4Lq
˘

` 1
E2pp´1q{p

8
.

We get the conclusion of the statement if one assumes that
A

N
`

r0, T s, ¨, 1{p4Lq
˘

` 1
E2pp´1q{p

8
ď 2,

by choosing L such that 2Cγ ď
?
L and 2Cγ p1`

?
Lq ď L. B

Remark that if
@

N
`

r0, 1s, ¨, 1{p4Lq
˘

`1
D

8
is finite, then we can choose T ď 1 small

enough such that the condition
@

N
`

r0, T s, ¨, 1{p4Lq
˘

` 1
D2pp´1q{p

8
ď 2 is satisfied.

(Since N
`

r0, ts, ω, 1{p4Lq
˘

converges to 0 as tŒ 0, for any ω P Ω, the result follows
indeed from Lebesgue’s dominated convergence theorem.)

3.2 – Contractive Property of �

15. Proposition – Let F satisfy Regularity assumptions 1 and Regularity assumptions
2 with Λ “ 1. Consider two ω-controlled paths Xpωq and X 1pωq, defined on a time
interval r0, T s, together with two random controlled paths Y p¨q and Y 1p¨q satisfying

ˇ

ˇδxXpωq
ˇ

ˇ_
ˇ

ˇδxX
1pωq

ˇ

ˇ_
@

δxY p¨q
D

8
_
@

δxY
1p¨q

D

8
ď 1, (3.10)

together with the size estimates
@

}Y p¨q}r0,T s,w,p
D2

8
ď

a

L0,
@

~Y p¨q~r0,T s,w,p
D2

8
ď L0,

@

}Y 1p¨q}r0,T s,w,p
D2

8
ď

a

L0,
@

~Y 1p¨q~r0,T s,w,p
D2

8
ď L0,

(3.11)

and
�

�Xpωq
�

�

2

rt0i ,t
0
i`1s,w,p

ď
a

L0,
�

�X 1pωq
�

�

2

rt0i ,t
0
i`1s,w,p

ď
a

L0, (3.12)

for i P t0, ¨ ¨ ¨ , N0u, for L0 given by Proposition 14, and N0 “ N
`

r0, T s, ω, 1{p4L0q
˘

given by (1.13), and for the sequence
`

t0i “ τip0, T, ω, 1{p4L0qq
˘

i“0,¨¨¨ ,N0`1
given

by (1.12). Then, we can find a constant γ depending on L0 such that, for any
partition ptiqi“0,¨¨¨ ,N refining pt0i qi“0,¨¨¨ ,N0 and satisfying wpti, ti`1, ωq ď 1{p4Lq for
some L ě L0, we have

�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq ´

ż ¨

ti

F
`

X 1rpωq, Y
1
r p¨q

˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ wp0, ti, ωq
1{p

`

1`
1

4L

˘

´

�

�∆Xpωq
�

�

r0,tis,w,p
`
@

~∆Y p¨q~r0,T s,w,p
D

8

¯

`
γ

4L

´

�

�∆Xpωq
�

�

rti,ti`1s,w,p
`
@

~∆Y p¨q~r0,T s,w,p
D

8

¯

,

where

∆Xtpωq :“ Xtpωq ´X
1
tpωq, ∆Ytp¨q :“ Ytp¨q ´ Y

1
t p¨q, t P r0, T s.
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Proof – We get the conclusion after four intermediate steps. Proceeding as in the
proof of stability, we consider a subdivision ptiqi“0,¨¨¨ ,N`1 of the interval r0, T s such
that wpti, ti`1, ωq ď 1{p4Lq, for a frozen value of ω P Ω. The value of L ě L0 will
be fixed later on. We can assume without any loss of generality that the parti-
tion ptiqi“0,¨¨¨ ,N`1 refines the partition

`

t0i “ τip0, T, ω, 1{p4L0qq
˘

i“0,¨¨¨ ,N0`1
, where

N0pωq “ N
`

r0, T s, ω, 1{p4L0q
˘

. Like in the first step of the proof of Proposition 14,
we start from the estimate

�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq ´

ż ¨

ti

F
`

X 1rpωq, Y
1
r p¨q

˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ
´

ˇ

ˇXtipωq ´X
1
tipωq

ˇ

ˇ` }Ytip¨q ´ Y
1
tip¨q}2

¯

` γ wpti, ti`1, ωq
1{p

�

�F
`

Xpωq, Y p¨q
˘

´ FpX 1pωq, Y 1p¨q
˘�

�

‹,rti,ti`1s,w,p
,

(3.13)

for a universal constant γ ě 1.

The first point is to bound the quantity
�

�F
`

Xpωq, Y p¨q
˘

´F
`

X 1pωq, Y 1p¨q
˘
�

�

‹,rti,ti`1s,w,p.

Step 1. We first analyse the term

∆Fpω, ¨q :“ F
`

Xpωq, Y p¨q
˘

´ F
`

X 1pωq, Y 1p¨q
˘

:“
´

F
`

Xtpωq, Ytp¨q
˘

´ F
`

X 1tpωq, Y
1
t p¨q

˘

¯

0ďtďT
.

‚ Initial condition of ∆Fpω, ¨q – As
ˇ

ˇr∆Fpω, ¨qsti
ˇ

ˇ ď
`

|∆Xtipωq| ` x|∆Ytip¨q|y2
˘

,
we have from Lemma 9 and from the two identities ∆X0pωq “ 0 and ∆Y0p¨q “ 0

ˇ

ˇr∆Fpω, ¨qsti
ˇ

ˇ ď 2wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

.

‚ Variation of ∆Fpω, ¨q. Using the notations (2.10) together with similar ones for
the processes tagged with a prime, we have
“

∆Fpω, ¨q
‰

s,t

“

ż 1

0

!

BxF
´

X
pλq
s;ps,tqpωq, Y

pλq
s;ps,tqp¨q

¯

Xs,tpωq ´ BxF
´

X
pλq1
s;ps,tqpωq, Y

pλq1
s;ps,tqp¨q

¯

X 1s,tpωq
)

dλ

`

ż 1

0
E
!

∇ZF
´

X
pλq
s;ps,tqpωq, Y

pλq
s;ps,tqp¨q

¯

Ys,tp¨q ´∇ZF
´

X
pλq1
s;ps,tqpωq, Y

pλq1
s;ps,tqp¨q

¯

Y 1s,tp¨q
)

dλ.

We now use the following three facts. First, we recall once again that X0pωq “ X 10pωq
and Y0p¨q “ Y 10p¨q; second, we know from Regularity assumptions 1 that, for any
x P Rd and Z P L2pΩ,F ,P; Rdq, the quantities |BxFpx, Zq| and

@

∇ZFpx, Zqy2 are
bounded by 1; last, the two mappings px, Zq ÞÑ BxFpx, Zq and px, Zq ÞÑ ∇ZFpx, Zq
are 1-Lipschitz continuous. Hence, we get, for a new value of the universal constant
γ, and for s, t in the interval rti, ti`1s, the estimate

ˇ

ˇr∆Fpω, ¨qss,t
ˇ

ˇ ď
ˇ

ˇ∆Xs,tpωq
ˇ

ˇ`
@

∆Ys,tp¨q
D

2

`

´

|Xs,tpωq| `
@

Ys,tp¨q
D

2

¯

ˆ

!

|∆Xspωq| ` x∆Ysp¨qy2 ` |∆Xs,tpωq| `
@

∆Ys,tp¨q
D

2

)

ď (a)` (b),

where

(a) :“ γ wps, t, ωq1{p
´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯

,
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and (b) “ (b1)ˆ (b2) with

(b1) :“ γ wps, t, ωq1{p
´

~Xpωq~rti,ti`1s,w,p `
@

~Y p¨q~rti,ti`1s,w,p

D

4

¯

(b2) :“ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

` wpti, ti`1, ωq
1{p

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯

.

It follows that we have

›

›∆Fpω, ¨q}rti,ti`1s,w,p ď γ
´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯

` γ
´

~Xpωq~rti,ti`1s,w,p `
@

~Y p¨q~rti,ti`1s,w,p

D

4

¯

ˆ (b2).

Allowing the constant γ to depend on L0 and using (3.11) and (3.12), we get

›

›∆Fpω, ¨q}rti,ti`1s,w,p ď γ
´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯

` γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

.

Step 2 – We now handle the Gubinelli derivative δxr∆Fpω, ¨qs. We start from the
algebraic identity

δxr∆Fpω, ¨qst “
“

BxF
`

Xtpωq, Ytp¨q
˘

´ BxF
`

X 1tpωq, Y
1
t p¨q

˘‰

δxXtpωq

` BxF
`

X 1tpωq, Y
1
t p¨q

˘

∆δxXtpωq.

‚ Initial condition of δx
“

∆Fpω, ¨q
‰

. Combining Regularity assumptions 1 and
(3.10), we obtain the estimate

ˇ

ˇδx
“

∆Fpω, ¨q
‰

ti

ˇ

ˇ ď
ˇ

ˇδx∆Xtipωq
ˇ

ˇ`
ˇ

ˇ∆Xtipωq
ˇ

ˇ`
@

∆Ytip¨q
D

2

ď γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

.

‚ Variation of Bx
“

∆Fpω, ¨q
‰

. Similarly,

ˇ

ˇ

ˇ
δx
“

∆Fpω, ¨q
‰

s,t

ˇ

ˇ

ˇ
ď

ˇ

ˇrδxXpωqss,t
ˇ

ˇ

´

|∆Xspωq| `
@

∆Ysp¨q
D

2

¯

`

ˇ

ˇ

ˇ

“

BxF
`

Xpωq, Y p¨q
˘

´ BxF
`

X 1pωq, Y 1p¨q
˘‰

s,t

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

“

∆δxXpωq
‰

s,t

ˇ

ˇ

ˇ
`
ˇ

ˇ∆δxXspωq
ˇ

ˇ

ˇ

ˇ

ˇ

“

BxF
`

X 1pωq, Y 1p¨q
˘‰

s,t

ˇ

ˇ

ˇ
.

(3.14)

The second term in the right-hand side is handled as r∆Fpω, ¨qss,t in the first step,
with s and t in rti, ti`1s. Observing by linearity that ∆δxXpωq “ δx∆Xpωq,

the third term is seen to be less than wps, t, ωq1{p ~∆Xpωq~rti,ti`1s,w,p. The term
ˇ

ˇ∆δxXspωq
ˇ

ˇ

ˇ

ˇrBxFpX 1pωq, Y 1p¨qqss,t
ˇ

ˇ may be bounded above by

γ wps, t, ωq1{p
´

wp0, ti, ωq
1{p~∆Xpωq~r0,tis,w,p ` wpti, ti`1, ωq

1{p~∆Xpωq~rti,ti`1s,w,p

¯

ˆ

´

~X 1pωq~rti,ti`1s,w,p `
@

~Y 1p¨q~rti,ti`1s,w,p

D

4

¯

ď γ wps, t, ωq1{p
´

wp0, ti, ωq
1{p~∆Xpωq~r0,tis,w,p ` ~∆Xpωq~rti,ti`1s,w,p

¯

,
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where we used again (3.11) and (3.12). Now, the first term in (3.14) is less than

γ wps, t, ωq1{p ~X~rti,ti`1s,w,p

ˆ

!

wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

` wpti, ti`1, ωq
1{p

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯)

.

Hence, by (3.12),

ˇ

ˇrδxXpωqss,t
ˇ

ˇ

´

|∆Xspωq| ` x|∆Ysp¨q|y2

¯

ď γ wps, t, ωq1{p
!

wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

`

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯)

.

So, the final bound for
›

›δx
“

∆Fpω, ¨q
‰
›

›

rti,ti`1s,w,p
is

γ
´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯

` γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

,

which yields the same bound as in the first step.

Step 3 – We now handle the other Gubinelli derivative δµ
“

∆Fpω, ¨q
‰

, for which we
have

δµ
“

∆Fpω, ¨q
‰

t
“

”

∇ZF
`

Xtpωq, Ytp¨q
˘

´∇ZF
`

X 1tpωq, Y
1
t p¨q

˘

ı

δxYtp¨q

`∇ZF
`

X 1tpωq, Y
1
t p¨q

˘

∆δxYtp¨q.

‚ Initial condition of δµ
“

∆Fpω, ¨q
‰

. Proceeding as before,
A

δµr∆Fpω, ¨qsti

E

4{3
ď

ˇ

ˇ∆Xtipωq
ˇ

ˇ`
@

∆Ytip¨q
D

4
`
@

δx∆Ytip¨q
D

4

ď γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

,

where we used the Hölder inequality

E
”

ˇ

ˇ∆δxYtp¨q
ˇ

ˇ

4{3ˇ
ˇ∇ZF

`

X 1tpωq, Y
1
t p¨q

˘ˇ

ˇ

4{3
ı3{4

ď E
”

ˇ

ˇ∆δxYtp¨q
ˇ

ˇ

4
ı1{4

E
”

ˇ

ˇ∇ZF
`

X 1tpωq, Y
1
t p¨q

˘
ˇ

ˇ

2
ı1{2

,

with exponents 3 and 3{2.

‚ Variation of Bµr∆Fpω, ¨qs. Using again Hölder inequality with exponents 3 and
3{2, we get

A

“

δµr∆Fpω, ¨qs
‰

s,t

E

4{3

ď
@

rδxY p¨qss,t
D

4

´

|∆Xspωq| `
@

∆Ysp¨q
D

2

¯

`

A

“

∇ZF
`

Xpωq, Y p¨q
˘

´∇ZF
`

X 1pωq, Y 1p¨q
˘‰

s,t

E

4{3

`
@

r∆δxY p¨qss,t
D

4
`
@

∆δxYsp¨q
D

4

A

“

∇ZF
`

X 1pωq, Y 1p¨q
˘‰

s,t

E

2
.

(3.15)
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Thanks to Lemma 9, the third term is less than 2wps, t, ωq1{p
@

~∆Y p¨q~rti,ti`1s,w,p

D

8
.

As for the fourth term, we have

@

∆δxYsp¨q
D

4

A

“

∇ZF
`

Xpωq, Y p¨q
˘‰

s,t

E

2

ď γwps, t, ωq1{p
´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯

ˆ

!

wp0, ti, ωq
1{p

@

~∆Y p¨q~r0,tis,w,p
D

8
`
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

)

ď γ wps, t, ωq1{p
´

wp0, ti, ωq
1{p

@

~∆Y p¨q~r0,tis,w,p
D

8
`
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯

,

where we used (3.11).

Observing as before that ∆δxY p¨q “ δx∆Y p¨q, the third term in (3.15) is seen to be

less than 2wps, t, ωq1{p
@

~∆Y p¨q~rti,ti`1s,w,p

D

8
.

We now handle the first term in (3.15). Proceeding as in the second step, we have

@

rδxY p¨qss,t
D

4

´

|∆Xspωq| `
@

∆Ysp¨q
D

2

¯

ď γ wps, t, ωq1{p
!

wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

`

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯)

.

As for the second term in (3.15), we write
“

∇ZF
`

Xpωq, Y p¨q
˘

´∇ZF
`

X 1pωq, Y 1p¨q
˘‰

s,t

in the form
“

DµF
`

Xpωq, Y p¨q
˘`

Y p¨q
˘

´DµF
`

X 1pωq, Y 1p¨q
˘`

Y 1p¨q
˘‰

s,t
and then expand

it as
ż 1

0

!

BxDµF
´

X
pλq
s;ps,tqpωq, Y

pλq
s;ps,tqp¨q

¯´

Y
pλq
s;ps,tqp¨q

¯

Xs,tpωq

´ BxDµF
´

X
pλq1
s;ps,tqpωq, Y

pλq1
s;ps,tqp¨q

¯´

Y
pλq1
s;ps,tqp¨q

¯

X 1s,tpωq
)

dλ

`

ż 1

0

!

BzDµF
´

X
pλq
s;ps,tqpωq, Y

pλq
s;ps,tqp¨q

¯´

Y
pλq
s;ps,tqp¨q

¯

Ys,tp¨q

´ BzDµF
´

X
pλq1
s;ps,tqpωq, Y

pλq1
s;ps,tqp¨q

¯´

Y
pλq1
s;ps,tqp¨q

¯

Y 1s,tp¨q
)

dλ

`

ż 1

0
Ẽ
!

D2
µF

´

X
pλq
s;ps,tqpωq, Y

pλq
s;ps,tqp¨q

¯´

Y
pλq
s;ps,tqp¨q, Ỹ

pλq
s;ps,tq

¯

Ỹs,tp¨q

´ Ẽ
!

D2
µF

´

X
pλq1
s;ps,tqpωq, Y

pλq1
s;ps,tqp¨q

¯´

Y
pλq1
s;ps,tqp¨q, Ỹ

pλq1
s;ps,tq

¯

Ỹ 1s,tp¨q
)

dλ,

where the symbol „ is used to denote independent copies of the various random
variables and where, as before, we used the notation (2.10), with an obvious analogue
for the processes tagged with a prime or a tilde. By using Hölder inequality with
exponents 3 and 3/2, we get

A

“

∇ZF
`

Xpωq, Y p¨q
˘

´∇ZF
`

X 1pωq, Y 1p¨q
˘‰

s,t

E

4{3

ď γ
!

ˇ

ˇ∆Xs,tpωq
ˇ

ˇ`
@

∆Ys,tp¨q
D

4

` |Xs,tpωq|
´

|∆Xspωq| `
@

∆Ysp¨q
D

2
`
ˇ

ˇ∆Xs,tpωq
ˇ

ˇ`
@

∆Ys,tp¨q
D

2

¯

`
@

Ys,tp¨q
D

4

´

ˇ

ˇ∆Xspωq
ˇ

ˇ`
@

∆Ysp¨q
D

2
`
ˇ

ˇ∆Xs,tpωq
ˇ

ˇ`
@

∆Ys,tp¨q
D

2

¯)

,
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where, to get the first line, we used the fact that BxDµF and BzDµF and the function

Rd ˆ P2pR
dq Q px, µq ÞÑ

ż

Rd

ż

Rd

ˇ

ˇD2Fpx, µqpz, z1q
ˇ

ˇ

2
µpdzqµpdz1q,

are bounded by Λ “ 1. We end up with the same bound as in the first and second
steps, namely

@

δµr∆Fpω, ¨qs
D

rti,ti`1s,w,p,4{3

ď γ
´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯

` γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

.

Step 4 – We use (2.11) to write the remainder term R∆F in the form

R∆F
s,t “

´

BxF
`

Xspωq, Ysp¨q
˘

´ BxF
`

X 1spωq, Y
1
s p¨q

˘

¯

RXs,tpωq

` BxF
`

X 1spωq, Y
1
s p¨q

˘

´

RXs,tpωq ´R
X 1

s,t pωq
¯

` E
”´

∇ZF
`

Xspωq, Ysp¨q
˘

´∇ZF
`

X 1spωq, Y
1
s p¨q

˘

¯

RYs,tp¨q
ı

` E
”

∇ZF
`

X 1spωq, Y
1
s p¨q

˘

´

RYs,tp¨q ´R
Y 1

s,tp¨q

¯ı

` (2)´ (2’)` (3)´ (3’)` (5)´ (5’),

with

(2) :“

ż 1

0

!

BxF
´

X
pλq
s;ps,tqpωq, Ytp¨q

¯

´ BxF
´

X
pλq
s;ps,tqpωq, Ysp¨q

¯)

Xs,tpωq dλ,

(2’) :“

ż 1

0

!

BxF
´

X
pλq1
s;ps,tqpωq, Y

1
t p¨q

¯

´ BxF
´

X
pλq1
s;ps,tqpωq, Y

1
s p¨q

¯)

X 1s,tpωq dλ,

(3) :“

ż 1

0

!

BxF
´

X
pλq
s;ps,tqpωq, Ysp¨q

¯

´ BxF
`

Xspωq, Ysp¨q
˘

)

Xs,tpωq dλ,

(3’) :“

ż 1

0

!

BxF
´

X
pλq1
s;ps,tqpωq, Y

1
s p¨q

¯

´ BxF
`

X 1spωq, Y
1
s p¨q

˘

)

X 1s,tpωq dλ,

(5) :“

ż 1

0

A!

∇ZF
`

Xspωq, Y
pλq
s;ps,tqp¨q

˘

´∇ZF
`

Xspωq, Ysp¨q
˘

)

Ys,tp¨q
E

dλ

(5’) :“

ż 1

0

A!

∇ZF
`

X 1spωq, Y
pλq1
s;ps,tqp¨q

˘

´∇ZF
`

X 1spωq, Y
1
s p¨q

˘

)

Y 1s,tp¨q
E

dλ.

We start with the analysis of the first fourth lines in R∆F. Proceeding as before,
the first line is less than

ˇ

ˇ

ˇ

”

BxF
`

Xspωq, Ysp¨q
˘

´ BxF
`

X 1spωq, Y
1
s p¨q

˘

ı

RXs,tpωq
ˇ

ˇ

ˇ

ď γ wps, t, ωq2{p
!

wp0, tiq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

`

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯)

.

We also have
ˇ

ˇ

ˇ
BxF

`

X 1spωq, Y
1
s p¨q

˘

´

RXs,tpωq ´R
X 1

s,t pωq
¯ˇ

ˇ

ˇ
ď wps, t, ωq2{p ~∆Xpωq~rti,ti`1s,w,p.
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Similarly,
ˇ

ˇ

ˇ
E
”´

∇ZF
`

Xspωq, Ysp¨q
˘

´∇ZF
`

X 1spωq, Y
1
s p¨q

˘

¯

RYs,tp¨q
ıˇ

ˇ

ˇ

ď γ wps, t, ωq2{p
!

wp0, tiq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

`

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯)

,

and
ˇ

ˇ

ˇ
E
”

∇ZF
`

Xspωq, Ysp¨q
˘

´

RYs,tp¨q ´R
Y 1

s,tp¨q

¯ıˇ

ˇ

ˇ
ď 2wps, t, ωq2{p

@

~∆Y p¨q~rti,ti`1s,w,p

D

8
.

Now,
ˇ

ˇ(2)´ (2’)
ˇ

ˇ is bounded above by

γ wps, t, ωq2{p
�

�∆Xpωq
�

�

rti,ti`1s,w,p

` γ wps, t, ωq1{p
ż 1

0

ż 1

0

ˇ

ˇ

ˇ

A

∇ZBxF
´

X
pλq
s;ps,tqpωq, Y

pλq
s;ps,tqp¨q

¯

Ys,tp¨q
E

´

A

∇ZBxF
´

X
pλq1
s;ps,tqpωq, Y

pλq1
s;ps,tqp¨q

¯

Y 1s,tp¨q
Eˇ

ˇ

ˇ
dλdλ1,

so
ˇ

ˇ(2)´ (2’)
ˇ

ˇ is bounded above by

γ wps, t, ωq2{p
�

�∆Xpωq
�

�

rti,ti`1s,w,p

` γ wps, t, ωq2{p
!

wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

`
�

�∆Xpωq
�

�

rti,ti`1s,w,p
`
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

)

.

The difference (3)´ (3’) can be handled in the same way. We end up with the term
(5)´ (5’). As Ys,t and Y 1s,t may be estimated in L4, it suffices to control both

(5a) :“ ∇ZF
`

Xspωq, Y
pλq
s;ps,tqp¨q

˘

´∇ZF
`

Xspωq, Ysp¨q
˘

and

(5a)´ (5a’) :“
´

∇ZF
`

Xspωq, Y
pλq
s;ps,tqp¨q

˘

´∇ZF
`

Xspωq, Ysp¨q
˘

¯

´

´

∇ZF
`

X 1spωq, Y
pλq1
s;ps,tqp¨q

˘

´∇ZF
`

X 1spωq, Y
1
s p¨q

˘

¯

,

in L4{3. We have first

@

(5a)
D

L4{3 ď
@

(5a)
D

L2 ď γ wps, t, ωq1{p,

In order to estimate (5a)-(5a’), we rewrite (5a) in the form

(5a) “ DµF
´

Xspωq, Y
pλq
s;ps,tqp¨q

¯´

Y
pλq
s;ps,tqp¨q

¯

´DµF
´

Xspωq, Ysp¨q
¯

`

Ysp¨q
˘

“ λ

ż 1

0
BzDµF

´

Xspωq, Y
pλλ1q
s;ps,tqp¨q

¯´

Y
pλλ1q
s;ps,tqp¨q

¯

Ys,tp¨qdλ
1

` λ

ż 1

0

rE
”

D2
µF

´

Xspωq, Y
pλλ1q
s;ps,tqp¨q

¯´

Y
pλλ1q
s;ps,tqp¨q,

rY
pλλ1q
s;ps,tqp¨q

¯

rYs,tp¨q
ı

dλ1,

with the symbol „ used to denote independent copies of various random variables.
Then, using Hölder inequality with exponents 3 and 3{2 as in the first lines of the
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third step, we obtain that
@

(5a)-(5a’)
D

L4{3 is bounded above by

γ wps, t, ωq1{p
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

` γ wps, t, ωq1{p
!

wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

`
�

�∆Xpωq
�

�

rti,ti`1s,w,p
`
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

)

.

and end up with the bound
›

›

›
R∆Fpωq

›

›

›

rti,ti`1s,w,p{2
ď γ

!

wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

`
�

�∆Xpωq
�

�

rti,ti`1s,w,p
`
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

)

.

Conclusion. Plugging the conclusion of the previous steps into equation (3.13), we
get

�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq ´

ż ¨

ti

F
`

X 1rpωq, Y
1
r p¨q

˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ
´

ˇ

ˇXtipωq ´X
1
tipωq

ˇ

ˇ`
›

›Ytip¨q ´ Y
1
tip¨q

›

›

2

¯

` γ wpti, ti`1, ωq
1{p

�

�FpXpωq, Y p¨qq ´ FpX 1pωq, Y 1p¨qq
�

�

‹,rti,ti`1s,w,p

ď γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

` γ wpti, ti`1, ωq
1{p

!´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯

` wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯)

.

(3.16)

Choosing the subdivision such that wpti, ti`1, ωq
1{p ď 1{p4Lq, we finally get

�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq ´

ż ¨

ti

F
`

X 1rpωq, Y
1
r p¨q

˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ wp0, ti, ωq
1{p

ˆ

1`
1

4L

˙

´

�

�∆Xpωq
�

�

r0,tis,w,p
`
@

~∆Y p¨q~r0,T s,w,p
D

8

¯

`
γ

4L

!

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~r0,T s,w,p
D

8

)

,

which completes the proof. B

3.3 – Well-posedness

We first prove a well-posedness result in small time from which our global in time
result, Theorem 1, follows. Recall from (1.7) and (1.8) the definition of wp0, T q,
and from Definition 12 the fact that the map Γ depends on X0pωq; recall also from
Lemma 13 that there is no loss of generality in assuming Λ “ 1 in (2.7) – this
explains the bound for BxXpωq in the statement below.

16. Theorem – Let F satisfy Regularity assumptions 1 and Regularity assumptions
2 with Λ “ 1. Assume there exists a positive time horizon T such that the random
variables wp0, T, ¨q and

`

N
`

r0, T s, ¨, α
˘˘

αą0
have ’sub’ and super exponential tails
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respectively

P
`

wp0, T, ¨q ě t
˘

ď c1 exp
`

´tε1
˘

,

P
`

Npr0, T s, ¨, αq ě t
˘

ď c2pαq exp
`

´t1`ε2pαq
˘

,
(3.17)

for some positive constants c1 and ε1, and possibly α-dependent positive constants
c2pαq and ε2pαq. Then, there exist a positive random variable A satisfying

A

Ap¨qNpr0,T s,¨,1{p4Lqq
E

1
ă 8,

together with three positive reals L0, L and η with the following property. For any
0 ď S ď T such that

A

N
`

r0, Ss, ¨, 1{p4L0q
˘

` 1
E2pp´1q{p

8
ď 2, (3.18)

and
A

Ap¨qNpr0,Ss,¨,1{p4Lqq
E

1
ď η, (3.19)

and for any d-dimensional random square-integrable variable X0, there exists a ran-
dom controlled path Xp¨q “ pXpωqqωPΩ defined on the time interval r0, Ss satisfying
the estimates

@

δxXp¨q
D

8
ď 1,

and
A

~Xp¨q~r0,Ss,w,p

E2

8
ă 8,

such that, for every ω P Ω, the paths Xpωq and Γpω,Xpωq, Xp¨qq coincide on r0, Ss.
Any other random controlled path X 1p¨q with X 10 “ X0 almost surely, and such that
the paths X 1pωq and Γ

`

ω,X 1pωq, X 1p¨q
˘

coincide almost surely, satisfies

P
´

~Xp¨q ´X 1p¨q~‹,r0,Ss,w,p “ 0
¯

“ 1.

Proof – We construct a fixed point of the map Γ, in the sense of Definition 12, as
the limit of the following Picard sequence

`

Xn`1pωq; δxX
n`1pωq; 0

˘

:“ Γ
´

ω,
`

Xnpωq; δxX
npωq; 0

˘

,
`

Xnpω1q; δxX
npω1q; 0

˘

ω1PΩ

¯

,

started from
´

X0pωq; BxX
0pωq; 0

¯

”
`

X0pωq; 0; 0
˘

,

for each ω P Ω. Importantly, we deduce from the tail estimates (3.17) that Propo-
sition 14 applies iteratively: Following the discussion that comes right after the
statement of Proposition 14, each Xnp¨q “ pXnpωqqωPΩ, n ě 1, is a random con-
trolled trajectory.

Step 1. Instead of working with S such that
@

Npr0, Ss¨, 1{p4L0qq ` 1
D2pp´1q{p

8
ď 2,

we can assume, using (3.17), that
@

Npr0, T s, ¨, 1{p4L0qq ` 1
D2pp´1q{p

8
ď 2, with L0

as in the statement of Proposition 14. We deduce that, at any rank n ě 1, both
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Xn and Xn´1 satisfy the esimates (3.11) and (3.12). Hence, by Proposition 15, the
quantity

�

�pXn`1 ´Xnqpωq
�

�

rti,ti`1s,w,p
, is bounded above by

γ wp0, ti, ωq
1{p

´

1`
1

4L

¯!

�

�pXn ´Xn´1qpωq
�

�

r0,tis,w,p

`

A

~pXn ´Xn´1qp¨q~r0,T s,w,p

E

8

)

`
γ

4L

!

�

�pXn ´Xn´1qpωq
�

�

rti,ti`1s,w,p
`

A

~pXn ´Xn´1qp¨q~r0,T s,w,p

E

8

)

,

for any n ě 1 and for a sequence ptiqi“0,¨¨¨ ,N as in the statement of Proposition 15.
We start with the case i “ 0. The above bound yields, for all n ě 1,

�

�pXn`1 ´Xnqpωq
�

�

r0,t1s,w,p

ď
3γ

4L

!

�

�pXn ´Xn´1qpωq
�

�

r0,t1s,w,p
`

A

~pXn ´Xn´1qp¨q~r0,T s,w,p

E

8

)

,

so we have, for any n ě 1,
�

�pXn`1 ´Xnqpωq
�

�

r0,t1s,w,p

ď

´ 3γ

4L

¯n�
�X1pωq

�

�

r0,t1s,w,p
`

n
ÿ

k“1

´ 3γ

4L

¯n`1´kA

~pXk ´Xk´1qp¨q~r0,T s,w,p

E

8
.

(3.20)

We proceed with a similar computation when i ě 1. We have, for n ě 1,
�

�pXn`1 ´Xnqpωq
�

�

rti,ti`1s,w,p

ď

´ γ

4L

¯n�
�X1pωq

�

�

rti,ti`1s,w,p

`

n
ÿ

k“1

´ γ

4L

¯n`1´k”

γwp0, ti, ωq
1{p

´

1`
1

4L

¯

�

�pXk ´Xk´1qpωq
�

�

r0,tis,w,p

ı

`

n
ÿ

k“1

´ γ

4L

¯n`1´k”

γ
! 1

4L
` wp0, ti, ωq

1{p
`

1`
1

4L

˘

)

ˆ

A

~pXk ´Xk´1qp¨q~r0,T s,w,p

E

8

ı

.

Following the second bullet point in the proof of Proposition 14, we can prove that,
for a new value of γ,

�

�pXn`1 ´Xnqpωq
�

�

r0,ti`1s,w,p

ď γ
�

�pXn`1 ´Xnqpωq
�

�

r0,tis,w,p
` γ

�

�pXn`1 ´Xnqpωq
�

�

rti,ti`1s,w,p
,

so
�

�pXn`1 ´Xnqpωq
�

�

r0,ti`1s,w,p

ď γ
�

�pXn`1 ´Xnqpωq
�

�

r0,tis,w,p
` γ

´ γ

4L

¯n�
�X1pωq

�

�

rti,ti`1s,w,p

` γ
n
ÿ

k“1

´ γ

4L

¯n`1´k”

γ wp0, ti, ωq
1{p

´

1`
1

4L

¯

�

�pXk ´Xk´1qpωq
�

�

r0,tis,w,p

ı

` γ
n
ÿ

k“1

´ γ

4L

¯n`1´k”

γ
! 1

4L
` wp0, ti, ωq

1{p
`

1`
1

4L

˘

)

ˆ

A

~pXk ´Xk´1qp¨q~r0,T s,w,p

E

8

ı

,
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which we can rewrite as

�

�pXn`1 ´Xnqpωq
�

�

r0,ti`1s,w,p

ď γ2ζpωq

#

n`1
ÿ

k“1

´ γ

4L

¯n`1´k �
�pXk ´Xk´1qpωq

�

�

r0,tis,w,p
`

´ γ

4L

¯n�
�X1pωq

�

�

rti,ti`1s,w,p

`

n
ÿ

k“1

´ γ

4L

¯n`1´k A

~pXk ´Xk´1qp¨q~r0,T s,w,p

E

8

+

,

provided we choose γ ě 1, and with

ζpωq :“ 1` wp0, T, ωq1{p
´

1`
1

4L

¯

.

Step 2. Combine the above estimate together with (3.20) to get

�

�pXn`1 ´Xnqpωq
�

�

r0,t2s,w,p

ď γ2ζpωq
n`1
ÿ

k“1

´ γ

4L

¯n`1´k ´ 3γ

4L

¯k´1 �
�X1pωq

�

�

r0,t1s,w,p

` γ2ζpωq
´ γ

4L

¯n �
�X1pωq

�

�

rti,ti`1s,w,p

` γ2ζpωq
n
ÿ

k“1

´ γ

4L

¯n`1´k k
ÿ

i“1

´ 3γ

4L

¯k`1´iA

~pXi ´Xi´1qp¨q
�

�

r0,T s,w,p

E

8

` γ2ζpωq
n
ÿ

k“1

´ γ

4L

¯n`1´kA

~pXk ´Xk´1qp¨q
�

�

r0,T s,w,p

E

8
.

Hence we have

�

�pXn`1 ´Xnqpωq
�

�

r0,t2s,w,p

ď γ2ζpωq
´ 3γ

4L

¯n´

1`
n`1
ÿ

k“1

`1

3

˘n`1´k
¯

�

�X1pωq
�

�

r0,t2s,w,p

` γ2ζpωq
´ γ

4L

¯n`1 n
ÿ

i“1

´ 3γ

4L

¯1´iA

~pXi ´Xi´1qp¨q~r0,T s,w,p

E

8

n
ÿ

k“i

3k

` γ2ζpωq
n
ÿ

k“1

´ γ

4L

¯n`1´kA

~pXk ´Xk´1qp¨q

�

�

�

r0,T s,w,p

E

8
.

Therefore, using the bound
řn
k“i 3k ď 3n`1{2, we deduce

�

�pXn`1 ´Xnqpωq
�

�

r0,t2s,w,p

ď 3γ2ζpωq
´ 3γ

4L

¯n �
�X1pωq

�

�

r0,t2s,w,p

` 3γ2ζpωq
n
ÿ

i“1

´ 3γ

4L

¯n`1´iA

~pXi ´Xi´1qp¨q~r0,T s,w,p

E

8
.
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We here assumed that L was chosen big enough to have 3γ ă 4L. The above
inequality may be summed up into

�

�pXn`1 ´Xnqpωq
�

�

r0,t2s,w,p
ď c2pωq

´ 3γ

4L

¯n �
�X1pωq

�

�

r0,t2s,w,p

` c2pωq
n
ÿ

i“1

´ 3γ

4L

¯n`1´i A

~pXi ´Xi´1qp¨q~r0,T s,w,p

E

8
,

where c2pωq: “ 3γ2ζpωq. Set now

cipωq :“
`

3γ2ζpωq
˘i´1

.

Comparing the previous estimate of
�

�pXn`1 ´ Xnqpωq
�

�

r0,t2s,w,p
with (3.20) and

iterating over the time index ti from the conclusion of the first step, we obtain

�

�pXn`1 ´Xnqpωq
�

�

r0,tis,w,p
ď cipωq

´ 3γ

4L

¯n �
�X1pωq

�

�

r0,tis,w,p

` cipωq
n
ÿ

k“1

´ 3γ

4L

¯n`1´k A

~pXk ´Xk´1qp¨q~r0,T s,w,p

E

8
,

as long as ti ď T .

Step 3. Noting that we can take the number of pointsN in the statement of Theorem
15 less than N0

`

r0, T s, ω, 1{p4L0q
˘

`N0

`

r0, T s, ω, 1{p4Lq
˘

ď 2N
`

r0, T s, ω, 1{p4L0q
˘

,

where we recall the definition (1.13) of N
`

r0, T s, ω, 1{p4Lq
˘

, we deduce that
�

�pXn`1 ´Xnqpωq
�

�

r0,T s,w,p

ď

´

3γ2ζpωq
¯2Npω,1{p4Lqq ´ 3γ

4L

¯n �
�X1pωq

�

�

r0,T s,w,p

`

´

3γ2ζpωq
¯2Npω,1{p4Lqq n

ÿ

k“1

´ 3γ

4L

¯n`1´kA

~pXk ´Xk´1qp¨q~r0,T s,w,p

E

8
,

(3.21)

where we let N
`

ω, 1{p4Lq
˘

:“ N
`

r0, T s,ω, 1{p4Lq
˘

. It follows from the assumed tail

behaviour of the random variables N
`

¨, 1{p4Lq
˘

and wp0, T, ¨q that we have, for a ą 1
and any integer k the upper bound

P
´

 

ω P Ω : ζ2Npω,1{p4Lqqpωq ě a
(

¯

ď P
`

Np¨, 1{p4Lqq ě k
˘

` P
`

ζ2 ě a1{k
˘

ď c exp
`

´k1`ε2
˘

` c exp

˜

´
aε1{p2kq

c

¸

,
(3.22)

for a constant c ě 1 depending on L and with ε2 “ ε2p1{p4Lqq. Choosing k “

pln aq1{p1`ε2{2q then gives

@` P Nzt0u, P
´!

ω P Ω : ζ2Npω,1{p4Lqqpωq ě a
)¯

ď C`a
´`,

for a constant C` depending on `, from which we deduce that
A

`

3γ2ζ
˘2Np¨,1{p4Lqq

E

16
ă 8.

Set now A :“ p3γ2ζq2Np¨,1{p4Lq. Importantly, A depends on the time horizon T
through γ, ζ and Np¨, 1{4Lq (and this on L as well). In order to emphasize the
dependance upon the time argument, we expand the notation and write

AT :“ p3γ2
T ζT q

2Npr0,T s,¨,1{p4Lqq.
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Clearly,

AS ď p3γ
2
T ζT q

2Npr0,Ss,¨,1{p4Lqq,

since γT and ζT are greater than 1. Since the quantity N
`

r0, Ss, ¨, 1{p4Lq
˘

tends to
0 as S tends to 0, we have

lim
SŒ0

A

`

3γ2
T ζT

˘2Npr0,Ss,¨,1{p4Lqq
E

16
“ 1,

so

lim
SŒ0

@

AS
D

16
“ 1.

Hence, taking the L8 norm in (3.21) with T replaced by S, there is a quantity δpSq
with zero limit as S goes to 0 such that

A

~pXn`1 ´Xnqp¨q~r0,Ss,w,p

E

8

ď
`

1` δpSq
˘

´ 3γ

4L

¯nA�
�X1p¨q

�

�

r0,Ss,w,p

E

16

`
`

1` δpSq
˘

n
ÿ

i“1

´ 3γ

4L

¯n`1´iA�
�pXi ´Xi´1qp¨q

�

�

r0,Ss,w,p

E

8

“
`

1` δpSq
˘

´ 3γ

4L

¯nA�
�X1p¨q

�

�

r0,Ss,w,p

E

16

`
`

1` δpSq
˘

n´1
ÿ

i“0

´ 3γ

4L

¯n´iA�
�pXi`1 ´Xiqp¨q

�

�

r0,Ss,w,p

E

8
,

so we have

n
ÿ

k“0

´ 3γ

4L

¯pn´kq{2A�
�pXk`1 ´Xkqp¨q

�

�

r0,Ss,w,p

E

8

ď
`

1` δpSq
˘

n
ÿ

k“0

´ 3γ

4L

¯pn´kq{2´ 3γ

4L

¯kA�
�X1p¨q

�

�

r0,Ss,w,p

E

16

`
`

1` δpSq
˘

n´1
ÿ

i“0

´ 3γ

4L

¯pn´iq{2A�
�pXi`1 ´Xiqp¨q

�

�

r0,Ss,w,p

E

8

n
ÿ

k“i`1

´ 3γ

4L

¯pk´iq{2

ď
`

1` δpSq
˘

´ 3γ

4L

¯n{2 n
ÿ

k“0

´ 3γ

4L

¯k{2A�
�X1p¨q

�

�

r0,Ss,w,p

E

16

`
1` δpSq

1´
a

3γ{p4Lq

´ 3γ

4L

¯1{2 n
ÿ

i“0

´ 3γ

4L

¯pn´iq{2A�
�pXi`1 ´Xiqp¨q

�

�

r0,Ss,w,p

E

8
.

Without any loss of generality, we can assume that 3γ{p4Lq ď 1{16, so

1

1´
a

3γ{p4Lq

´ 3γ

4L

¯1{2
ă 1,

and we can choose S small enough such that

a :“
1` δpSq

1´
a

3γ{p4Lq

´ 3γ

4L

¯1{2
ă 1.
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Then, we can find a positive constant C such that

n
ÿ

k“0

´ 3γ

4L

¯pn´kq{2A�
�pXk`1 ´Xkqp¨q

�

�

r0,Ss,w,p

E

8

ď C
´ 3γ

4L

¯n{2A�
�X1p¨q

�

�

r0,Ss,w,p

E

16
` a

n
ÿ

i“0

´ 3γ

4L

¯pn´iq{2 A�
�pXi`1 ´Xiqp¨q

�

�

r0,Ss,w,p

E

8
.

Changing the value of C if necessary, we obtain

n
ÿ

k“0

´ 3γ

4L

¯pn´kq{2 A

~pXk`1 ´Xkqp¨q~r0,Ss,w,p

E

8
ď C

´ 3γ

4L

¯n{2 A�
�X1p¨q

�

�

r0,Ss,w,p

E

16
,

which leads to
A

�

�pXn`1 ´Xnqp¨q
�

�

r0,Ss,w,p

E

8
ď C an

A

�

�X1p¨q
�

�

r0,Ss,w,p

E

16
.

It then follows from (3.21) that we eventually have
�

�pXn`1 ´Xnqpωq
�

�

r0,Ss,w,p

ď

´

3γ2ζpωq
¯2Npr0,T s,ω,1{4Lq

` 3γ

4L

˘n�
�X1pωq

�

�

r0,T s,w,p

` C
`

3γ2ζpωq
˘2Npr0,T s,ω,1{4Lq

a n
@�

�X1p¨q
�

�

r0,Ss,w,p

D

16

n
ÿ

i“1

´ 3γ

4La

¯n´i
.

As we can assume that 3γ ă 4La, we can change the value of C and get
�

�pXn`1 ´Xnqpωq
�

�

r0,Ss,w,p

ď
`

3γ2ζpωq
˘2Npr0,T s,ω,1{4Lq

´ 3γ

4L

¯n �
�X1pωq

�

�

r0,T s,w,p

` C
`

3γ2ζpωq
˘2Npr0,T sω,1{4Lq

an
@

~X1p¨q~r0,Ss,w,p
D

16
.

(3.23)

In order to conclude, we notice the following two facts. First, the above estimate
remains true if we replace

�

�pXn`1´Xnqpωq
�

�

r0,Ss,w,p
by

�

�pXn`1´Xnqpωq
�

�

‹,r0,Ss,w,p

in the left-hand side. Second, Proposition 14 guarantees that
@

~X1p¨q~r0,Ss,w,p
D

16
ă

8. Using a Cauchy like argument, we deduce that, for any ω P Ω, the sequence
`

Xnpωq, BxX
n, RX

n˘

ně0
is convergent for the norm ~¨~‹,r0,Ss,w,p. Using Proposition

15, the limit is a fixed point of Γ as required.

Uniqueness – Let
`

X 1p¨q; δxX
1p¨q; 0

˘

stand for another fixed point of Γ, with

δxX
1pωq “ F

`

X 1pωq, X 1p¨q
˘

, ω P Ω,

and
@

δxX
1p¨q

D

8
ď 1 together with x~X 1p¨q~r0,T s,w,p

D

8
ă 8. A careful inspection of

the proof of Proposition 15 shows that the conclusion still holds true if we increase
the value of the constant L0. Hence, we can assume that

@

}Y 1p¨q}r0,T s,w,p
D2

8
ď

a

L0,
@

~Y 1p¨q~r0,T s,w,p
D2

8
ď L0.

By (3.5), we can also assume that
�

�Xpωq
�

�

2

rt0i ,t
0
i`1s,w,p

ď
a

L0,

Therefore, we can duplicate the analysis of the convergence sequence, replacing
Xn`1 ´Xn by X ´X 1. Similar to (3.21),

�

�pX ´X 1qpωq
�

�

r0,T s,w,p
is bounded above
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by
´

3γ2ζpωq
¯2Npω,1{p4Lqq´ 3γ

4L

¯n�
�pX ´X 1qpωq

�

�

r0,T s,w,p

`

´

3γ2ζpωq
¯2Npω,1{p4Lqq n

ÿ

i“1

´ 3γ

4L

¯n`1´i
@

~pX ´X 1qp¨q~r0,T s,w,p
D

8
.

Letting n tend to 8, this yields
�

�pX ´X 1qpωq
�

�

r0,T s,w,p

ď
`

3γ2ζpωq
˘2Npω,1{p4Lqq 3γ{p4Lq

1´ 3γ{p4Lq

A

~pX ´X 1qp¨q~r0,T s,w,p

E

8
.

Taking the L8 norm, we deduce that uniqueness holds in small time. B

Applying iteratively Theorem 16 along a sequence of times pS0 “ 0, ¨ ¨ ¨ , S` “ T q
satisfying
A

NprSj´1, Sjs, ¨, 1{p4L0qq ` 1
E2pp´1q{p

8
ď 2, and

A

Ap¨qNprSj´1,Sjs,¨,1{p4Lqq
E

1
ď η,

the mean field rough differential equation is seen to have a unique solution defined
on the whole interval r0, T s. This is Theorem 1.

3.4 – Uniqueness in Law on Strong Rough Set-Ups

Since the solution given by Theorem 16 is constructed by Picard iteration on each
interval rSj´1, Sjs, for j “ 1, ¨ ¨ ¨ , `, we should expect its law to be somehow indepen-
dent of the probability space used to build the rough set-up W . However, although it
seems to be a relevant concept in our context, uniqueness in law requires some care as
the rough set-up explicitly depends upon the underlying probability space pΩ,F ,Pq;
recall indeed that the random variables Ω Q ω ÞÑ WKKpω, ¨q and Ω Q ω ÞÑ WKKp¨, ωq are
not only defined on pΩ,F ,Pq but also take values in LqpΩ,F ,P; Rmq. The fact that
the arrival spaces of both random variables explicitly depend upon the probability
space is a serious drawback to get a form of weak uniqueness. It is thus relevant to
identify the canonical information in the rough set-up that is needed to determine
the law of the solution. To do so, we keep track of the information required at each
step of the Picard iteration used in the proof of Theorem 16. To this end, recall
from the estimate (2.3) on rough integrals the expansion

Xn`1
ti

pωq

“ X0pωq `
i
ÿ

j“1

F
`

Xn
tj´1
pωq, Xn

tj´1
p¨q

˘

Wtj´1,tj pωq

`

i
ÿ

j“1

BxF
`

Xn
tj´1
pωq, Xn

tj´1
p¨q

˘

´

F
`

Xn
tj´1
pωq, Xn

tj´1
p¨q

˘

Wtj´1,tj pωq
¯

`

i
ÿ

j“1

A

DµF
`

Xn
tj´1
pωq, Xn

tj´1
p¨q

˘`

Xn
tj´1
p¨q

˘

´

F
`

Xn
tj´1
p¨q, Xn

tj´1
p¨q

˘

WKK
tj´1,tj p¨, ωq

¯E

`

i
ÿ

j“1

Sn`1
tj´1,tj

pωq;
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it holds true for any subdivision 0 “ t0 ă ¨ ¨ ¨ ă tK “ T , the last term converging
to 0 as the step size of the subdivision tends to 0. Hence, if we assume that the
Cpr0, T s; Rdq-valued random variable Xnp¨q is measurable with respect to the σ-field
generated by some variable Θn with values in an auxiliary Polish space Sn, we have
that Xn`1pωq is the image, by a measurable function, of

´

X0pωq,W pωq,Wpωq,Θ
npωq,L

`

Θnp¨q,WKKp¨, ωq
˘

¯

.

The random variable right above takes values in

Rd ˆ C
`

r0, T s; Rm
˘

ˆ C
`

ST2 ; Rm b Rm
˘

ˆ Sn ˆ P
´

Sn ˆ C
`

ST2 ; Rm b Rm
˘

¯

,

the last factor being equipped with the standard topology of weak convergence.
Noticing that S0 can be chosen as t0u and Θ0p¨q as Θ0p¨q ” 0, this defines a countable
sequence of Polish space-valued random variables; basically, the law of the whole
sequence suffices to determine the law of the solution to (0.2).

Although this approach could be made entirely rigorous to address uniqueness
in law in the upmost general framework, all the examples we have enter in fact a
simpler setting. Somehow, the problem we face with weak uniqueness is the same
as the one we encountered in the example of a rough set-up given by Proposition
4. The difficulty is indeed to reconstruct the iterated integral WKKpω1, ωq from the
observation of W pωq, W pω1q and Wpωq; in the proof of Proposition 4, this is made
at the price of an extra source of randomness. When addressing weak uniqueness,
this extra source of randomness has to be identified in a canonical way; this is
exactly what the above iterative procedure, based on the sequence pΘnqně0, does.
Interestingly (and fortunately), all this cumbersome construction becomes trivial
when WKKpω1, ωq can be (almost surely) written as the image of

`

W pωq,W pω1q
˘

by a
measurable function. In that case, there is no need of an extra source of randomness.
Equivalently, all the

`

Θn,Sn
˘

ně1
can be chosen as

`

Θn ” pX0,W
n,Wnq,Sn “ Rd ˆ

Cpr0, T s; Rmq ˆ CpST2 ; Rm b Rmq
˘

ně1
. Indeed, L

`

WKKp¨, ωq
˘

writes, for almost every

ω P Ω, as the image of W pωq by a measurable function. Importantly, both Examples
3 and 5 fall within this case. More generally, in the framework of Proposition 4,
we can write W 2,1 as the almost sure image of

`

W 1,W 2
˘

by a measurable function

from C
`

r0, T s; Rm
˘2

into C
`

ST2 ; RmbRm
˘

, when, for almost every ξ P Ξ, the quantity

W 2,1pξq can be approximated by the iterated integral of mollified versions of W 1pξq
and W 2pξq, provided the mollification procedure defines a measurable map from
Cpr0, T s; Rmq into itself. This is for instance the case with linear interpolation or
convolution by a smooth kernel.

17. Proposition – Within the framework of Proposition 4, define, for 1 ď i ď 2,
and for all n ě 0, the linear interpolation W i,n of W i at dyadic points

`

tkn “

kT {2n
˘

k“0,¨¨¨ ,2n´1
of r0, T s, namely, set

W i,n
t pξq “

2n´1
ÿ

k“0

ˆ

W i
tkn
pξq `W i

tkn,t
k`1
n
pξq

2npt´ tknq

T

˙

1
rtkn,t

k`1
n q

ptq.

If for Q-almost every ξ P Ξ, for all ps, tq P ST2 ,

W 2,1
s,t pξq “ lim

nÑ8

ż

s,t

´

W 2,n
r pξq ´W 2,n

s pξq
¯

b dW 1,n
r pξq,
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then there exists a measurable function I from Cpr0, T s; Rmq2 into C
`

ST2 ; Rm b Rm
˘

such that

Q
´!

ξ P Ξ : W 2,1pξq “ I
`

W 2pξq,W 1pξq
˘

)¯

“ 1.

The scope of Proposition 17 is limited to so-called geometric rough paths, but
the underlying principle is actually more general. This prompts us to introduce the
following definition.

18. Definition – A rough set-up, as defined in Section 1, is called strong if there exists

a measurable mapping I from C
`

r0, T s; Rm
˘2

into C
`

ST2 ; Rm b Rm
˘

such that

Pb2
´

 

pω, ω1q P Ω2 : WKKpω, ω1q “ I
`

W pωq,W pω1q
˘(

¯

“ 1. (3.24)

So, Proposition 17 provides a typical instance of strong set-up, which covers in
particular Examples 3 and 5. However, it is worth mentioning that strong set-
ups may not fall within the scope of Proposition 17, since the latter is limited to
geometric rough paths. This is for instance the case if in Proposition 4 we take
W 1p¨q and W 2p¨q to be two independent Brownian motions and W2,1p¨, ¨q to be the
Itô integral between W 2p¨q and W 1p¨q rather than their Stratonovich integral. Also,
we refer the reader to Deuschel and al. [21] for a related use of the notion of strong
set-up, although the terminology strong does not appear therein.

Proposition 4 sheds a light on the rationale for the word strong in Definition 18.
Here strong has the same meaning as in the theory of strong solutions to stochastic
differential equations: The second level W 2,1 of the rough-path is a measurable
function of pW 2,W 1q. In contrast, the general set-up considered in the statement
of Proposition 4 may not be strong as W 2,1 may carry, in addition to pW 1,W 2q, an
additional external independent randomization. If this additional randomization is
not trivial, the set-up should be called weak. An instance is given by the collection
of real-valued rough paths:

W 1pξq “W 2pξq ” 0, W 1,1pξq ” 0,

W 2,1
s,t pξq “ apξqpt´ sq, ps, tq P ST2 ,

for ξ in a probability space pΞ,G,Qq, where a is a real-valued random variable on
pΞ,G,Qq. If the support of a does not reduce to one point, then the set-up induced
by

`

W 1p¨q,W 2p¨q,W 1,1p¨q,W 1,2p¨q
˘

is strictly weak. We now have all the ingredients
to formulate a weak uniqueness property.

19. Theorem – Let X0p¨q :“
`

X0pωq
˘

ωPΩ
and X 10p¨q :“

`

X 10pωq
˘

ωPΩ1
and

W p¨q :“
`

W pωq,Wpωq,WKKpω, ω1q
˘

ωPΩ,ω1PΩ
,

W 1p¨q :“
`

W 1pωq,W1pωq,WKK,1pω, ω1q
˘

ωPΩ1,ω1PΩ1
,

be two square integrable initial conditions and two strong rough set-ups with the same
parameters m, p and q, defined on two probability spaces pΩ,F ,Pq and pΩ1,F 1,P1q,
and such that the random variables

Ω2 Q pω, ω1q ÞÑ
`

X0pωq,W pωq,Wpωq,W
KKpω, ω1q

˘

,

pΩ1q2 Q pω, ω1q ÞÑ
`

X 10pωq,W
1pωq,W1pωq,WKK,1pω, ω1q

˘

,

have the same law on RdˆCpr0, T s; RmqˆCpST2 ; RmbRmqˆCpST2 ; RmbRmq. Then,
the corresponding two solutions

`

Xpωq
˘

ωPΩ
and

`

X 1pωq
˘

ωPΩ1
to (0.2) have the same

law on Cpr0, T s; Rmq.
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As the two set-ups have the same law, we can use the same mapping I in the
representations (3.24) of WKK and of WKK,1.

3.5 – Continuity of the Itô-Lyons Map

As expected from a robust solution theory of differential equations, we have con-
tinuity of the solution with respect to the parameters in the equation, most notably
the rough set-up itself. The next statement quantifies that fact.

20. Theorem – Let F satisfy the same assumptions as in Theorem 16. Given a time
interval r0, T s and a sequence of probability spaces pΩn,Fn,Pnq, indexed by n P N,
let, for any n, Xn

0 p¨q :“ pXn
0 pωnqqωnPΩn be an Rd-valued square-integrable initial

condition and

W np¨q :“
´

Wnpωnq,W
npωnq,W

n,KKpωn, ω
1
nq

¯

ωn,ω1nPΩn

be an m-dimensional rough set-up with corresponding control wn and local accumu-
lated variation Nn, for fixed values of p P r2, 3q and q ą 8. Assume that

‚ for positive constants ε1, c1 and pε2pαq, c2pαqqαą0, the tail assumption (3.17)
hold for wn and Nn, for all n ě 0;

‚ associating vn with each W np¨q as in (1.7), the functions
`

ST2 Q ps, tq ÞÑ xvnps, t, ¨qy2q
˘

ně0

are uniformly Lipschitz continuous;

Assume also that there exist, on another probability space pΩ,F ,Pq, a square inte-
grable initial condition X0p¨q with values in Rd and a strong rough set-up

W p¨q :“
´

W pωq,Wpωq,WKKpω, ω1q
¯

ω,ω1PΩ

with values in Rm, such that

‚ The collection
`

Pn ˝ p|Xn
0 p¨q|

2q´1
˘

ně0
is uniformly integrable.

‚ The law under the probability measure Pb2
n of the random variable Ω2

n Q

pωn, ω
1
nq ÞÑ

`

Xn
0 pωnq,W

npωnq,Wnpωnq,WKK
n pωn, ω

1
nq
˘

, seen as a random vari-

able with values in Cpr0, T s; Rmqˆ
 

CpST2 ; RmbRmq
(2

, converges in the weak

sense to the law of Ω2 Q pω, ω1q ÞÑ
`

X0pωq,W pωq,Wpωnq,WKKpω, ω1q
˘

.

Then, W p¨q satisfies the requirements of Theorem 16 for some p1 P pp, 3q and
q1 P r8, qq. Moreover, if Xnp¨q, resp. Xp¨q, is the solution of the mean field rough
differential equation driven by W np¨q, resp. W p¨q, then Xnp¨q converges in law to
Xp¨q on Cpr0, T s; Rdq.

The rationale for the framework and the assumptions used in the statement of
Theorem 20 is two-fold. First, it allows for a proof based on compactness arguments;
in particular, the proof completely bypasses any lengthy stability estimate of the
paths with respect to the rough structure, which, in our extended framework, would
be especially cumbersome. Also, this compactness argument is pretty interesting
in itself and complements quite well Subsection 3.4 on weak uniqueness; noticeably,
it allows the set-ups to be supported by different probability spaces. Second, our
formulation of the continuity of the Itô-Lyons map turns out to be well-fitted to the
applications we have in mind, see the next section.
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The assumption that the limiting rough set-up is strong is tailored-made to the
compactness arguments we use below; indeed, our strategy is to prove that the
sequence of laws induced by the solutions to the equations (0.2), when driven by the
pW np¨qqně0’s, are tight. Even if this procedure is quite simple, it also requires to
pass to the weak limit along the laws of the rough set-ups pW np¨qqně0 and identify
the limiting law. As explained in Subsection 3.4, this is much easier to come when
the set-ups are strong; hence the assumption.

Proof – Throughout the proof, we call p P r2, 3q and q ą 8 the fixed indices used
to define the set-ups and, in particular, to control the variations in the definition
(3.17) of each wn, n ě 0. This is important because, at some points of the proof,
we will use other values p1 ą p and q1 ă q.

Step 1. This step is dedicated to the proof of several key properties on the tightness
of the sequence pW np¨qqně0.

1a. For any n ě 0, we introduce the modulus of continuity of pWnp¨q,Wnp¨q,Wn,KKp¨qq,
namely we let, for any δ ą 0,

ςn
`

δ, ωn, ω
1
n

˘

:“ sup
|s´t|ďδ

|Wn
t pωnq ´W

n
s pωnq|

` sup
|s´t|`|s1´t1|ďδ

ˇ

ˇWn
s1,t1pωnq ´Wn

s,tpωnq
ˇ

ˇ

` sup
|s´t|`|s1´t1|ďδ

ˇ

ˇWn,KK
s1,t1pωn, ω

1
nq ´Wn,KK

s1,t1pωn, ω
1
nq
ˇ

ˇ,

where pωn, ω
1
nq P Ω2

n.

Since the laws of the processes pWnp¨q,Wnp¨q,Wn,KKp¨, ¨qqně0 are tight in the space

Cpr0, T s; Rmq ˆ
 

CpST2 ; Rm b Rmq
(2

, we deduce that

@ε ą 0, lim
δŒ0

sup
ně0

Pb2
n

´

 

pωn, ω
1
nq P Ω2

n : ςn
`

δ, ωn, ω
1
n

˘

ě ε
(

¯

“ 0.

1b. We now prove that, for any q1 P r8, qq, the laws of the processes
`

Ωn Q ωn ÞÑ

xWn,KKpωn, ¨qyq1
˘

ně0
are tight, and similarly for the laws of the processes

`

Ωn Q ωn ÞÑ

xWn,KKp¨, ωnqyq1
˘

ně0
.

Obviously, we have, for any ωn P Ωn,

sup
ps,tqPST2

ÞÑ
@

Wn,KK
s,t pωn, ¨q

D

q
ď wnp0, T, ωnq.

By the first bullet point in the assumption, the tails of the right-hand side are
uniformly dominated. So,

lim
AÑ8

sup
ně0

P
´

 

ωn P Ωn : sup
ps,tqPST2

@

Wn,KK
s,t pωn, ¨q

D

q
ě A

(

¯

“ 0,

which is one first step in the proof of tightness.

For any a ą 0, we now consider the following event:

Enpδ, aq :“
!

ωn P Ωn : Pn
´

 

ω1n P Ωn : ςnpδ, ωn, ω
1
nq ě ε

(

¯

ě a
)

.

By Markov’s inequality and then Fubini’s theorem,

Pn
`

Enpδ, aq
˘

ď a´1Pb2
n

´

 

pωn, ω
1
nq P Ω2

n : ςnpδ, ωn, ω
1
nq ě ε

(

¯

.
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Clearly, for any ε ą 0, we can find a collection of positive reals paεpδqqδą0 such that

lim
δŒ0

aεpδq “ 0, and lim
δŒ0

Pn
´

En
`

δ, aεpδq
˘

¯

“ 0.

Take now ωn P Enpδ, aεpδqq
A such that

sup
ps,tqPST2

@

Wn,KK
s,t pωn, ¨q

D

q
ď A,

for a given A ą 0. Then, for any q1 P r8, qq and ps, tq, ps1, t1q P ST2 ,
ˇ

ˇ

ˇ

@

Wn,KK
s1,t1pωn, ¨q

D

q1
´
@

Wn,KK
s,t pωn, ¨q

D

q1

ˇ

ˇ

ˇ
ď

A

Wn,KK
s1,t1pωn, ¨q ´Wn,KK

s,t pωn, ¨q
E

q1

ď ε`Aaεpδq
1´q1{q.

For A fixed and δ small enough, the right-hand side is less than 2ε. We easily deduce
that

@ε ą 0, lim
δŒ0

sup
ně0

Pn

ˆ

!

ωn P Ωn :
ˇ

ˇ

ˇ

@

Wn,KK
s1,t1pωn, ¨q

D

q1
´
@

Wn,KK
s,t pωn, ¨q

D

q1

ˇ

ˇ

ˇ
ě ε

)

˙

“ 0.

Of course, we can proceed in a similar way for
`

Ωn Q ωn ÞÑ xWn,KKp¨, ωnqyq1
˘

ně0
. In

fact, the same argument shows that the deterministic functions
`

xWnp¨qyq1
˘

ně0
and

`⟪Wn,Kp¨, ¨q⟫q1
˘

ně0
are relatively compact in Cpr0, T s; Rq and CpST2 ; Rq.

1c. For each of the following family of processes, we know that the corresponding
family of laws is tight in CpST2 ; Rq and that the associated family of p-variations over
r0, T s has tight laws in R (because of the first item in the assumption):

‚

´

Ωn Q ωn ÞÑ
`

|pWn
t ´W

n
s qpωnq|

˘

ps,tqPST2

¯

ně0
;

‚

´

Ωn Q ωn ÞÑ
`

|Wn
s,tpωnq|

˘

ps,tqPS2
T

¯

ně0
;

‚

´

Ωn Q ωn ÞÑ
`@

Wn,KK
s,t pωn, ¨q

D

q1

˘

ps,tqPS2
T

¯

ně0
;

‚

´

Ωn Q ωn ÞÑ
`@

Wn,KK
s,t p¨, ωnq

D

q1

˘

ps,tqPS2
T

¯

ně0
.

As a consequence, we can apply Lemma 21 below, with any p1 P pp, 3q instead of p
itself, and with Zns,tpωq equal to one the above process.

We proceed similarly with the deterministic sequences

‚

´

`

zns,t “
@

pWn
t ´W

n
s qp¨q

D

q1

˘

ps,tqPST2

¯

ně0
;

‚

´

`

zns,t “ ⟪Wn,KK
s,t p¨, ¨q⟫q1

˘

ps,tqPST2

¯

ně0
.

We deduce that, for any p1 P pp, 3q, the sequence of probability measures
´

P ˝ pST2 Q

ps, tq ÞÑ vn,1ps, t, ¨qq´1
¯

ně0
is tight in CpS2

T ; Rq and that

@ε ą 0, lim
δÑ0

sup
ně0

Pn

˜

sup
ps,tqPST2 :t´sďδ

vn,1ps, t, ¨q ą ε

¸

“ 0,

where vn,1 is associated with W np¨q through (1.7) and where we put a prime in the
notation to emphasize the fact that we use the pair of parameters pp1, q1q instead of
pp, qq.

1d. Obviously, vn,1ps, t, ¨q ď pvnps, t, ¨qqp
1{p. Since p1{p ď 2 and
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‚ the tails of wn ě vn decay faster than any polynomial function, uniformly in
n ě 0;

‚ the function ST2 Q ps, tq ÞÑ xvnps, t, ¨qy2q is Lipschitz continuous, uniformly in
n ě 0;

we deduce that ps, tq ÞÑ xvn,1ps, t, ¨qyq is Lipschitz continuous, uniformly in n ě 0.
Hence,

@ε ą 0, lim
δÑ0

sup
ně0

Pn

˜

sup
ps,tqPST2 :t´sďδ

wn,1ps, t, ¨q ą ε

¸

“ 0,

where, as above, we put a prime in the notation wn,1 to emphasize the fact that the
rough set-up is driven by the parameters pp1, q1q. Importantly, we deduce from the

bound pvn,1p0, T, ¨qq1{p
1

ď pvnp0, T, ¨qq1{p that, similar to wn and Nn (the latter is
associated with wn through (1.13)), the function wn,1 and the corresponding local
accumulated variation Nn,1 (given by (1.13) with $ “ wn,1) satisfy the tail assump-
tion (3.17), uniformly in n ě 0. The bound on the tails of Nn,1 is easily obtained by
comparison with the tails of Nn.

Step 2.

2a. The next step is to observe, as a corollary of the proof of Theorem 16, that
there exist a constant C and a real S ą 0 such that, for all n ě 0,

A

~Xnp¨q~r0,Ss,wn,1,p1

E

8
ď C.

The fact that C and S can be chosen independently of n is a consequence of the fact
that the tails of Nn and wn are controlled uniformly in n ě 0. Here S is chosen small
enough so that the two constraints (3.18) and (3.19) appearing in the statement are
satisfied, uniformly in n ě 0.

2b. Arguing as in the derivation of Theorem 1 from the statement of Theorem
16, we can iterate the argument and construct a sequence of deterministic times
0 “ S0 ă S “ S1 ă . . . ă SK “ T , for some deterministic K ě 1, such that, for all
n ě 0 and all j P t0, ¨ ¨ ¨ ,K ´ 1u,

A

~Xnp¨q~rSj ,Sj`1s,wn,1,p1

E

8
ď C.

Up to a modification of the constant C, we deduce that, for all n ě 1,
A

~Xnp¨q~r0,T s,wn,1,p1

E

8
ď C.

Recalling that
`

Pn ˝ p|Xn
0 p¨q|

2q´1
˘

ně0
is uniformly integrable, it is easily checked

that
`

Pn ˝ psup0ďtďT |X
n
t p¨q|

2q´1
˘

ně0
is also uniformly integrable.

2c. As another result of the previous step, for any ε ą 0, we can find a ą 0 such
that

sup
ně0

Pn
´

~Xnp¨q~r0,T s,wn,1,p1 ą a
¯

ď ε,

from which, together with 1d, we deduce that

@a ą 0, Dε ą 0 : sup
ně0

Pn
´

@ps, tq P ST2 , |Xn
s,t|

p1 ą awn,1ps, tq
¯

ď ε.

Combining with the conclusion of the first step, this yields

@ε ą 0, lim
δÑ0

sup
ně0

Pn

˜

sup
ps,tqPST2 :t´sďδ

|Xn
s,t| ą ε

¸

“ 0.
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From the conclusion of 2b, the sequence
`

Pn˝pXnp¨qq´1
˘

ně0
is tight in C

`

r0, T s; Rd
˘

.

Step 3.

3a. As a consequence of the assumptions of Theorem 20 and of Step 2, we have the
following tightness properties:

‚ The families of distributions
`

Pn ˝ pWnp¨qq´1
˘

ně0
and

`

Pn ˝ pXnp¨qq´1
˘

ně0
are

tight in C
`

r0, T s; Rm
˘

and in C
`

r0, T s; Rd
˘

;

‚ the family of distributions
`

Pn ˝ pWnq´1p¨q
˘

ně0
is tight in C

`

ST2 ; Rm b Rm
˘

;

‚ the family
ˆ

Pb2
n ˝

´

Ω2
n Q pωn, ω

1
nq ÞÑ Wn,KKpωn, ω

1
nq P CpST2 ; Rm b Rmq

¯´1
˙

ně0

is tight in C
`

ST2 ; Rm b Rm
˘

;

‚ the family
ˆ

Pn ˝
´

vn,1pωnq : Ωn Q ωn ÞÑ
`

ST2 Q ps, tq ÞÑ vn,1ps, t, ωnq
˘

P CpST2 ; Rq
¯´1

˙

ně0

is tight in C
`

ST2 ; R
˘

;

3b. By Skorokhod’s representation theorem, we can find an auxiliary Polish prob-

ability space
`

pΩ, pF , pP
˘

, such that, up to a subsequence, the following convergence

holds for pP-almost every pω P pΩ. We have

lim
nÑ8

´

xWn,1ppωq,xWn,2ppωq,xWn,1,1ppωq,xWn,2,1ppωq, pvn,1,1ppωq, pvn,2,1ppωq, pXn,1ppωq, pXn,2ppωq
¯

“

´

xW 1ppωq,xW 2ppωq,xW 1,1ppωq,xW 2,1ppωq, pv1,1ppωq, pv2,1ppωq, pX1ppωq, pX2ppωq
¯

, (3.25)

where
`

xWn,1,xWn,2,xWn,1,1,xWn,1,2, pvn,1,1ppωq, pvn,2,1ppωq, pXn,1ppωq, pXn,2ppωq
˘

has the same
law as the random variable

Ω2
n Q pωn, ω

1
nq

ÞÑ

´

Wnpωnq,W
npω1nq,W

npωnq,W
n,KKpωn, ω

1
nq, v

n,1pωnq, v
n,1pω1nq, X

npωnq, X
npω1nq

¯

,

which takes values in
 

Cpr0, T s; Rmq
(2
ˆ
 

CpST2 ; Rm b Rmq
(2
ˆ
 

Cpr0, T s; Rdq
(2
ˆ
 

CpST2 ; Rq
(2
,

and where
`

xW 1p¨q,xW 2p¨q,xW 1,1p¨q,xW 2,1p¨q, X1
0 p¨q

˘

has the same law as the random
variable

Ω2 Q pω, ω1q ÞÑ
´

W pωq,W pω1q,Wpωq,WKKpω1, ωq, X0pωq
¯

. (3.26)

3c. At this point of the proof, the difficulty is that
`

xW 1p¨q,xW 2p¨q,xW 1,1p¨q,xW 2,1p¨q
˘

does not form a rough set-up. Still, we have the following two properties. First,
using the fact that the limiting set-up is strong, we have

pP
´!

pω P pΩ : W2,1ppωq “ I
`

W 2ppωq,W 1ppωq
˘

)¯

“ 1,

for a measurable mapping I : Cpr0, T s; Rmq2 Ñ CpST2 ; Rm b Rmq, which follows from
the identification with the law of (3.26). Also, passing to the limit in Chen’s relations
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satisfied by each W n, we have, for pP almost every pω P pΩ, and all 0 ď r ď s ď t ď T ,

xW 1,1
r,t ppωq “

xW 1,1
r,s ppωq `

xW 1,1
s,t ppωq `

xW 1
r,sppωq b

xW 1
s,tppωq,

xW 2,1
r,t ppωq “

xW 2,1
r,s ppωq `

xW 2,1
s,t ppωq `

xW 2
r,sppωq b

xW 1
s,tppωq.

By preservation of independence under weak limit, pxW 2, pX2q is independent of
`

xW 1,xW 1,1, pX1, pv1,1
˘

. Following the proof of Proposition 4, in a simpler setting here
since the limiting rough set-up is strong, we can find:

‚ four random variables xW p¨q, pWp¨q, pv1p¨q and pXp¨q from
`

pΩ, pF , pP
˘

into the spaces

Cpr0, T s; Rmq, C
`

ST2 ; Rm b Rm
˘

, C
`

ST2 ; R
˘

and Cpr0, T s; Rdq such that

pP
´!

pω P pΩ :
`

xW, pW, pv1, pX
˘

ppωq “
`

W 1,W 1,1, pv1,1, pX1
˘

ppωq
)¯

“ 1;

‚ a random variable pWKKp¨, ¨q from
`

pΩ2, pFb2, pPb2
˘

into C
`

ST2 ; RmbRm
˘

such that

pPb2
´!

ppω, pω1q P pΩ2 : pWKKppω, pω1q “ I
`

xW ppωq,xW ppω1q
˘

)¯

“ 1; (3.27)

the rough set-up xW p¨q :“
`

xW p¨q, pWp¨q, pWKKp¨, ¨q
˘

satisfying (1.4) with probability 1

and pΩ2 Q ppω, pω1q ÞÑ
`

xW ppωq,xW ppω1q, pWppωq, pWKKppω1, pωq, pv1ppωq, pv1ppω1q, pXppωq, pXppω1q
˘

hav-

ing the same law as
`

xW 1p¨q,xW 2p¨q,xW 1,1p¨q,xW 2,1p¨q, pv1,1p¨q, pv2,1p¨q, pX1p¨q, pX2p¨q
˘

on
the product space

 

C
`

r0, T s; Rm
˘(2

ˆ
 

C
`

ST2 ; Rm b Rm
˘(2

ˆ
 

C
`

ST2 ; R
˘(2

ˆ
 

C
`

r0, T s; Rd
˘(2

.

3d. We now check that xW p¨q satisfies the required regularity properties.

We start with the variations of xW ppωq, xxW p¨qyq1 , pWppωq, xpWKKppω, ¨qyq1 , xpWKKp¨, pωqyq1

and ⟪pWKKp¨, ¨q⟫q1 . To do so, we recall that, for almost every pω P pΩ, v̂1ppωq is the limit
of v̂n,1ppωq. By passage to the limit, v̂1 inherits the super-additive property of the
pvn,1qně0’s and its tails satisfy (uniformly in n ě 0) a bound similar to that satisfied
by the pvnqně0’s in the first item of the assumption, see 1d. Also, ST2 Q ps, tq ÞÑ
xv1ps, t, ¨qyq1 is Lipschitz.

Using once more the passage to the limit, we get that, for almost every ω̂ P pΩ, for

any ps, tq P ST2 , |xWs,tppωq|
p1 ď v1ps, t, ωq, from which we deduce that the p1-variation

of xW ppωq is dominated (in an obvious sense) by pv1. A similar augment applies for

xxW ppωqyq1 , pWppωq and ⟪pWKKp¨, ¨q⟫q1 .
It thus remains to handle

@

pWKKppω, ¨q
D

q1
and

@

pWKKp¨, pωq
D

q1
. Observe first from Fatou’s

lemma that

⟪ sup
ps,tqPST2

ˇ

ˇ pWKK
s,tp¨, ¨q

ˇ

ˇ⟫
q1
ă 8. (3.28)

Hence, arguing as in the presentation of a rough set-up, see Section 1, we can consider

pΩ Q pω ÞÑ xWKKppω, ¨q1
txsuptPr0,T s |ŴKKpω̂,¨q|yq1ă8u

,

and pΩ Q pω ÞÑ xWKKp¨, pωq1
txsuptPr0,T s |ŴKKp¨,ω̂q|yq1ă8u

,

as random variables with values in the spaces

C
`

ST2 ; Rm b LqppΩ, pF , pP; Rmq
˘

, and C
`

ST2 ; LqppΩ, pF , pP; Rmq b Rm
˘

.

Continuity of the preceding two paths follows from the fact that xWKK has continuous
paths and from the bound (3.28), which makes licit the application of Lebesgue’s
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dominated convergence theorem to prove continuity. In order to control the vari-
ations, we proceed as follows. For any non-negative valued bounded continuous
function g on Cpr0, T s; Rmq ˆ CpST2 ; Rq and for every ps, tq P ST2 , we have

ż

pΩ

”

g
`

xW ppωq, pv1ppωq
˘@

xWKK
s,tppω, ¨q

Dq1

q1

ı

dpPppωq

“

ż

pΩ2

”

g
`

xW ppω1q, pv1ppω1q
˘`

xWKK
s,tppω

1, pωq
˘q1

ı

dpPb2ppω, pω1q

“ lim
nÑ8

ż

Ω2
n

”

g
`

Wnpω1nq, v
n,1pω1nq

˘`

Wn,KK
s,t pωn, ω

1
nq
˘q1

ı

dPb2
n pω

1
n, ωnq,

where we used Fubini’s theorem to pass from the first to the second line together
with (3.25) to pass from the second to the third line. Now, we use the very definition
of vn,1 and the second item in the assumption to deduce that

ż

pΩ

”

g
`

xW ppωq, pv1ppωq
˘

xxWKK
s,tppω, ¨q

Dq1

q1

ı

dpPppωq

ď lim
nÑ8

ż

Ωn

”

g
`

Wnpωnq, v
n,1pωnq

˘`

vn,1ps, t, ωnq
˘q1{p1

ı

dPnpωnq

“

ż

pΩ

”

g
`

xW ppωq, pv1ppωq
˘`

vn,1ps, t, pωq
˘q1

ı

dpPppωq.

Recalling from (3.27) that pΩ Q pω ÞÑ xxWKK
s,tppω, ¨q

D

q1{p1
is σtxW p¨qu-measurable, we get,

for any ps, tq P ST2 and for almost every pω P pΩ,

xxWKK
s,tppω, ¨q

Dp1

q1
ď vn,1ps, t, pωq.

By continuity, this holds for almost every pω P pΩ, for all ps, tq P ST2 . The same holds

for xxWKK
s,tp¨, pωq

D

q1
.

Associating with the rough set-up xW a (random) control function sv1 through the

definition (1.7) with pp, qq replaced by pp1, q1q, we deduce that, for pP-almost every

pω P pΩ, for all ps, tq P ST2 , sv1ps, t, pωq is less than pv1ps, t, pωq.

Modifying the definition of the set-up on the possibly non-empty null event where
one of the aforementioned properties fails (see the proof of Proposition 4 for details),

we can assume without any loss of generality that, for any pω P pΩ, the variation of
xW ppωq is dominated by pv1ppωq and that the latter is finite for all pω P pΩ. Also, we can

assume that Chen’s relationship, see (1.4), is satisfied for every pω P pΩ.

3e. We let pw1ps, t, pωq :“ pv1ps, t, pωq ` Cpt ´ sq, where C is the Lipschitz constant
in the second item of the assumption. Clearly, pw1 satisfies the first tail estimate in

(3.17). Moreover, if we associate with pw1 the (random) local accumulation pN 1p¨, αq :“
N

pw1pr0, T s, αq as in (1.13), then, by lower semicontinuity of the local accumulation

(see [21, Lemma 4.2]), pN 1p¨, αq satisfies the second tail estimate in (3.17). Obviousy,
the same holds for the counter sN 1p¨, αq associated with sv1p¨q. This completes the

proof of the fact that xW p¨q satisfies all the requirements of Theorem 16.
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Step 4.

4a. For each n ě 0, we define δx pX
np¨q and R

pXn
p¨q as

δx pX
n
t ppωq “ F

`

pXn
t ppωq,LpXn

t q
˘

, t P r0, T s, pω P pΩ,

pR
pXn

s,t ppωq “
pXn
t ppωq ´

pXn
s ppωq ´ δx

pXn
s ppωq

xWn
s,tppωq, ps, tq P ST2 , pω P pΩ,

from which we easily deduce that
`

δx pX
np¨q, pR

pXn
p¨q

˘

ně0
converges with probability

to 1 to
`

δx pXp¨q, pR
pXp¨q

˘

defined as

δx pXtppωq :“ F
`

pXtppωq,Lp pXtq
˘

, t P r0, T s, pω P pΩ,

pR
pX
s,tppωq “

pXtppωq ´ pXsppωq ´ δx pXsppωqxWs,tppωq, ps, tq P ST2 , pω P pΩ.

In order to pass to the limit in the measure argument of F, we use the fact that, for

any t P r0, T s, pLpXn
t qqně0 converges in the weak sense to Lp pXtq. By the uniform

integrability property 2b, the convergence also holds in 2-Wasserstein distance d2.
By continuity of F with respect to d2, we easily conclude.

4b. By the second step, the sequence
`

Pn ˝ p~Xnp¨q~r0,T s,wn,1,p1q
´1
˘

ně0
is tight in R,

where, without any loss of generality, we take wn,1ps, t, ωnq “ vn,1ps, t, ωnq`Cpt´sq,
for the same C as in 3e.

So, using the fact that Pn ˝
`

Xnp¨q, δxX
np¨q, RX

n
p¨q, vn,1p¨q

˘´1
has, for each n ě

0, the same law as pP ˝
`

pXnp¨q, δx pX
np¨q, pR

pXn
p¨q, pvn,1p¨q

˘´1
, we can assume that the

sequence
`

~ pXnp¨q~r0,T s, pwn,1,p1
˘

ně0
is almost surely convergent, where pwn,1ps, t, pωq “

pvn,1ps, t, pωq ` Cpt´ sq.

Moreover, by identity in law of
`

Wnp¨q, Xnp¨q
˘

under Pn and of
`

xWnp¨q, pXnp¨q
˘

under
pP, we have, for pP-almost every pω P pΩ, for any ps, tq P ST2 ,

| pXn
s,tppωq| ď

�

� pXnppωq
�

�

r0,T s, pwn,1,p1

`

pwn,1ps, t, pωq
˘1{p1

.

By 3c, we get, for pP-almost every pω P pΩ, for all ps, tq P ST2 ,

| pXs,tppωq| ď
´

lim
nÑ8

�

� pXnppωq
�

�

r0,T s, pwn,1,p1

¯

`

pw1ps, t, pωq
˘1{p1

,

Proceeding similarly for δx pX
np¨q and R

pXn
p¨q, we deduce that, for pP-almost every

pω P pΩ,

~ pXppωq~r0,T s, pw1,p1 ď lim
nÑ8

~Xnppωq~r0,T s, pwn,1,p1 ,

which shows in particular by Fatou’s lemma, see step 2b, that
A

~ pXp¨q~r0,T s, pwp1 ,p1
E

8
ă 8.

Although pv1ppωq (and thus pw1ppωq) is not associated with xW ppωq through (1.7), we

shall say that, for almost every pω P pΩ, pXppωq is an pω-controlled trajectory for the
rough set-up W p¨q.

Step 5.

5a. So far, we have constructed
`

pXppωq; F
`

pXppωq, pXp¨q
˘

; 0
˘

as an pω-controlled trajec-

tory for the limit rough set-up W p¨q, but for pω in a full event pΩ1 Ă pΩ. For free, we

can modify the definition ofppXppωq for pω P pΩzpΩ1 and define δx pXppωq accordingly so

that
`

pXppωq; δx pXppωq; 0
˘

is an pω-controlled trajectory for any pω. Then, the collection
`

pXppωq
˘

pωPpΩ
forms a random controlled trajectory.
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5b. In order to conclude, it remains to identify
`

pXppωq; F
`

pXppωq, pXp¨q
˘

; 0
˘

, for pP

almost every pω P pΩ, with

Γ
xW

´

pXppωq; F
`

pXppωq, pXp¨q
˘

; 0
¯

,

where the index xW in Γ
xW

is to emphasize the rough set-up upon which the map Γ
in Definition 12 is constructed. To do so, we recall from (2.3) the expansion

Xn
tipωnq

“ Xn
0 pωnq `

i
ÿ

j“1

F
`

Xn
tj´1
pωnq,LpXn

tj´1
q
˘

Wn
tj´1,tj pωnq

`

i
ÿ

j“1

BxF
`

Xn
tj´1
pωnq,LpXn

tj´1
q
˘

´

F
`

Xn
tj´1
pωnq,LpXn

tj´1
q
˘

Wn
tj´1,tj pωnq

¯

(3.29)

`

i
ÿ

j“1

A

DµF
`

Xn
tj´1
pωnq,LpXn

tj´1
q
˘`

Xn
tj´1
p¨q

˘

´

F
`

Xn
tj´1
p¨q,LpXn

tj´1
q
˘

Wn,KK
tj´1,tj

p¨, ωnq
¯E

`

i
ÿ

j“1

Sntj´1,tj pωnq,

that holds true for any ωn P Ωn, any n ě 0 and any subdivision 0 “ t0 ă t1 ă ¨ ¨ ¨ ă
tK “ T , with K ě 1, and with (see Theorem 10, Proposition 11 and 2b)

ˇ

ˇSntj´1,tj pωnq
ˇ

ˇ ď C
´

1` ~Xnpωnq~
2
r0,T s,wn,1,p

¯

wn,1ptj´1, tj , ωnq
3{p1 .

In order to pass to the limit in (3.29), we consider a non-negative valued bounded
continuous function g on Cpr0, T s; Rmq ˆ CpST2 ; Rm b Rmq ˆ CpST2 ; Rq ˆ Cpr0, T s; Rdq.
We then multiply both sides of (3.29) by g

`

Wnpωnq,Wnpωnq, v
n,1pωnq, X

npωnq
˘

and
integrate ωn with respect to Pn. It is absolutely obvious that

lim
nÑ8

En
”

g
`

Wnp¨q,Wnp¨q, vn,1p¨q, Xnp¨q
˘

Xn
tip¨q

ı

“ pE
”

g
`

xW p¨q, pWp¨q, pvn,1p¨q, pXp¨q
˘

pXtip¨q

ı

,

and similarly with ti replaced by 0. In the same way,

lim
nÑ8

En
”

g
`

Wnp¨q,Wnp¨q, vn,1p¨q, Xnp¨q
˘

F
`

Xn
tj´1
p¨q,LpXn

tj´1
q
˘

Wn
tj´1,tj p¨q

ı

“ pE
”

g
`

xW p¨q, pWp¨q, pv1p¨q, pXp¨q
˘

F
`

pXtj´1p¨q,Lp pXtj´1q
˘

xWtj´1,tj p¨q

ı

,

and similarly for the terms on the second line. As for the fifth term in the right-hand
side, we have

lim sup
nÑ8

En
”

g
`

Wnp¨q,Wnp¨q, vn,1p¨q, Xnp¨q
˘

Sntj´1,tj p¨q

ı

ď C lim sup
nÑ8

En
”

g
`

Wnp¨q,Wnp¨q, vn,1p¨q, Xnp¨q
˘

´

1` ~Xnp¨q~2
r0,T s,wn,1,p

¯

ˆ wn,1ptj´1, tj , ¨q
3{p1

ı

.

Transferring the right-hand side into an expectation on ppΩ, pF , pPq and using obvious
uniform integrability properties, see 2b, we deduce from 4b that

lim sup
nÑ8

En
”

g
`

Wnp¨q,Wnp¨q, vn,1p¨q, Xnp¨q
˘

|Sntj´1,tj p¨q|

ı

ď CpE
”

g
`

xW p¨q, pWp¨q, pv1p¨q, pXp¨q
˘

´

1` lim
nÑ8

~Xnp¨q~2
r0,T s,wn,1,p

¯

w1ptj´1, tj , ¨q
3{p1

ı

.
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Of course, the most difficult term to treat in (3.29) is the fourth one in the right-hand
side. This can be done by using Fubini’s theorem:
ż

Ωn

dPnpωnq
”

g
`

Wnpωnq,W
npωnq, v

n,1pωnq, X
npωnq

˘

¨

A

DµF
`

Xn
tj´1
pωnq,LpXn

tj´1
q
˘`

Xn
tj´1
p¨q

˘

´

F
`

Xn
tj´1
p¨q,LpXn

tj´1
q
˘

Wn,KK
tj´1,tj

p¨, ωnq
¯Eı

“

ż

Ω2
n

dPb2
n pωn, ω

1
nq

”

g
`

Wnpωnq,W
npωnq, v

n,1pωnq, X
npωnq

˘

¨DµF
`

Xn
tj´1
pωnq,LpXn

tj´1
q
˘`

Xn
tj´1
pω1nq

˘

´

F
`

Xn
tj´1
pω1nq,LpXn

tj´1
q
˘

Wn,KK
tj´1,tj

pω1n, ωnq
¯ı

“ pE
”

g
`

xWn,1p¨q, pWn,1p¨q, pv1,n,1p¨q, pXn,1p¨q
˘

¨DµF
`

pXn,1
tj´1
p¨q,LpXn

tj´1
q
˘`

pXn,2
tj´1
p¨q

˘

´

F
`

pXn,2
tj´1
p¨q,LpXn

tj´1
q
˘

pWn,2,1
tj´1,tj

p¨q

¯ı

.

We now use (3.25) in order to pass to the limit. The only slight difficult is that we
must ensure that the regularity conditions satisfied by DµF are compatible with the
almost sure convergence property (3.25). Recall indeed that the continuity property
Regularity assumptions 1 is formulated in L2; at first sight, it seems needed to

assume that the pair p pXn,2
tj´1
p¨q, pX2

tj´1
p¨qq is independent of p pXn,1

tj´1
p¨q, pX1

tj´1
p¨qq in order

to take full advantage of it. In fact, we can overcome this difficulty by invoking [9,
Proposition 5.36], which basically asserts that the mapping v ÞÑ DµFpx, µqpvq is
Lipschitz continuous, uniformly in x and µ, see Section 5.3.4 for more details. The

latter guarantees that, for almost every pω P pΩ,

lim
nÑ8

DµF
`

pXn,1
tj´1
ppωq,LpXn

tj´1
q
˘`

pXn,2
tj´1
ppωq

˘

“ DµF
`

pX1
tj´1
ppωq,Lp pXtj´1q

˘`

pX2
tj´1
ppωq

˘

.

So, the limit of the summand on the fourth line of (3.29) is

pE
”

g
`

xW 1p¨q, pW1p¨q, pv1,1p¨q, pX1p¨q
˘

¨DµF
`

pX1
tj´1
p¨q,Lp pX1

tj´1
q
˘`

pX2
tj´1
p¨q

˘

´

F
`

pX2
tj´1
p¨q,Lp pX1

tj´1
q
˘

pW2,1
tj´1,tj

p¨q

¯ı

,

and our reconstruction of the limiting set-up permits to rewrite it in the form
ż

pΩ
dpPppωq

”

g
`

xW ppωq, pWppωq, pv1ppωq, pXppωq
˘

¨

A

DµF
`

pXtj´1ppωq,Lp pXtj´1q
˘`

pXtj´1p¨q
˘

´

F
`

pXtj´1p¨q,Lp pXtj´1q
˘

pWKK
tj´1,tj p¨, ωq

¯Eı

.

Importantly, since the limiting set-up is strong, the term in bracket in the last line

is σtxW, pXu-measurable.

5c. Let now

J ppωq :“ pXtippωq ´
pX0ppωq

´

i
ÿ

j“1

F
`

pXtj´1ppωq,Lp pXtj´1q
˘

xWtj´1,tj ppωq

´

i
ÿ

j“1

BxF
`

pXtj´1ppωq,Lp pXtj´1q
˘

´

F
`

pXtj´1ppωq,Lp pXtj´1q
˘

pWtj´1,tj ppωq
¯

´

i
ÿ

j“1

A

DµF
`

pXtj´1ppωq,Lp pXtj´1q
˘`

pXtj´1p¨q
˘

´

F
`

pXtj´1p¨q,Lp pXtj´1q
˘

pWKK
tj´1,tj p¨, pωq

¯E

.
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By the conclusion of 5b, it is σtxW, pW, pXu-measurable and it satisfies, for any g as
in the previous step,

pE
“

g
`

xW p¨q, pWp¨q, pv1p¨q, pXp¨q
˘

pJ p¨q
‰

ď pE
”

g
`

xW p¨q, pWp¨q, pv1p¨q, pXp¨q
˘

´

1` lim
nÑ8

~Xnp¨q~2
r0,T s,wn,1,p

¯

i
ÿ

j“1

pw1ptj´1, tj , ¨q
3{p1

ı

.

Therefore, for pP-almost every pω,

J ppωq ď C
´

i
ÿ

j“1

pw1ptj´1, tjq
3{p1

¯

pE
”

lim
nÑ8

~Xnp¨q~2
r0,T s,wn,1,p |σ

 

xW, pW, pv1, pX
(

ı

.

By the super-additivity property of pw1, this suffices to identify pXtppωq with pX0ppωq `
şt
0 Fp pXspωq, pXsp¨qqdxW spωq. Note that this is true although the functionals pv1ppωq and

pw1ppωq that control the variations of pX are not associated with xW ppωq through (1.7);

the sole fact that pv1ppωq dominates sv1ppωq (which is associated with xW ppωq through
(1.7)) suffices.

Again, the sole domination of sv1ppωq by pv1ppωq, the latter satisfying the required tail
properties in Theorem 16, suffices to duplicate the uniqueness argument. In words,
pXp¨q is the solution to the mean field rough equation driven by xW and, by uniqueness

in law, pXp¨q has the same law as Xp¨q. B

We used the following lemma in the proof of Theorem 20.

21. Lemma – For a separable Banach space pE, | ¨ |q, call Cp´var
0 pST2 ;Eq the space of

continuous paths G from ST2 into E that are null on the diagonal, i.e. Gt,t “ 0 for
all t P r0, T s, and have a finite p-variation, i.e.

}G}p
r0,T s,p´var “ sup

0ďt1ă¨¨¨ătN“T

N´1
ÿ

i“0

|Gti,ti`1 |
p ă 8.

For each n ě 0, let
`

Zn “ pZns,tqs,tPST2

˘

ně0
be a process defined on pΩn,Fn,Pnq with

trajectories in Cp´var
`

ST2 ;E
˘

. Assume that

‚ the family of distributions
`

Pn ˝ pZnq´1
˘

ně0
is tight in CpST2 ;Eq;

‚ the family of distributions
`

P ˝ p}Zn}r0,T s,p´varq
´1
˘

ně0
is tight in R.

Then, for p1 ą p

‚ the family of distributions
`

P ˝ pST2 Q ps, tq ÞÑ }Zn}rs,ts,p1´var P Rq´1
˘

ně0
is

tight in CpST2 ; Rq. In particular, for any ε ą 0, there exists δ ą 0, such that

P

˜

sup
ps,tqPST2 :t´sďδ

}Zn}rs,ts,p1´var ą ε

¸

ă ε;

Proof – Take a compact subset K of CpST2 ;Eq and a sequence pznqně0 with values
in K such that

sup
ně1

}zn}r0,T s,p´var ă 8.

Up to a subsequence, the sequence pznqně0 converges in CpST2 ;Eq. Obviously, the

limit z is in Cp´var
0 pST2 ;Eq. Now, by the same argument as in the proof of Proposition
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5.5 in [27], we have

N´1
ÿ

i“0

|pzn ´ zqti,ti`1 |
p1 ď sup

ps,tqPST2
|pzn ´ zqs,t|

p1´p
N´1
ÿ

i“0

|pzn ´ zqti,ti`1 |
p,

for any subdivision 0 “ t0 ă ¨ ¨ ¨ ă tN “ T . Taking the supremum over such

subdivisions, we deduce that pznqně0 converges to z in Cp
1´var

0 pST2 ;Eq, which proves
that

lim sup
nÑ8

sup
ps,tqPST2

ˇ

ˇ

ˇ
}zn}rs,ts,p1´var ´ }z}rs,ts,p1´var

ˇ

ˇ

ˇ
ď lim sup

nÑ8
sup

ps,tqPST2
}zn ´ z}rs,ts,p1´var

ď lim
nÑ8

}zn ´ z}r0,T s,p1´var “ 0.

Hence the family pST2 Q ps, tq ÞÑ }z}rs,ts,p1´varqzPK is relatively compact for the uni-
form topology. In particular, it is equicontinuous. Using the fact that }z}rt,ts,p1´var “

0 for each t P r0, T s, we deduce that

lim
δŒ0

sup
|t´s|ďδ

}z}rs,ts,p1´var “ lim
δŒ0

sup
|t´s|ďδ

ˇ

ˇ

ˇ
}z}rs,ts,p1´var ´ }z}rt,ts,p1´var

ˇ

ˇ

ˇ
“ 0.

This proof is easily completed. B

4 – Particle System and Propagation of Chaos

We now have all the ingredients to write down our limiting mean field rough
differential equation as the limit of a system of particles driven by rough signals.

4.1 – Empirical Rough Set-Up

Loosely speaking, the finite particle system associated with (0.1) has the form

Xi
tpωq “ Xi

0pωq `

ż t

0
F
`

Xi
spωq, µ

n
s pωq

˘

dW i
spωq, t ě 0, (4.1)

for 1 ď i ď n, where pXi
0p¨qq1ďiďn is a collection of Rd-valued independent and

identically distributed variables with the same distribution as X0 in the statement
of Theorem 16 and

`

W i
0p¨q

˘

1ďiďn
is a collection of Rm-valued independent and iden-

tically distributed processes with the same distribution on the space of continuous
functions as W p¨q in Theorem 16. All of them are constructed on a single prob-
ability space pΩ,F ,Pq. Obviously, equation (4.1) must be understood as a rough
differential equation driven by an pnˆmq-dimensional signal

`

W 1pωq, ¨ ¨ ¨ ,Wnpωq
˘

,

and with
`

X1pωq, ¨ ¨ ¨ , Xnpωq
˘

as pn ˆ dq-dimensional output. This requires that

we lift
`

W 1pωq, ¨ ¨ ¨ ,Wnpωq
˘

into an enhanced rough set-up W pnqpωq. In order
to do so, it suffices to define the various iterated integrals. Without any loss of
generality, we can assume that, instead of

`

W 1p¨q, ¨ ¨ ¨ ,Wnp¨q
˘

, we have in fact n

independent copies
`

W ip¨q,Wip¨q
˘

1ďiďn
of the pair

`

W p¨q,Wp¨q
˘

, where Wpωq is the

iterated integral of W pωq, see Section 1 for details; and, in fact we assume that
`

Xi
0p¨q,W

ip¨q,Wip¨q
˘

1ďiďn
are n independent copies of

`

X0p¨q,W p¨q,Wp¨q
˘

. For sure,

Wipωq is understood as the iterated integral of W ipωq. However, this does not suffice
as we also need to define the iterated integrals of W jpωq with respect to W ipωq, for
j ­“ i. We do so under the additional assumption that W is a strong set-up, namely
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under the assumption that there is a measurable map giving Wi,jpωq from W ipωq
and W jpωq,

Wi,jpωq “ I
`

W ipωq,W jpωq
˘

, i ­“ j,

see Definition 18. If we require Pb2
`

tpω, ω1q : }WKKpω, ω1q}r0,T s,p{2´var ă 8u
˘

in
Definition 18, then it is pretty clear that, for almost every ω P Ω,

W pnqpωq “
´

`

W ipωq
˘

1ďiďn
,
`

Wi,jpωq
˘

1ďi,jďn

¯

“:
´

W pnqpωq,Wpnqpωq
¯

,

is a rough path, with the convention that Wi,ipωq “ Wipωq, for i P t1, ¨ ¨ ¨ , nu. As
explained in Proposition 4, we may change the definition of the whole collection
`

pW ipωqq1ďiďn, pWi,jpωqq1ďi,jďn
˘

on a P-null set so that W pnq is in fact a rough
path for any ω P Ω.

‚ The striking fact of the analysis was already noticed by Cass and Lyons in their
seminal work [12]. The quantity Wpnqpωq may be seen as a rough set-up defined on a
finite probability space for any fixed ω P Ω; we call it the empirical rough set-up. To
make it clear, observe that, throughout Section 1, the rough structure is supported
by the probability space pΩ,F ,Pq itself. Here, ω is fixed, and we see the probability
space as

˜

 

1, ¨ ¨ ¨ , n
(

,P
` 

1, ¨ ¨ ¨ , n
(˘

,
1

n

n
ÿ

i“1

δi

¸

,

where Ppt1, ¨ ¨ ¨ , nuq denotes the collection of subsets of t1, ¨ ¨ ¨ , nu. The reader may
object that such a probability space is not atomless whilst we explicitly assumed
pΩ,F ,Pq to be atomless in the introduction; actually, the reader must realize that, in
the paper, the atomless property is just used to guarantee that, for any probability
measure µ on a given Polish space S, the probability space pΩ,F ,Pq carries an
S-valued random variable with µ as distribution. So, it is not a hindrance that
t1, ¨ ¨ ¨ , nu is finite. Hence, in comparison, with (1.3), the role played by ω P Ω is
played by i P t1, ¨ ¨ ¨ , nu and the matrix (1.3) must read

˜

Wi,i
s,tpωq Wi,‚

s,tpωq

W‚,i
s,tpωq W‚,‚

s,t pωq

¸

0ďsďtďT

, (4.2)

where Wi,‚
s,tpωq is understood as t1, ¨ ¨ ¨ , nu Q j ÞÑ Wi,j

s,tpωq, W‚,i
s,tpωq as t1, ¨ ¨ ¨ , nu Q

j ÞÑ Wj,i
s,tpωq and W‚,‚

s,t pωq as t1, ¨ ¨ ¨ , nu Q pi, jq ÞÑ Wi,j
s,tpωq.

In the same spirit, the variation function v in (1.7) is

vi,nps, t, ωq :“
›

›W ipωq
›

›

p

rs,ts,p´var
` pnq

v

W ‚pωq
wp

q;rs,ts,p´var

`
›

›Wipωq
›

›

p{2

rs,ts,p{2´var
` pnq

v

Wi,‚pωq
wp{2

q;rs,ts,p{2´var

` pnq
v

W‚,ipωq
wp{2

q;rs,ts,p{2´var
` pnq

vv

W‚,‚pωq
wwp{2

q;rs,ts,p{2´var
,

(4.3)

where we used the notations

pnqpX‚qq “

ˆ

1

n

n
ÿ

j“1

|Xj |q
˙1{q

, pnqppX‚,‚qqq “

ˆ

1

n2

n
ÿ

j,k“1

|Xj,k|q
˙1{q

,

the corresponding p-variation being defined as in (1.5) and (1.6). In order to check

that W pnqpωq defines a rough set-up, it remains to check that it satisfies (1.8).
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To do so, we now let

›

›W ipωq
›

›

rs,ts,p1{pq´Hölder
“ sup
rs1,t1sĂrs,ts

|W i
t1pωq ´W

i
s1pωq|

|t1 ´ s1|1{p

›

›Wipωq
›

›

rs,ts,p2{pq´Hölder
“ sup
rs1,t1sĂrs,ts

|Wi
s1,t1pωq|

|t1 ´ s1|2{p
,

›

›Wi,jpωq
›

›

rs,ts,p2{pq´Hölder
“ sup
rs1,t1sĂrs,ts

|Wi,j
s1,t1pωq|

|t1 ´ s1|2{p
,

stand for the standard Hölder semi-norms of the rough path, see e.g. Theorem 11.9
in [25]. Then, we can find a universal positive constant c such that

vi,np ps, t, ωq ď c
!

›

›W ipωq
›

›

p

rs,ts,p1{pq´Hölder
`
›

›Wipωq
›

›

p{2

rs,ts,p2{pq´Hölder

` pnq
v
›

›W ‚pωq
›

›

p

rs,ts,p1{pq´Hölder

w

q

` pnq
v
›

›Wi,‚pωq
›

›

p{2

rs,ts,p2{pq´Hölder

w

q

` pnq
v›

›W‚,ipωq
›

›

p{2

rs,ts,p2{pq´Hölder

w

q

` pnq
vv›

›W‚,‚pωq
›

›

p{2

rs,ts,p2{pq´Hölder

ww

q

)

pt´ sq.

(4.4)

Taking the empirical mean over i P t1, ¨ ¨ ¨ , nu and invoking the law of large numbers,
we deduce that, for almost every ω P Ω,

lim sup
ně1

sup
0ďsătďT

pnq
v

v‚,np ps, t, ωq
w

q

t´ s

ď cE
”

›

›W p¨q
›

›

pq

r0,T s,p1{pq´Hölder
`
›

›Wp¨q
›

›

pq{2

r0,T s,p2{pq´Hölder

`
›

›WKKp¨, ¨q
›

›

pq{2

r0,T s,p2{pq´Hölder

ı1{q
,

(4.5)

for a new value of the constant c. Observe that, in order to derive (4.5), the law of
large numbers can be directly applied to each of the first five terms in the right-hand
side of (4.4), since each of them can be put in the form J

`

W ipωq
˘

, for a suitable
form of the functional J . Differently, the last term in (4.4) requires a modicum of
care as it reads

1

n2

n
ÿ

j,k“1

J
`

W jpωq,W kpωq
˘

. (4.6)

Still, we let the reader check that, provided that the summand in the above right-
hand side is integrable, the limit is ErJ pW jp¨q,W kp¨qqs. Hence (4.5). Now, if the
right-hand side of (4.5) is finite, then

sup
ně1

sup
0ďsătďT

pnq
v

v‚,np ps, t, ωq
w

q

t´ s
ă 8,

which guarantees that the 1-variation in the mean in (1.8) is uniformly controlled
in n ě 1, the mean therein being understood as the mean on the probability space
`

t1, ¨ ¨ ¨ , nu,Ppt1, ¨ ¨ ¨ , nuq, 1
n

řn
i“1 δi

˘

. Here are two examples under which the above
assumption holds true.
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Example 1 – Assume that the index q used in (1.7) satisfies the inequality

q ą
1

1´ p{3
,

and that, for some constant KT ě 0, xvps, t, ¨qyq ď KT pt´ sq for ps, tq P ST2 . Then,
we get the bounds

E
“

|pWt ´Wsqp¨q|
pq
‰

ď KT |t´ s|
q,

E
“

|Ws,tp¨q|
pq{2

‰

ď KT |t´ s|
q,

Eb2
”

|WKK
s,tp¨, ¨q|

pq{2
ı

ď KT |t´ s|
q.

(We write here and below Eb2 for the expectation operator with respect to Pb2.)
By Kolmogorov’s criterion for rough paths, Theorem 3.1 in [25], we deduce that W
has paths that are p1´ 1{qq{p ą 1{3-Hölder continuous. Similarly, W and WKK have
paths that are 2p1´ 1{qq{p ą 2{3-Hölder continuous and

Eb2
”

›

›W p¨q
›

›

pq

r0,T s,p1{p1q´Hölder
`
›

›Wp¨q
›

›

pq{2

r0,T s,p2{p1q´Hölder
`
›

›WKKp¨, ¨q
›

›

pq{2

r0,T s,p2{p1q´Hölder

ı

ă 8.

So, the empirical rough set-up satisfies the required conditions provided we replace
p by p1 and xvps, t, ¨qyqp1{p ď KT pt´ sq, for all ps, tq P ST2 .

Example 2 – Another instance is given by Example 5. With the same notation
as therein, }W p¨q}r0,T s,p1{pq´Hölder has Gaussian tails and }Wp¨q

›

›

r0,T s,p2{pq´Hölder
and

}WKKp¨, ¨q
›

›

r0,T s,p2{pq´Hölder
have exponential tails; see Theorem 11.9 in [25]. This

suffices to conclude.

‚ Now that we have defined the empirical rough set-up, we must make clear the
meaning given to the rough differential equation (0.2) in Definition 12 when the
rough set-up therein is precisely the empirical rough set-up. We call the correspond-
ing rough differential equation the empirical rough differential equation.

For a given ω P Ω, the probability space that carries the empirical rough-set up
is

`

t1, ¨ ¨ ¨ , nu,Ppt1, ¨ ¨ ¨ , nu, 1
n

řn
i“1 δi

˘

. Despite the fact it is not atomless, whilst
pΩ,F ,Pq is, Theorem 16 applies and guarantees existence and uniqueness of a solu-
tion to the empirical rough differential equation must. In this regard, observe that
the square integrability requirement on the initial condition takes the simple form

1

n

n
ÿ

i“1

|Xi
0pωq|

2 ă 8,

which is obviously satisfied (at least for ω in a full event). The solution reads in

the form of a n-tuple Xpnqpωq “ pXipωqq1ďiďn in Cpr0, T s; Rdqn. Each Xipωq is con-
trolled, in standard Gubinelli’s sense, by the enhanced rough path

`

W ipωq,Wipωq
˘

.

The coefficient driving the equation for Xipωq reads

F
´

Xi
tpωq, X

θnp¨q
t pωq

¯

, t P r0, T s,

where θnp¨q is a uniformly distributed random variable on the probability space
`

t1, ¨ ¨ ¨ , nu,Ppt1, ¨ ¨ ¨ , nu, 1
n

řn
i“1 δi

˘

. Here the dot in the notation X
θnp¨q
t pωq refers

to the current element in t1, ¨ ¨ ¨ , nu. As a result, the law of X
θnp¨q
t pωq must be

understood as the empirical distribution µnt pωq.



60

The key fact in our analysis lies in the interpretation of the two Gubinelli deriva-
tives δxrFpX

ipωq, Xθnp¨qpωqqs and δµrFpX
ipωq, Xθnp¨qpωqqs in Proposition 11. First,

it is elementary to check that

δx

´

F
`

Xipωq, Xθnp¨qpωq
˘

¯

t
“ BxF

`

Xi
tpωq, X

θnp¨q
t pωq

˘

δxX
i
tpωq

“ BxF
`

Xi
tpωq, µ

n
t pωq

˘

δxX
i
tpωq,

(4.7)

where δxX
ipωq is the standard derivative of Xipωq with respect to

`

W ipωq,Wipωq
˘

.
More interestingly, we have

δµ

´

F
`

Xipωq, Xθnp¨qpωq
˘

¯

t
“ DµF

`

Xi
tpωq, µ

n
t pωq

˘`

X
θnp¨q
t pωq

˘

δxX
θnp¨q
t pωq, (4.8)

and the right-hand side may identified with an n-tuple
´

DµF
`

Xi
tpωq, µ

n
t pωq

˘

pXj
t pωqqδxX

j
t pωq

¯

1ďjďn
.

So, we get

δµ

´

F
`

Xipωq, Xθnp¨qpωq
˘

¯

t
“

1

n

n
ÿ

j“1

DµF
`

Xj
t pωq, µ

n
t

˘`

Xj
t pωq

˘

δxX
j
t pωq.

This shows that the integral
ż t

0
F
´

Xi
spωq, X

θnp¨q
s pωq

¯

dW pnq
s pωq

is the limit of the compensated Riemann sums

K´1
ÿ

k“0

ˆ

F
`

Xi
tk
pωq, X

θnp¨q
tk

pωq
˘

W i
tk,tk`1

pωq

` BxF
`

Xi
tk
pωq, X

θnp¨q
tk

pωq
˘

F
`

Xi
tk
pωq, X

θnp¨q
tk

pωq
˘

Wi
tk,tk`1

pωq

`
1

n

n
ÿ

j“1

DµF
`

Xj
tk
pωq, µnt pωq

˘

pXj
tk
pωqqF

`

Xj
tk
pωq, X

θnp¨q
tk

pωq
˘

Wi,j
tk,tk`1

pωq

˙

,

(4.9)

as the mesh of the dissection 0 “ t0 ă ¨ ¨ ¨ ă tK “ t tends to 0. This al-
lows to compare the latter quantity with (4.1) if we intepret the integral with

respect to W ipωq as a rough integral with respect to W pnqpωq, and consider the
leading coefficient FpXi

tpωq, µ
n
t pωqq as a standard Euclidean function of the tuple

X
pnq
t pωq “

`

X1
t pωq, ¨ ¨ ¨ , X

n
t pωq

˘

and if we understand the integral therein as the

integral with respect to the rough driver W pnqpωq. Indeed, under the standing
Regularity assumptions 1 and 2, the function

f i : pRdqn Q
`

x1, ¨ ¨ ¨ , xn
˘

ÞÑ F

˜

xi,
1

n

n
ÿ

k“1

xk

¸

is C2 with Lipschitz derivatives and

Bxjf
i
`

x1, ¨ ¨ ¨ , xn
˘

“
1

n
DµF

˜

xi,
1

n

n
ÿ

k“1

xk

¸

pxjq,

for j ­“ i, and

Bxif
i
`

x1, ¨ ¨ ¨ , xn
˘

“ BxF

˜

xi,
1

n

n
ÿ

`“1

x`

¸

`
1

n
DµF

˜

xi,
1

n

n
ÿ

k“1

xk

¸

pxiq;
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see Chapter 5 in [9]. Therefore, (4.1) is uniquely solvable in the classical sense and
the above formulas for the derivatives show that the rough integral therein may be
approximated by the same Riemann sum as in (4.9). This proves that the solution
to (4.1), when the latter is understood as a rough differential equation driven by
the enhanced setting above pW 1pωq, ¨ ¨ ¨ ,Wnpωqq, coincides with the solution of the
empirical version of (0.2), when the latter is understood as a mean field rough
differential equation driven by the empirical rough set up.

4.2 – Propagation of Chaos

We now have all the ingredients to prove that the solution to (4.1) converges,
in some sense, to the solution of the rough mean field equation (0.2) when the
rough set-up is interpreted as originally explained in Section 1. This should read as
propagation of chaos. The statement takes the following form.

22. Theorem – On top of the assumptions of Theorem 16, assume that the rough
set-up W is strong. Assume also that

‚ there exists a real ε1 ą 0 such that

E
”

exp
´

›

›W p¨q}ε1
r0,T s,p1{pq´Hölder

¯ı

` E
”

exp
´

›

›Wp¨q}ε1{2
r0,T s,p2{pq´Hölder

¯ı

` Eb2
”

exp
´

›

›WKKp¨, ¨q}
ε1{2
r0,T s,p2{pq´Hölder

¯ı

ă 8.

‚ for almost every ω P Ω, for any α ą 0, there exists a constant ε2 ą 0 such
that, for all n ě 1,

sup
ně1

1

n

n
ÿ

i“1

exp
´

N i,np0, T, ω, αq1`ε2
¯

ă 8,

where N i,np0, T, ω, αq is defined as the local accumulation

N i,npr0, T s, ω, αq :“ N$pr0, T s, αq,

when $ps, tq “ vi,np ps, t, ωq, see (1.13).

Then, for almost every ω P Ω,

1

n

n
ÿ

i“1

δXi,pnqpωq Ñ L
`

Xp¨q
˘

,

where Xpnqpωq is the solution to (4.1) and Xp¨q is the solution to (0.2), the conver-
gence being the convergence in law on C

`

r0, T s; Rd
˘

. Moreover, for any fixed k ě 1,

the law of
`

X1,pnqp¨q, ¨ ¨ ¨ , Xk,pnqp¨q
˘

:“ Xpnqp¨q converges to L
`

Xp¨q
˘bk

.

Strangely enough, and somewhat disappointingly, we did not manage to provide a
generic simple condition on the limiting set-up W that forces the empirical set-ups
to satisfy the estimate of the second item in the assumptions right above. Still, as
pointed out in Theorem 23 below, we can check by hand that this condition is indeed
satisfied in the Gaussian case, see Example 5 and the subsequent Theorem 6, which
serve us as a benchmark throughout the article. The main difficulty in proving
Theorem 22 is in controlling the accumulated local variation of the empirical rough
set-up.
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Proof – The key tool for passing to the limit is the continuity Theorem 20. To

make the notations clear, we write X
i,pnq
0 for Xi, W i,pnq for W i, Wi,pnq for Wi and

Wi,j,pnq for Wi,j .

Step 1. As a starting point, observe that, from the law of large numbers, for any
real-valued bounded and measurable function f on

Rd ˆ Cp´var

`

r0, T s; Rm
˘

ˆ

!

C2
p{2´var

`

ST2 ; Rm b Rm
˘

)2
,

for almost every ω P Ω, we have (see (4.6))

lim
nÑ8

1

n2

n
ÿ

i,j“1

f
´

X
i,pnq
0 pωq,W i,pnqpωq,Wi,pnqpωq,Wi,j,pnqpωq

¯

“ E
”

f
`

X0p¨q,W p¨q,Wp¨q,W
KKp¨, ¨q

˘

ı

.

In fact, for p1 ą p, the spaces Cp´varpr0, T s; Rmq and Cp{2´varpST2 ; RmbRmq embed in

Polish subspaces C0
p1´varpr0, T s; Rmq and C0

p1{2´varpS
T
2 ; RmbRmq of Cp1´varpr0, T s; Rmq

and Cp1{2´varpST2 ; RmbRmq, respectively; see for instance [27, Proposition 5.38]. The
above is true for any real-valued bounded and continuous function f on

Rd ˆ C0
p´var

`

r0, T s; Rm
˘

ˆ
 

C0
p{2´varpS

T
2 ; Rm b Rmq

(2
.

By choosing f in a countable convergence determining class, we deduce that, there
exists a full subset E Ă Ω, whose precise definition may change from line to line as
long as E remains of probability 1, and such that, for any ω P E, the sequence of
probability measures

πnpωq “

˜

1

n2

n
ÿ

i,j“1

δ
pX

i,pnq
0 pωq,W i,pnqpωq,Wi,pnqpωq,Wi,j,pnqpωqq

¸

ně1

converges in the weak sense to pX0p¨q,W p¨q,Wp¨q,WKKp¨, ¨qq on Rd ˆ C
`

r0, T s; Rm
˘

ˆ
 

CpST2 ; Rm b Rmq
(2

.

Step 2. Our strategy now relies on Theorem 20. The third item in the statement is
a consequence of the law of large numbers. As for the fourth item, it follows directly
from the previous strep.

We now have a look at vi,np ps, t, ωq in (4.3). We already know that

lim sup
ně1

sup
0ďsătďT

pnq
v

v‚,np ps, t, ωq
w

2pq

t´ s

ď cE
”

›

›W p¨q
›

›

pq

r0,T s,p1{pq´Hölder
`
›

›Wp¨q
›

›

pq

r0,T s,p2{pq´Hölder

`
›

›WKKp¨, ¨q
›

›

pq

r0,T s,p2{pq´Hölder

ı1{q
,

which proves the second item in the statement of Theorem 20. We end up with the
proof of the first item. By (4.4), there exists a constant c1 such that, for any ε ą 0,
the quantity

sup
ně1

pnq
$

%exp
`

rv‚,np p0, T, ωqsε
˘

,

-

1
(4.10)
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is finite if

sup
ně1

1

n

n
ÿ

i“1

exp
´

›

›W ipωq
›

›

c1pε

r0,T s,p1{pq´Hölder

¯

ă 8,

sup
ně1

1

n

n
ÿ

i“1

exp
´

›

›Wipωq
›

›

c1pε{2

r0,T s,p2{pq´Hölder

¯

ă 8,

sup
ně1

1

n

n
ÿ

i“1

exp
´

pnq
$

%

›

›W‚,ipωq
›

›

p{2

r0,T s,p2{pq´Hölder

,

-

c1ε

q

¯

ă 8,

sup
ně1

1

n

n
ÿ

i“1

exp
´

pnq
$

%

›

›W‚,ipωq
›

›

p{2

r0,T s,p2{pq´Hölder

,

-

c1ε

q

¯

ă 8.

By the law of large numbers, the first two lines hold true on a full event if c1pε ă ε1.
As for the third and fourth lines, we use the following trick. Notice that the function

p0,`8q Q x ÞÑ exp
`

xc
1ε{q

˘

, (4.11)

is convex on rAε,8q, for some Aε ą 0. Therefore, Jensen’s inequality says that, in
order to check the third line, it suffices to prove that

sup
ně1

1

n2

n
ÿ

i,j“1

exp
”´

Ac
1ε{q
ε _

›

›Wi,jpωq
›

›

c1pε{2

r0,T s,p2{pq´Hölder

¯ı

ă 8, (4.12)

and similarly for the last line. Obviously, under the standing assumption, the latter
holds true with probability 1 provided that c1pε ă ε1. This proves (4.10). In the
statement of Theorem 20, this proves the condition related to the tails of wn by a
standard application of Markov inequality.

The bound on the local accumulation in the first item of Theorem 4.10 is a conse-
quence of the second item in the standing assumption. Indeed, we let the reader
check that it suffices to work with the local accumulation associated with vn instead
of the local accumulation associated with wn, see if needed the inequality (A.1) in
Appendix.

Step 3. Theorem 20 says that, for a fixed ω P E, the solutions associated with
the rough set-ups

`

W pnqpωq
˘

ně1
converge in law to the solution associated with the

limiting rough set-up, i.e., the empirical law of the solutions associated with the
`

W pnq
˘

ně1
converges to the law of the solution of the mean field equation, which is

exactly to say that, for any ω P E,

1

n

n
ÿ

i“1

δXi,pnqpωq Ñ L
`

Xp¨q
˘

,

where Xp¨q is the solution to (0.2). Here, the convergence is the convergence in law
on Cpr0, T s; Rdq. By Proposition 2.2 in [38], we deduce that, for any fixed k ě 1, the

law of
`

X1,pnq, ¨ ¨ ¨ , Xk,pnq
˘

converges to L
`

Xp¨q
˘bk

. B

As an example of application, we have the following statement, proved in Appen-
dix A.2.

23. Theorem – Let W be a continuous centered Gaussian process, defined over some
finite interval r0, T s. Assume it has independent components. Suppose that the
covariance function is of finite %-two dimensional variation for some % P r1, 3{2q.
Then, for p P p2%, 3q, the conditions of Theorem 22 are satisfied.
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4.3 – Rate of Convergence

The goal of this subsection is to elucidate the rate of convergence in the conver-
gence result stated in Theorem 22. Note the use of the Wasserstein W1-distance in
the regularity assumption required from F in the statement.

24. Theorem – On top of the assumption of Theorem 22, assume that

‚ The first and second order derivatives of F, px, µq ÞÑ BxFpx, µq, px, µ, zq ÞÑ
DµFpx, µqpzq, px, µ, zq ÞÑ BxDµFpx, µ, zq and px, µ, z, z1q ÞÑ D2

µFpx, µ, z, z1q,
are bounded on the whole space and are Lipschitz continuous with respect to
all the variables, the Lipschitz property in the direction µ being understood
with respect to the W1-Wasserstein distance;

‚ for any α ą 0, there exists a constant ε2 ą 0 such that, for any n ě 1,
for any p1 P p1{3, 1{pq, and any random variables �, �1 : Ω Ñ r0, T s, with
Pp� ă �1q “ 1, we have

sup
ně1

sup
1ďiďn

E

»

–exp

„

˜

pN i,n
`

r�, �1s, ω, α
˘

�1 ´ �

¸1`ε2
fi

fl ă 8,

where pN i,n
`

r�, �1s, ω, α
˘

is defined as the local accumulation

pN i,n
`

r�, �1s, ω, α
˘

:“ N$

`

r�, �1s, α
˘

when $ “ pwi,np1 with

pwi,np1 ps, t, ωq :“ wi,np1 ps, t, ωq ` pvi,np1 ps, t, ωq `
pnq
v

pv‚,np1 pωq
w

q;rs,ts,1´var
` pt´ sq,

wi,np1 ps, t, ωq :“ vi,np1 ps, t, ωq `
pnq
v

v‚,np1 pωq
w

q;rs,ts,1´var
,

pvi,np1 ps, t, ωq “
@

Wi,KKpω, ¨q
Dp1{2

q;rs,ts,p1{2´var
`
@

Wi,KKp¨, ωq
Dp1{2

q;rs,ts,p1{2´var
.

(4.13)

Then, for any r ě 1, there exists an exponent qprq ě 8 such that, if q ě qprq, with

q as in Section 1, and X0p¨q is in Lqprq, then

sup
1ďiďn

E

„

sup
0ďtďT

ˇ

ˇX
i
t ´X

i,pnq
t

ˇ

ˇ

r
1{r

ď Cηn,

for a constant C independent of n, and ηn “ n´1{2 if d “ 1, ηn “ n´1{2 lnp1` nq if

d “ 2 and ηn “ n´1{d if d ě 3.

Let us make a few remarks on this statement before embarking on its proof.

‚ We refer to [9, Chapter 5] for examples of a function F satisfying the first
item in the assumptions of the statement.

‚ The rate which is obtained corresponds to the usual rate for the convergence
in the 1-Wasserstein distance of an empirical sample of independent, identi-
cally distributed, random variables toward the limiting common distribution.

‚ As before, Theorem 24 applies when W is a continuous centered Gaussian
process defined over some finite interval r0, T s with independent components
and with a covariance function that is of finite %-two dimensional variation for
some % P r1, 3{2q, see Theorem 22. The proof is pretty similar to that of Theo-
rem 22 given in Appendix. In order to check the second item in the statement,
the trick is to notice that all the bounds we have for the local accumulation
on r0, T s depend linearly on T . Put differently, we can provide bounds for
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quantities of the form N$pr0, T s, ¨, αq{T , where $ denotes the corresponding
function in hand. In order to do so, we can treat separately the local accumu-

lation associated to each of the terms entering the definition of pwi,np1 , see (A.1).

As for vi,np1 , the computations fit exactly those performed in the proof of The-

orem 22. As for v̂i,np1 , the proof derives from Theorem 6. In order to handle

the local accumulations associated to ST2 Q ps, tq ÞÑ pnq
vv

v‚,np1 pωq
ww

q;rs,ts,1´var

and ST2 Q ps, tq ÞÑ pnq
vv

pv‚,np1 pωq
ww

q;rs,ts,1´var
, it is necessary to slightly adapt

the proof of Theorem 22; the arguments are left to the reader. For sure, the

local accumulation associated to the additional t´ s in pwi,np1 ps, t, ωq is easily

taken.

‚ By inspecting the proof of the theorem, we could make explicit the value of
qprq, but we feel that it would not be so useful.

Proof – The proof consists in a variation of Sznitman’s original coupling argument,
see [38]. To do so, we recall that, on the probability space pΩ,F ,Pq, the pairs
`

W 1p¨q,W1p¨q
˘

, ¨ ¨ ¨ ,
`

Wnp¨q,Wnp¨q
˘

are n independent copies of
`

W p¨q,Wp¨q
˘

. For

each i P t1, ¨ ¨ ¨ , nu, the pair
`

W ip¨q,Wip¨q
˘

is completed into a rough set-up W
i
p¨q :“

`

W ip¨q,Wip¨q,Wi,KKp¨, ¨q
˘

, with

Wi,KKpω, ω1q “ I
`

W ipωq,W ipω1q
˘

, pω, ω1q P Ω2.

Here we put a bar on the symbol W
i

in order to distinguish it from the finite-
dimensional rough set-up W pnqpωq that lies above

`

W 1pωq, ¨ ¨ ¨ ,Wnpωq
˘

. The second-

order level of W pnq is made of pWiq1ďiďn and of
`

Wi,j “ IpW i,W jq
˘

1ďi ­“jďn
, see

(4.2). To make the notations more homogeneous, we write W i,ipωq for W ipωq.

We also consider n independent copies
`

X1
0 p¨q, ¨ ¨ ¨ , X

n
0 p¨q

˘

of the initial condition

X0p¨q, the two n-tuples
`

W
1
p¨q, ¨ ¨ ¨ ,W

n
p¨q

˘

and
`

X1
0 p¨q, ¨ ¨ ¨ , X

n
0 p¨q

˘

being assumed

to be independent. With each pXi
0p¨q,W

i
p¨qq, we associate the corresponding so-

lution X
i
p¨q to the mean field equation (0.2). Of course, the n-tuples Ω Q ω ÞÑ

`

Xi
0pωq,W

ipωq,Wipωq,Wi,KKp¨, ωq, X
i
pωq

˘

1ďiďn
are independent, where Ω Q ω ÞÑ

`

Wi,KK
t p¨, ωq

˘

0ďtďT
is considered as a process with values in LqpΩ,F ,P; Rdq. We then

let

µnt pωq “
1

n

n
ÿ

i“1

δ
X
i
tpωq

, t P r0, T s, ω P Ω.

Observe that, for each i P t1, ¨ ¨ ¨ , nu and any ω P Ω, we can define the integral
process

ˆ
ż t

0
F
`

X
i
spωq, µ

n
s pωq

˘

dW i,pnq
s pωq

˙

0ďtďT

,

where the label i in the notation W i,pnqpωq is here to indicate that the integral only

involves
`

W ipωq, pWj,ipωqq1ďjďn
˘

. So, the symbol W i,pnqpωq must be understood as
`

W ipωq, pWj,ipωqq1ďjďn
˘

. The fact that the integral may be defined with respect to
`

W ipωq, pWj,ipωqq1ďjďn
˘

follows from the fact that X
j
pωq, for each j P t1, ¨ ¨ ¨ , nu

and each ω P Ω, is controlled by the variations of the sole W jpωq.
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Step 1. The first step is to compare
ż t

0
F
`

X
i
spωq,LpXsq

˘

dW
i
spωq and

ż t

0
F
`

X
i
spωq, µ

n
s pωq

˘

dW i,pnq
s pωq,

for t P r0, T s. What makes the proof non-trivial is the fact that the rough set-ups
used in the first and the second integrals are not the same. So, in order to compare
the two of them, we need to come back to the original constructions of the two
integrals. To simplify notations, and for 0 ď t ď T , set

F
i
tpωq :“ F

`

X
i
tpωq,LpXtq

˘

and
F i,nt pωq :“ F

`

X
i
tpωq, µ

n
t pωq

˘

.

For sure,
`

F
i
tpωq

˘

0ďtďT
is ω-controlled by W

i
pωq and the collection indexed by

ω P Ω is a random path controlled by W
i
, see Definition 8 for a reminder. The

corresponding Gubinelli derivatives are denoted by
`

δxF
i
tpωq, δµF

i
tpω, ¨q

˘

0ďtďT
, see

Proposition 11. Similarly, pF i,nt pωqq0ďtďT is controlled by W i,pnqpωq and Gubinelli

derivatives are denoted by
`

δxF
i,n
t pωq,

`

δµF
i,j,n
t pωq

˘

1ďjďn

˘

0ďtďT
, see Subsection 4.1.

To make it clear, set

δxF
i
tpωq :“ BxF

´

X
i
tpωq,LpXtq

¯

F
`

X
i
tpωq,LpXtq

˘

,

δµF
i
tpω, ¨q :“ DµF

´

X
i
tpωq,LpXtq

¯

`

Xtp¨q
˘

F
`

Xtp¨q,LpXtq
˘

,
(4.14)

where Xp¨q is the solution to the mean field equation (0.2) when driven by W p¨q “
`

W p¨q,Wp¨q,WKKp¨, ¨q
˘

. We also let

δxF
i,n
t pωq :“ BxF

`

X
i
tpωq, µ

n
t pωq

˘

F
`

X
i
tpωq, µ

n
t pωq

˘

,

δµF
i,j,n
t pωq :“ DµF

`

X
i
tpωq, µ

n
t pωq

˘`

X
j
t pωq

˘

F
`

X
j
t pωq, µ

n
t pωq

˘

.
(4.15)

Given these definitions, and for a subdivision ∆ “ ts “ t0 ă t1 ă ¨ ¨ ¨ ă tK “ tu, set

Ii,∆s,t pωq :“
K´1
ÿ

k“0

!

F
i
tk
pωqW i

tk,tk`1
pωq ` δxF

i
tk
pωqWi

tk,tk`1
pωq

` E
“

δµF
i
tk
pω, ¨qWi,KK

tk,tk`1
p¨, ωq

‰

)

,

Ii,n,∆s,t pωq :“
K´1
ÿ

k“0

!

F i,ntk pωqW
i
tk,tk`1

pωq ` δxF
i,n
tk
pωqWi

tk,tk`1
pωq

`
1

n

n
ÿ

j“1

δµF
i,j,n
tk

pωqWj,i
tk,tk`1

pωq
)

.

We denote the summand in the first sum by Ii,Bttk,tk`1u
pωq and the summand in the

second sum by Ii,n,B
ttk,tk`1u

pωq. By Lemma 25 proved in Appendix A.3, we can find,

for any % ě 8, a constant C and an exponent %1 ě q independent of n and K such
that, when X0p¨q P L%

1

, it holds for any k P t1, ¨ ¨ ¨ ,K ´ 1u,
A!

Ii,n,∆s,t p¨q ´ Ii,n,∆
1

s,t p¨q

)

´

!

Ii,∆s,t p¨q ´ Ii,∆
1

s,t p¨q

)E

%
ď Cηn⟪w`ptk´1, tk`1, ¨, ¨q⟫3{p

%1
,

where
∆1 :“ ∆zttku



67

and

w`ps, t, ω, ω1q :“ wps, t, ωq ` }WKKpω, ω1q}
p{2
rs,ts,p{2´var.

Following (4.4), we know that the right hand side is less than

Cηn

”

@

}W p¨q}r0,T s,p1{pq´Hölder

D

p%1
`
@

}Wp¨q
›

›

r0,T s,p2{pq´Hölder

D1{2

p%1

` ⟪}WKKp¨, ¨q
›

›

r0,T s,p2{pq´Hölder
⟫1{2

p%1

ı3
ptk`1 ´ tkq

3{p,

but by assumption all the expectations are finite. Now we can choose tk such that
|tk`1 ´ tk| ď 2|t´ s|{K. We get

A!

Ii,n,∆s,t p¨q ´ Ii,n,∆
1

s,t p¨q

)

´

!

Ii,∆s,t p¨q ´ Ii,∆
1

s,t p¨q

)E

%
ď Cηn

´2pt´ sq

K

¯3{p
,

the constant C being allowed to increase from line to line as long as it remains
independent of n and K. Letting tp1q “ tk and applying iteratively the above bound
to a sequence of meshes of the form ∆zttp1qu, ∆zttp1q, tp2qu, . . . , and then letting K
tend to 8, we deduce that

B
ż t

s
F i,nr p¨qdW i,pnq

r p¨q ´

ż t

s
F
i
rp¨qdW

i
rp¨q ´

!

Ii,n,B
ts,tu ´ Ii,Bts,tu

)

F

%

ď Cηnpt´ sq
3{p.

(4.16)

By a straightforward adaptation of the first two steps in the proof of Lemma 25, we
have in a similar way

A

Ii,n,B
ts,tu ´ Ii,Bts,tu

E

%
ď Cηnpt´ sq

1{p,

from which we deduce that
A

ż t

s
F i,nr p¨qdW i,pnq

r p¨q ´

ż t

s
F
i
rp¨qdW

i
rp¨q

E

%
ď Cηnpt´ sq

1{p.

Similarly, following again the proof of the first step in the proof of Lemma 25, we
get

@“

F i,np¨q ´ F
i
p¨q

‰

s,t

D

%
ď Cηnpt´ sq

1{p,

and, noting that

R
ş

F i,ndW i,pnq

s,t pωq

“

ż t

s
F i,nr pωqdW i,pnq

r pωq ´ Ii,n,Bs,t pωq ` δxF
i,n
s pωqWi

s,tpωq `
1

n

n
ÿ

j“1

δµF
i,j,n
s pωqWj,i

s,tpωq,

R
ş

F
i
dW

i

s,t pωq

“

ż t

s
F
i
rpωqdW

i
rpωq ´ Ii,Bs,tpωq ` δxF

i
spωqW

i
s,tpωq ` E

“

δµF
i
spω, ¨qW

i,KK
s,t p¨, ωq

‰

,

we deduce in a similar manner, using in addition (4.16), that
A

R
ş

F i,ndW i,pnq

s,t p¨q ´R
ş

F
i
dW

i

s,t p¨q

E

%
ď Cηnpt´ sq

2{p.

So, fixing i P t1, ¨ ¨ ¨ , nu, choosing % large enough and applying a suitable version of
Kolmogorov’s theorem (see for instance Theorem 3.1 in [25]), we can find p1 P pp, 3q
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such that
ˇ

ˇ

ˇ

ˇ

ż t

s
F i,nr pωqdW i,pnq

r ´

ż t

s
F
i
rpωqdW

i
rpωq

ˇ

ˇ

ˇ

ˇ

ď θi,npωqpt´ sq1{p
1

,

ˇ

ˇ

ˇ

”

F i,npωq ´ F
i
pωq

ı

s,t

ˇ

ˇ

ˇ
ď θi,npωqpt´ sq1{p

1

,

ˇ

ˇ

ˇ
R
ş

F i,ndW i,pnq

s,t pωq ´R
ş

F
i
dW

i

s,t pωq
ˇ

ˇ

ˇ
ď θi,npωqpt´ sq2{p

1

,

(4.17)

with xθi,np¨qy% ď Cηn, for a new value of the constant C.

Observe now that the empirical control associated with our empirical rough set-up
and with the exponent p1 reads

wi,np1 ps, t, ωq :“ vi,np1 ps, t, ωq `
pnq
vv

v‚,np1 pωq
ww

q;rs,ts,1´var
,

where we used the same notation as in (4.3). In fact, there is no loss of generality

in changing the definition of wi,np1 into

wi,np1 ps, t, ωq :“ vi,np1 ps, t, ωq `
pnq
vv

v‚,np1 pωq
ww

q;rs,ts,1´var
` pt´ sq, (4.18)

which permits to replace pt ´ sq1{p
1

by wi,np1 ps, t, ωq
1{p1 in the inequalities (4.17).

Hence,
�

�

�

�

ż ¨

0
F i,nr pωqdW i,pnq

r ´

ż ¨

0
F
i
rpωqdW

i
rpωq

�

�

�

�

r0,T s,wi,n
p1
,p1
ď θi,npωq.

Step 2. We now make use of Proposition 15 to compare
ż t

0
F
`

Xi,pnq
s pωq, µns pωq

˘

dW
i
spωq and

ż t

0
F
`

X
i
spωq, µ

n
s pωq

˘

dW i,pnq
s pωq,

where

µns pωq :“
1

n

n
ÿ

j“1

δ
X
j,pnq
s pωq

.

To simplify the notations, we just write Xi for Xi,pnq and W i for W i,pnq. We then
apply Proposition 15 with

`

Xpωq, Y p¨q
˘

“
`

Xipωq, X‚pωq
˘

,
`

X 1pωq, Y 1p¨q
˘

“
`

X
i
pωq, X

‚
pωq

˘

, (4.19)

the underlying set-up being understood as the empirical rough set-up for a given
realization ω. The difficulty here is that the variations of these two solutions are
controlled by two different functionals w, see (2.1). This is the rationale for intro-

ducing pwi,np1 in (4.13). Obviously, pwi,np¨, ¨, ωq (we remove the index p1 for simplicity)

is not the natural control functional associated with W ipωq, but it is greater than

wi,np1 ps, t, ωq and it satisfies

pnq
v

pw‚,nps, t, ωq
w

q
ď 2 pwi,nps, t, ωq,

which suffices to duplicate the proof of Proposition 15 with wi,np1 ps, t, ωq replaced by

pwi,nps, t, ωq. The resulting semi-norm that must be used to control the difference
`

Xpωq´X 1pωq, Y p¨q´Y 1p¨q
˘

“
`

Xipωq´X
i
pωq, X‚pωq´X

‚
pωq

˘

on a given interval
rs, ts is ~ ¨ ~rs,ts, pwi,n,p1 . Of course the fact that we no longer use the natural control

functional prompts us to use the local accumulation pN i,n
`

r0, T s, ω, α
˘

defined in the
statement.
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By construction of the processes
`

Xipωq
˘

i“1,¨¨¨ ,n
as the solution of the empirical

rough equation, the pair
`

Xpωq, Y p¨q
˘

“
`

Xipωq, X‚pωq
˘

in (4.19) automatically

satisfies the first bound in (3.12) with w “ pwi,n; implicitly, this means that we per-
form the same construction as in the proof of Theorem 16 using therein the empirical
rough-set up and the control functionals

`

pwi,n
˘

i“1,¨¨¨ ,n
. In particular, the sequence

of points
`

t0` “ τ`p0, T, ω, 1{p4L0qq
˘

`“0,¨¨¨ ,N0`1
in the statement of Proposition 15

is understood as with respect to pwi,n. Also, by the last part in the statement of
Proposition 14, we know that Y p¨q “ X‚pωq satisfies condition (3.11) with respect

to pnq
v

¨
w

8
if we assume that T satisfies

pnq
$

% pN‚,n
`

r0, T s, ω, 1{p4L0q
˘

,

-

8
ď c, (4.20)

for a deterministic constant c, independent of n, L0 and T .

In fact, following (4.4) and using the additional t ´ s in the definition (4.13), pwi,n

dominates (up to a multiplicative constant) the control wi associated to W
i

through
(1.8). Moreover, we have

@

pwi,nps, t, ¨q
D

q
ď Cpt´ sq,

for a constant C independent of i, n, s and t. Although C ě 2, this permits to use

pwi,nps, t, ¨q as control functional when working with the rough set-up W
i
. This is an

important point as it says that the pair
`

X 1pωq, Y 1p¨q
˘

“
`

X
i
pωq, X

‚
pωq

˘

in (4.19)

satisfies the second bound in (3.12) with w “ pwi,n. Also, invoking the first line in

(3.4) for each i P t1, ¨ ¨ ¨ , nu, we deduce that Y 1p¨q “ X
‚
pωq satisfies condition (3.11)

with respect to pnq
v

¨
w

8
provided that that (4.20) holds true. Possibly, this requires

to work with a larger value of the threshold L0 in the statement of Proposition 15,
but this is not a hindrance.

Then, by Proposition 15, we obtain, for a given L ě L0,
�

�

�

�

ż ¨

tk

F
`

Xi
rpωq, µ

npωq
˘

dW i
rpωq ´

ż ¨

tk

F
`

X
i
rpωq, µ

npωq
˘

dW i
rpωq

�

�

�

�

rtk,tk`1s, pwi,n,p1

ď γ pwi,np0, tk, ωq
1{p1

ˆ

�

�

`

Xi ´X
i˘
pωq

�

�

r0,tks, pwi,n,p1

` pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

,

-

8

˙

`
γ

4L

ˆ

�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1
` pnq

$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rtk,tk`1s, pw‚,n,p1

,

-

,

-

8

˙

,

where pwi,nptk, tk`1, ωq
1{p1 “ 1{p4Lq as long as k ă N i,npr0, T s, ω, 1{p4Lqq. The point

now is to insert the conclusion of the first step. We get
�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1

ď γ pwi,np0, tk, ωq
1{p1

ˆ

�

�

`

Xi ´X
i˘
pωq

�

�

r0,tks, pwi,n,p1

` pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

,

-

8

˙

` θi,npωq

`
γ

4L

ˆ

�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1
` pnq

$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rtk,tk`1s, pw‚,n,p1

,

-

,

-

8

˙

.
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If γ{p4Lq ď 1{2, we get
�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1

ď 2γ
´ 1

L
` pwi,np0, tk, ωq

1{p1
¯

ˆ

�

�

`

Xi ´X
i˘
pωq

�

�

r0,tks, pwi,n,p1

` pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

,

-

8

˙

` 2θi,npωq,

(4.21)

and then, allowing the value of the constant c to increase from line to line, as long
as it remains independent of n, L0 and T , we get
�

�

`

Xi ´X
i˘
pωq

�

�

r0,tk`1s, pwi,n,p1

ď c
`

1` ζi,nT pωq
˘�

�

`

Xi ´X
i˘
pωq

�

�

r0,tks, pwi,n,p1

` c ζi,nT pωq
pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

,

-

8
` cθi,npωq,

with

ζi,nT pωq :“
1

L
` wi,np1 p0, T, ωq

1{p1 .

So, by induction,
�

�

`

Xi ´X
i˘
pωq

�

�

r0,tk`1s, pwi,n,p1

ď c
´

k
ÿ

`“0

“

c
`

1` ζi,nT pωq
˘‰`

¯

ˆ

ζi,nT pωq
pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

,

-

8
` θi,npωq

˙

.

In the end,
�

�

`

Xi ´X
i˘
pωq

�

�

r0,T s, pwi,n,p1

ď c
“

c
`

1` ζi,nT pωq
˘‰

pN i,npr0,T s,ω,1{p4Lqq`1

ˆ

ˆ

ζi,nT pωq
pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

,

-

8
` θi,npωq

˙

.

(4.22)

Hence, using the shorten notation pN i,n
T pωq for pN i,npr0, T s, ω, 1{p4Lqq, we obtain

pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

,

-

8

ď pnq
$

%

$

%

“

c2
`

1` ζ‚,nT pωq
˘‰

pN‚,nT pωq`1
ζ‚,nT pωq

,

-

,

-

8

ˆ pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

,

-

8

` pnq
$

%

$

%

“

c2
`

1` ζ‚,nT pωq
˘‰

pN‚,nT pωq`1
θ‚,npωq

,

-

,

-

8
.

(4.23)

Step 3. The key quantity of interest in (4.23) is the multiplicative factor in the
second line, which we denote by

Ψn
T pωq :“ pnq

$

%

$

%

“

c2
`

1` ζ‚,nT pωq
˘‰

pN‚,npωq`1
ζ‚,nT pωq

,

-

,

-

8
.

In particular, letting

Θn
T pωq :“ pnq

$

%

$

%

“

c2
`

1` ζ‚,nT pωq
˘‰

pN‚,npωq`1
θ‚,npωq

,

-

,

-

8
,
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we deduce from (4.23) that

pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

,

-

8

ď Ψn
T pωq

pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

,

-

8
`Θn

T pωq.
(4.24)

Here comes the key point. The variable ω being frozen, we can choose T small
enough, depending on ω, and L large enough, deterministically, such that Ψn

T pωq ď
1{2 and (4.20) holds true. The proof is made clear below. Take it for granted for a
while and deduce that

pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

,

-

8
ď c1Θnpωq,

for a new constant c1. The above inequality sounds really close to the desired result,
except for the fact that it is on a small interval r0, T s only. The purpose is thus to
iterate it in order to cover any given time interval.

Step 4. In order to iterate in a proper way, we change our notation: While we
keep T for the deterministic time horizon given in the statement, we use the latter �
instead of T in the previous analysis. Put differently, � will stand for the (random)
time horizon such that Ψ� is small enough. More precisely, we consider a random
dissection 0 “ �0 ă �1 ă ¨ ¨ ¨ ă �Λ “ T of the interval r0, T s by Λ subintervals.

We need to go back to the proof of Proposition 15. Assume indeed that we have an
estimate for

E i,n�`
pωq :“

´

1` pwi,np0, T, ωq1{p
1
¯

�

�

`

Xi ´X
i˘
pωq

�

�

r0,�`s, pwi,n,p1
,

for some ` ď Λ. Then, in order to duplicate the second step, we must consider a
new dissection �` “ t0 ă t1 ă ¨ ¨ ¨ ă tK “ �``1 of the interval r�`, �``1s with the

property that K “ pN i,n
`

r�`, �``1s, ω, 1{p4Lq
˘

`1 and that pwi,nptk, tk`1, ωq “ 1{p4Lq
if tk ă K. The key point is to apply a relevant version of (3.16), but with �` instead

of 0 as initial time. This requires a modicum of care as Xipωq and X
i
pωq do not

coincide at time �`. We let the reader adapt the proof accordingly and check that
the following holds true

�

�

�

�

ż ¨

tk

F
`

Xi
rpωq, µ

n
r pωq

˘

dW i
rpωq ´

ż ¨

tk

F
`

X
i
rpωq, µ

n
r pωq

˘

dW i
rpωq

�

�

�

�

rtk,tk`1s, pwi,n,p1

ď γ pwi,np�`, �``1, ωq
1{p1

"

�

�

`

Xi ´X
i˘
pωq

�

�

r�`,tks, pwi,n,p1

` pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r�`,�``1s, pw‚,n,p1

,

-

,

-

8

*

`
γ

4L
^ pwi,np�`, �``1, ωq

1{p1
"

�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1

` pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rtk,tk`1s, pw‚,n,p1

,

-

,

-

8

*

` γ

„

E i,n�`
pωq ` pnq

vv

E‚,n�`
pωq

ww

8



,

provided the analogue of (4.20) holds true, namely

pnq
$

%

$

% pN‚,n
`

r�`, �``1s, ω, 1{p4L0q
˘

,

-

,

-

8
ď c.
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Then, proceeding as in the second step,
�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1

ď c pwi,np�`, �``1, ωq
1{p1

"

�

�

`

Xi ´X
i˘
pωq

�

�

r�`,tks, pwi,n,p1

` pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r�`,�``1s, pw‚,n,p1

,

-

,

-

8

*

` γ

"

E i,n�`
pωq ` pnq

vv

E‚,n�`
pωq

ww

8
` θi,npωq

*

.

In the end, we are in the same situation as in (4.21), but with new ζi,nT and pN i,n
T .

Here, we let

ζi,n` pωq :“ pwi,np�`, �``1, ωq
1{p1 ,

pN i,n
` pωq :“ pN i,n

ˆ

r�`, �``1s, ω,
1

4L

˙

.

Following (4.22), we obtain
�

�

`

Xi ´X
i˘
pωq

�

�

r�`,�``1s, pwi,n,p1

ď c
“

c
`

1` ζi,n` pωq
˘‰

pN i,n
` pωq`1

ˆ

"

ζi,n` pωq
pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r�`,�``1s, pw‚,n,p1

,

-

,

-

8

` θi,npωq ` E i,n�`
` pnq

vv

E‚,n�`
pωq

ww

8

*

.

(4.25)

Hence,

pnq
$

%
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�

�

`

X‚ ´X
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pωq
�

�

r�`,�``1s, pw‚,n,p1

,

-
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-

8

ď Ψn
` pωq ˆ

pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r�`,�``1s, pw‚,n,p1

,

-

,

-

8
`Θn

` pωq,

with

Ψn
` pωq :“ pnq

$

%

$

%

“

c2
`

1` ζ‚,n` pωq
˘‰

pN‚,n` pωq`1
ζ‚,n` pωq

,

-

,

-

8
,

Θn
` pωq :“ pnq

$

%

$

%

“

c2
`

1` ζ‚,n` pωq
˘‰

pN‚,n` pωq`1
´

θ‚,npωq ` E‚,n�`
pωq ` pnq

vv

E‚,n�`
pωq

ww

8

¯,

-

,

-

8
.

If we can choose �``1 ´ �` such that Ψn
` pωq ď 1{2, then we get

pnq
$

%

$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r�`,�``1s, pw‚,n,p1

,

-

,

-

8
ď 2 Θn

` pωq.

Eventually, returning to (4.25) and modifying the value of the constant c, we deduce
�

�

`

Xi ´X
i˘
pωq

�

�

r�`,�``1s, pwi,n,p1

ď c
“

c
`

1` ζi,n` pωq
˘‰

pN i,n
` pωq`1

ˆ

ζi,n` pωqΘn
` pωq ` θ

i,npωq ` E i,n�`
` pnq

vv

E‚,n�`
pωq
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8

˙

,

and then

E i,n�``1
pωq ď κi,n` pωq

ˆ

ζi,n` pωqΘn
` pωq ` θ

i,npωq ` E i,n�`
pωq ` pnq

vv

E‚,n�`
pωq

ww

8

˙

,



73

with (using the fact that c ą 1)

κi,n` pωq :“ c2
´

1` pwi,np0, T, ωq1{p
1
¯ ”

c2
`

1` ζi,n` pωq
˘

ı
pN i,n
` pωq`1

.

This yields to the following global bound:

E i,n�``1
pωq ď

ÿ̀

k“0

Ki,n
k,`pωqκ

i,n
k pωq

„

ζi,nk pωqΘ
n
kpωq ` θ

i,npωq ` pnq
vv

E‚,n�k
pωq

ww

8



, (4.26)

with

Ki,n
k,`pωq :“

`´1
ź

j“k

κi,nj pωq, Ki,n
`,` pωq “ 1.

Observe that

Ki,n
k,`pωq ď c2p`´kq

`´1
ź

j“k

`

1` pwi,np0, T, ωq1{p
1˘“

c2
`

1` ζi,nj pωq
˘‰

pN i,n
j pωq

ď c2p`´kq`2 pN i,n
k,` pωq

`

1` pwi,np0, T, ωq1{p
1˘`´k` pN i,n

k,` pωq,

with the shortened notation pN i,n
k,` pωq :“ pN i,n

`

r�k, �`s, ω, 1{p4Lq
˘

, and that

Ki,n
k,`pωqκ

i,n
k pωq ď c2p``1´kq`4 pN i,n

k,` pωq
´

1` pwi,np0, T, ωq1{p
1
¯``1´k`2 pN i,n

k,` pωq
.

From (4.26), we deduce that for any r ą 8, we can find a constant qprq such that

pnq
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E‚,n�``1
pωq
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r
ď

ÿ̀

k“0

"

pnq
vv

K‚,nk,` κ
‚,n
k
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qprq
ˆ

´

1` pnq
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pw‚,np0, T, ωq1{p
1ww

qprq

¯

ˆ

´

1` pnq
$

%

$

%

“

c2
`

1` ζ‚,nk pωq
˘‰

pN‚,nk pωq`1
,

-

,

-

qprq

¯

ˆ

´

pnq
vv

θ‚,npωq
ww

qprq
` pnq

vv

E‚,n�k
pωq

ww

r

¯

*

.

which we rewrite in the form

a``1 ď
ÿ̀

k“0

gk,`
`

b` ak
˘

,

with

a` :“ pnq
vv

E‚,n�`
pωq

ww

r
, gk,` :“ 4ˆ

´

pnq
vv

K‚,nk,` κ
‚,n
k

ww

qprq

¯3
, b :“ pnq

vv

θ‚,npωq
ww

qprq
.

Hence,

a` ď b
ÿ̀

j“1

ÿ

0ďk1ď¨¨¨ďkjďkj`1“`

j
ź

i“1

gki,ki`1
.

Now, we can find q1prq ě 1 such that, for 1 ď i ď j ď ` ď Λ, where Λ is the number
of subintervals in the dissection 0 “ �0 ă �1 ă ¨ ¨ ¨ ă �Λ “ T of r0, T s,

pnq
vv

K‚,nki,ki`1
κ‚,nki

ww

qprq

ď pnq
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%
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%

´
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`

1` pw‚,np0, T, ωq1{p
1˘
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-
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-
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ˆ pnq
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%

$

%

´

c2
`

1` pw‚,np0, T, ωq1{p
1˘
¯2T pN‚,nki,ki`1

{p�ki`1
´�ki q

,

-

,

-

p�ki`1
´�ki q{T

q1prq
.
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Hence, by Young’s inequality

j
ź

i“1

gki,ki`1
ď pnq

$

%

$

%

´

p2cq2
`

1` pw‚,np0, T, ωq1{p
1˘
¯Λ`1,

-

,

-

6

q1prq

ˆ

j
ÿ

i“1

pnq
$

%

$

%

´

c
`

1` pw‚,np0, T, ωq1{p
1˘
¯2T pN‚,nki,ki`1

{p�ki`1
´�ki q

,

-

,

-

3

q1prq
.

Finally,

aΛ ď
pnq
vv

θ‚,npωq
ww

qprq
ˆ
`

2Λ
˘Λ`1

ˆ pnq
$

%

$

%

´

p2cq2
`

1` pw‚,np0, T, ωq1{p
1˘
¯Λ`1,

-

,

-

6

q1prq

ˆ

Λ
ÿ

i“1

pnq
$

%

$

%

´

c
`

1` pw‚,np0, T, ωq1{p
1˘
¯2T pN‚,nki,ki`1

{p�ki`1
´�ki q

,

-

,

-

3

q1prq
.

Step 5. Repeating (4.11) and (4.12), we can find a real ε1 ą 0, independent of n,
such that supi“1,¨¨¨ ,n E

“

exp
`

pwi,np0, T, ¨qε1
˘‰

ď C, for a constant C independent of n.
Hence, following (3.22) in the proof of Theorem 16, we deduce that, for any % ą 0,

E

„

$

%

$

%

´

c
`

1` pw‚,np0, T, ωq1{p
1˘
¯2T pN‚,nkp,kp`1

{p�kp`1
´�kp q

,

-

,

-

%

q1prq



ď C%,r,

for some constant C%,r only depending on r and %, the value of which is allowed to
increase from line to line.

‚ We prove below that the number Λ of subintervals in the dissection 0 “ τ0 ă

τ1 ă ¨ ¨ ¨ ă τΛ “ T of r0, T s has Weibull tails with shape parameter λ ą 1{2, with
λ independent of n and the Weibull tails uniformly controlled in n ě 1. Hence,
following (3.22) in the proof of Theorem 16, we deduce that, for any % ą 0,

E

«˜

Λ
ÿ

i“1

$

%

$

%

´

c
`

1` pw‚,np0, T, ωq1{p
1˘
¯2T pN‚,nki,ki`1

{p�ki`1
´�ki q

,

-

,

-

3

q1prq

¸%ff

ď C
1{2
2%,r

ÿ

Jě0

P
`

Λ ě J
˘1{2

J%´1 ď C%,r.

Similarly,

E

„

pnq
$

%

$

%

´

p2cq2
`

1` pw‚,np0, T, ωq1{p
1˘
¯Λ`1,

-

,

-

%

q1prq



ď C%,r.

Returning to the conclusion of the fourth step and observing that ΛΛ has finite
moments of any order since Λ has Weibull tails with shape parameter λ ą 1{2, we
deduce that, for a possibly new value of qprq,

@

aΛp¨q
D

r
ď Cr

@

θ1,np¨q
D

qprq
,

where Cr only depends on r. It remains to observe that aΛpωq is equal to

aΛpωq “
pnq
vv

E‚,nT pωq
ww

r
,

which is less than ηn by the conclusion of the first step. Inserting into (4.26), we
easily complete the proof.
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‚ We now justify the fact that Λ has Weibull tails. We use the following bound

Ψn
` pωq ď

pnq
$

%

$

%

“

c2
`

1` ζ‚,n` pωq
˘‰

pN‚,n` pωq`1
,
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-

16

pnq
$
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$
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-
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ď c2 pnq
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“

c2
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1` pw‚,np0, T, ωq1{p
1˘‰ pN‚,n` pωq

,

-

,

-

32

ˆ

´

pnq
$

%

$

%

pw‚,np�`, �``1, ωq
1{p1

,

-
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-

32
` pnq

$

%

$

%

pw‚,np�`, �``1, ωq
1{p1

,

-

,

-

2

32

¯

.

For sure, this shows that we can choose δ`pωq :“ �``1pωq ´ �`pωq small enough such
that

Ψn
` pωq ď 2.

Moreover, by Hölder inequality, we obtain, for any a ą 0

Ψn
` ď c2 pnq

$

%
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c2
`

1` pw‚,np0, T, ωq1{p
1˘‰ pN‚,n` pωq{δ`
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-
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pnq
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1{p1
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-

32
` pnq
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%

$

%
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-

2

32

¯

ď a c4 pnq
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1˘‰ pN‚,n` pωq{δ`
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-

2δ`
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1
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pnq
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` pnq
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,

-
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-

2

32

¯2
.

Call for a while Λ the ω-dependent minimal number of steps such that ΨΛpωq ě 2.
By (A.1) in appendix, we can prove that Λ has Weibull tails if the local accumulation
associated with each of the two terms above have also Weibull tails, with the same
shape parameter. As for the term on the last line, this is precisely the assumption
we have (whatever the value of a), see the beginning of this step and assume that
q ě 32 in (4.3). It thus remains to handle the local accumulation of the term in the
penultimate line. So, we can regard δ` as if Ψ` was exactly equal to the term in the
penultimate line. We then observe that, for ac4 ă 1 and A ą 0,

P

ˆ

δ` ď
1

A

˙

ď P

ˆ

`

ac4
˘1{A pnq
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%
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1˘‰ pN‚,n` pωq{δ`
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-
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-

32
ě pac4q´A

˙

.

We now introduce the function

fpxq “ exp
`

lnpxq1`ε
˘

, x ą 1;

it is non-decreasing on r1,8q and convex on re,8q. By Markov inequality, for c ą 1,

P

ˆ

δ` ď
1

A

˙

ď exp
´

´
`

lnrpac4q´32As
˘1`ε12

¯

E

„

f

ˆ

1

n

n
ÿ

i“1

e
”

c2
´

1` pwi,np0, T, ¨q1{p
1
¯ı32 pN i,n

` {δ`
˙

ď exp
´

´
`

lnrpac4q´32As
˘1`ε12

¯ 1

n

n
ÿ

i“1

E

„

f

ˆ

e
”

c2
´

1` pwi,np0, T, ¨q1{p
1
¯ı32 pN i,n

` {δ`
˙

,

where 1 ` ε12 ă p1 ` ε2q{p1 ` ε2{2q, where ε2 is such that that pN i,n
` p¨q{δ`p¨q has

Weibull tails with shape parameter 1{2p1` ε2q, uniformly in n, ` ě 1, and ε “ ε12 in
the definition of f . Therefore, following (3.22) again,

P

ˆ

δ` ď
1

A

˙

ď C exp
´

´
`

´32 lnpac4q
˘1`ε12A1`ε12

¯

.
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Now,

P
`

Λ ą `
˘

ď P
`

δ1 ` ¨ ¨ ¨ ` δ` ď T
˘

ď
ÿ̀

i“1

P

ˆ

δi ď
T

`

˙

ď C` exp
´

´
`

´32 lnpac4q
˘1`ε12p`{T q1`ε

1
2

¯

,

which shows that Λ has a Weibull tail.

In fact, Λ needs also to take into account the condition

pnq
$

%

$

% pN‚,n
`

r�`, �``1s, ω, 1{p4L0q
˘

,

-

,

-

8
ď c.

Using again the lower bound (A.1), we can assume that Λ only counts the number
of ` for which the above inequality is actually an equality. Then, we can repeat the
same proof as above by using the fact that

c “ pnq
$

%

$

%

pN‚,n
`

r�`, �``1s, ω, 1{p4L0q
˘

δ`

,

-

,

-

8
δ`

and by recalling that

pnq
$

%

$

%

pN‚,n
`

r�`, �``1s, ω, 1{p4L0q
˘

δ`

,

-

,

-

8

has Weibull tails with shape parameter strictly greater than 1{2, which follows from
the convexity of the function r0,`8q Q x ÞÑ exppx1`εq, for ε ą 0. This permits to
provide an upper bound for Ppδ` ď 1{Aq. B

A – Integrability and Auxiliary Estimates

We prove in this appendix a number of auxiliary results that we left aside to
keep focused on the main problems at hand. Thus we prove in Appendix A.1 the
version of Cass, Litterer and Lyons’ integrability estimate on the accumulated local
variation of a rough path under the form needed here, Theorem 6. In Appendix A.2,
we provide a proof of Theorem 23 showing propagation of chaos for an interacting
particle system driven by Gaussian rough paths. Appendix A.3 is dedicated to
proving a crucial moment estimate for some quantity of interest in the proof of the
convergence rate in the propagation of chaos result, Theorem 24. This is where the
convergence rate ηn appears.

A.1 – Proof of Theorem 6

We provide here the proof of Theorem 6; this statement allows to use our well-
posedness result for the mean field rough differential equation (0.4) when W is some
Gaussian or Markovian rough path. We follow the proof of Theorem 11.7 in [25].
Throughout the proof, we use the same notations as in the statement of Theorem 6.
The following statement provides the required analogue of Proposition 6.2 in [11].

Recall that vps, t, ωq in (1.7) consists in six different terms. It is an easy exercice
to check that it suffices to control the local accumulation associated with each of this
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six terms. To make it clear, we have the following property. If, for a given threshold
α ą 0 and for any two continuous functions v1 : ST2 Ñ R` and v2 : ST2 Ñ R`, set

Nipαq :“ Nvi

`

r0, T s, α
˘

,

for 1 ď i ď 2; see (1.13) for the original definition. Then

max
´

N1

´α

2

¯

, N2

´α

2

¯¯

ě
Npαq

2
. (A.1)

For sure, the result is true with the first and third terms in (1.7) as this fits the
original property established in [11]. Also, it is obviously true for the second and
sixth terms since they are completely deterministic. Hence, the only difficulty is to
control the local accumulation associated with the fourth and fifth terms.

The strategy is as follows. As we work with Gaussian rough paths, the set-up,
as defined in Section 1, is strong. So, we can transfer it to any arbitrarily fixed
probability space (provided that the letter is rich enough). Hence, we can choose Ω
as the canonical path space W, see the notation used in the statement of Theorem
6.

We denote by W pω, ω1q the enhanced Gaussian rough path associated to
`

W pωq,W 1pω1q
˘

along the lines of Example 5, for Pb2-almost every pω, ω1q P Ω2. To make it clear,
the second level of W pω, ω1q reads

W r2spω, ω1q :“

ˆ

Wpωq I
`

W pωq,W 1pω1q
˘

I
`

W 1pω1q,W pωq
˘

Wpω1q

˙

,

where I is as in Definition 18, and where we used the same symbol W as in Section
1 for the enhanced path although the meaning here is not exactly the same. Here,
W pω, ω1q is a function of both ω and ω1 and takes values in R2m‘pR2mqb2. Following
Section 3 in [11], see also (11.5) in [25], we define, for h‘ k P H‘H the translated
rough path pTh‘kW qpω, ω1q. We then recall that, with probability 1 under Pb2,

Th‘kW pω, ω1q “W pω ` h, ω1 ` kq.

Following the argument given in Proposition 6.2 in [11], see also Theorem 11.4 in
[25], we have, for any h P H and any ps, tq P ST2 ,

8W pω, ω1q8p
rs,ts,p´var ď c

´

8Th‘0W pω, ω1q 8p
rs,ts,p´var `}h}

p
rs,ts,%´var

¯

,

where we recall that 1{p` 1{% ą 1 and c only depends on p and %, and where

8W pω, ω1q8rs,ts,p´var “ }pW,W
1qpω, ω1q}rs,ts,p´var `

b

}W r2spω, ω1q}rs,ts,pp{2q´var,

and similarly for 8Th‘0W pω, ω1q8rs,ts,p´var. Taking the power q, allowing the con-

stant c to depend on q and integrating with respect to ω1, we get
A

}WKKpω, ¨q}
p{2
rs,ts,pp{2q´var

E

q
ď c

´A

}Th‘0W pω, ¨q}p
rs,ts,p´var

E

q
` }h}p

rs,ts,%´var

¯

,

and then
A

}WKKpω, ¨q}rs,ts,pp{2q´var

Ep{2

q
ď c

´A

}Th‘0W pω, ¨q}p
rs,ts,p´var

E

q
` }h}p

rs,ts,%´var

¯

.

We now recall the notation

8W pω, ω1q8rs,ts,p1{pq´Hölder “ }pW,W
1qpω, ω1q}rs,ts,p1{pq´Hölder

`

b

}W p2qpω, ω1q}rs,ts,p2{pq´Hölder,
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for the standard Hölder semi-norm of the rough path, see Theorem 11.9 in [25].
Then,

A

}WKKpω, ¨q}rs,ts,pp{2q´var

Ep{2

q

ď c
´A

}Th‘0W pω, ¨q}p
r0,T s,p1{pq´Hölder

E

q
pt´ sq ` }h}p

rs,ts,%´var

¯

.

Therefore,
A

WKKpω, ¨q
Ep{2

q;rs,ts,pp{2q´var

ď c
´A

}Th‘0W pω, ¨q}p
r0,T s,p1{pq´Hölder

E

q
pt´ sq ` }h}p

rs,ts,%´var

¯

.

Observe that if the left-hand side is equal to or less than α, we can easily replace
}h}p

rs,ts,%´var by }h}%
rs,ts,%´var up to a modification of the constant c. Since % ď p, this

is obviously the case when }h}rs,ts,%´var ď 1. When }h}rs,ts,%´var ě 1, we can easily
modify the constant c in order to preserve the inequality. Define now

Npr0, T s, ω, αq :“ N$pr0, T s, αq,

when

$ps, tq “
A

WKKpω, ¨q
Ep{2

q;rs,ts,pp{2q´var
.

Then,

Npr0, T s, ω, αqα ď c
´A

}Th‘0W pω, ¨q}p
r0,T s,p1{pq´Hölder

E

q
T ` }h}%

r0,T s,%´var

¯

.

By Proposition 11.2 in [25], we get

Npr0, T s, ω, αqα ď c
´A

}Th‘0W pω, ¨q}p
r0,T s,p1{pq´Hölder

E

q
T ` }h}%HT

¯

,

where } ¨ }H is the standard norm on the reproducing Hilbert space H, see again
for instance Appendix D in [27]. We then conclude by recalling that the quantity
⟪}W p¨, ¨q}p

r0,T s,p1{pq´Hölder
⟫
q

is finite, by observing that the set

E :“
!

pω, ω1q P Ω2 : Th‘0W pω, ω1q “W pω ` h, ω1q, h P H
)

,

is of full Pb2-probability measure, see Theorem 11.9 in [25], and then by invoking
Theorem 11.7 in [25].

As for the conclusion of the statement (the fact that the tails of wp0, T q satisfy
the required decay), it suffices to duplicate the convexity argument used in (4.11)
and (4.12).

A.2 – Proof of Theorem 23

Theorem 23 asserts that the assumptions of Theorem 22 ensuring propagation
of chaos for the interacting particle system associated with the mean field rough
differential equation (0.2) are satisfied in the Gaussian framework specified in its
statement. We only prove here that we can control the empirical local accumula-
tion as the other requirements in the statement of Theorem 22 are easily checked.
Following the proof of Theorem 6 in Subsection A.1, we may focus on the local
accumulation of each of the various terms in (4.3).
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Step 1. The first step is to consider the local accumulation Ñ i
`

r0, T s, ω, α
˘

asso-

ciated with
›

›W ipωq
›

›

p

rs,ts,p´var
`
›

›Wipωq
›

›

p{2

rs,ts,p{2´var
, namely

Ñ ipr0, T s, ω, αq :“ N$

`

r0, T s, α
˘

,

when

$ps, tq “
›

›W ipωq
›

›

p

rs,ts,p´var
`
›

›Wipωq
›

›

p{2

rs,ts,p{2´var
.

We recall from Theorem 6 that each Ñ i
`

r0, T s, ω, α
˘

has Weibull tails with 2{ρ as
shape parameter, uniformly in i, in the sense that there exists a ą 0 such that

sup
1ďiďn

E
”

exp
´

a
“

rN ipr0, T s, ¨, αq
‰2{%

¯ı

ă 8. (A.2)

Then, by the L4-version of the law of large numbers, which here applies because the

variables
`

rN ipr0, T s, ¨, αq
˘

i“1,¨¨¨ ,n
are independent, we get

P

ˆ

ω P Ω :
1

n

n
ÿ

i“1

exp
´a

4

“

rN ipr0, T s, ω, αq
‰2{%

¯

ě 1` E
”

exp
´a

4

“

rN1pr0, T s, ¨, αq
‰2{%

¯ı

˙

ď
C

n2
,

for a constant C independent of n. By Borel-Cantelli Lemma, we then obtain that,
with probability 1, there exists a rank n0 such that, for any n ě n0,

1

n

n
ÿ

i“1

exp
´a

4

“

rN ipr0, T s, ω, αq
‰2{%

¯

ď 1` E
”

exp
´a

4

“

rN1pr0, T s, ω, αq
‰2{%

¯ı

,

which suffices to complete the proof for the first and third terms in (4.3).

Step 2. We now focus on the local accumulation of the fourth and fifth terms in
(4.3).

We use the same notation as in Subsection 4.1 and proceed as in the proof of
Theorem 6. Consider the Gaussian process pW 1, ¨ ¨ ¨ ,Wnq, with abstract Wiener
space

`

Wn,H‘n,Pbn
˘

. As before, we call, for ω “ pωiq
n
i“1 P Ωn and for h “

‘ni“1hi P H‘n set

ThW
pnqpωq “ T‘ni“1hi

W pnqpωq

for the translated rough path along h. Then,
›

›Wi,jpωq
›

›

p{2

rs,ts,pp{2q´var

ď c
´

›

›pThWqi,jpωq
›

›

p{2

rs,ts,pp{2q´var
`
›

›pThW q
ipωq

›

›

p

rs,ts,p´var
`
›

›pThW q
jpωq

›

›

p

rs,ts,p´var

` }hi}p
rs,ts,%´var ` }h

j}
p
rs,ts,%´var

¯

.

Importantly, the constant c is independent of n. Below, it is allowed to increase
from line to line as long as it remains independent of n. So,

pnq
$

%

›

›Wi,‚pωq
›

›

p{2

rs,ts,pp{2q´var

,

-

q

ď c

"

pnq
$

%

›

›pThWqi,‚pωq
›

›

p{2

rs,ts,pp{2q´var

,

-

q
` pnq

$

%

›

›pThW q
‚pωq

›

›

p

rs,ts,p´var

,

-

q

`
›

›pThW q
ipωq

›

›

p

rs,ts,p´var
`
›

›hi
›

›

p

rs,ts,%´var
` pnq

$

%

›

›h‚
›

›

p

rs,ts,%´var

,

-

q

*

.
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And then, proceeding as in the proof of Theorem 6 and applying Proposition 11.2
in [25] together with the fact that p ą 2%, we obtain

pnq
$

%Wi,‚
s,tpωq

,

-

p{2

q

ď c

"

pnq
$

%

›

›pThW qi,‚pωq
›

›

p

r0,T s,p1{pq´Hölder

,

-

q
`
›

›hi
›

›

%

H `
pnq
$

%

›

›h‚
›

›

%

H

,

-

q

*

pt´ sq,

(A.3)

at least when the left-hand side is less than or equal to α. Similarly,

pnq
$

%Wi,‚pωq
,

-

p{2

q;rs,ts,pp{2q´var

ď c

"

pnq
$

%

›

›pThW qi,‚pωq
›

›

p

r0,T s,p1{pq´Hölder

,

-

q
` }h}%H‘n

*

pt´ sq,

when the left-hand side is less than or equal to α. Define now

N i,n,KK
`

r0, T s, ω, α
˘

:“ N$

`

r0, T s, α
˘

,

when

$ps, tq “ pnq
v

Wi,‚pωq
wp{2

q;rs,ts,pp{2q´var
.

Then,

N i,n,KK
`

r0, T s, ω, α
˘

α ď c

"

pnq
$

%

›

›pThW qi,‚pωq
›

›

p

r0,T s,p1{pq´Hölder

,

-

q
` }h}%H‘n

*

T.

We then apply Theorem 11.7 in [25] but on the space pWbn,H‘n,Pbnq. Importantly,
we observe that

E
”

pnq
$

%

›

›pThW qi,‚pωq
›

›

p

r0,T s,p1{pq´Hölder

,

-

q

ı

is bounded by a constant c, independent of i and n, which proves that the local
accumulation N i,n,KKpr0, T s, ¨, αq has a Weibull distribution with shape parameter
1{%.

Step 3. The fact that N i,n,KK
`

r0, T s, ¨, α
˘

has Weibull tails does not suffice for

our purpose. Indeed, differently from the variables Ñ i,n
`

r0, T s, ¨, α
˘

, the variables

N i,n,KK
`

r0, T s, ¨, α
˘

are independent, which prevents us from a straightforward appli-
cation of the law of large numbers as done in the first step. In order to overcome
this difficulty, we must revisit the above argument and prove that the variables
`

N i,n,KKpr0, T s, ¨, αq
˘

i“1,¨¨¨ ,n
are in fact nearly independent, in a sense that is made

clear below. In order to do so, go back to (A.3) and observe that, since % ă 2,

pnq
$

%

›

›h‚
›

›

%

H

,

-

q
“

ˆ

1

n

n
ÿ

j“1

}hj}%qH

˙1{q

ď

ˆ

1

n

n
ÿ

j“1

}hj}2H

˙%{p2qq

ď n´%{p2qq }h}%H‘n .

The trick now is to use the additional factor n´%{p2qq, but to benefit in a full way of
this additional decay, we assume that hi “ 0, in which case (A.3) becomes

pnq
$

%Wi,‚
s,tpωq

,

-

p{2

q

ď c

"

pnq
$

%

›

›pThWqi,‚pωq
›

›

p{2

rs,ts,pp{2q´var

,

-

q
` pnq

$

%

›

›pThW q
‚pωq

›

›

p

rs,ts,p´var

,

-

q

`
›

›pThW q
ipωq

›

›

p

rs,ts,p´var
` n´%{p2qq }h}%H‘npt´ sq

*

,
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at least in the case when the left-hand side is less than or equal to α. In fact,
the above inequality must be considered as an inequality on the smaller space
`

Wn´1,H‘pn´1q,Pbpn´1q
˘

containing the pn´1q-tuple
`

ω1, ¨ ¨ ¨ , ωi´1, ωi`1, ¨ ¨ ¨ , ωn
˘

,

which we denote by ω´i, while the value of ωi is frozen. In particular, since hi “ 0,
the vector h can be identified with h´i “ ph1, ¨ ¨ ¨ , hi´1, hi`1, ¨ ¨ ¨ , hnq and }h}H‘n
is then equal to }hi´1}H‘n . As before, take now, τ` and τ``1 such that

pnq
$

%Wi,‚
τ`,τ``1

pωq
,

-

p{2

q
“ α.

Then, at least one of the two inequalities below holds true

c

"

pnq
$

%

›

›pThWqi,‚pωq
›

›

p{2

rτ`,τ``1s,pp{2q´var

,

-

q
` pnq

$

%

›

›pThW q
‚pωq

›

›

p

rτ`,τ``1s,p´var

,

-

q

`
›

›pThW q
ipωq

›

›

p

rτ`,τ``1s,p´var

*

ě
α

2
,

n´%{p2qq
›

›h´i
›

›

%

H‘pn´1q pτ``1 ´ τ`q ě
α

2
.

Therefore, denoting the left-hand side in the first line by gh,rτ`,τ``1s
pωq, we get

pnq
$

%Wi,‚
τ`,τ``1

pωq
,

-

p{2

q

ď α1tgh,rτ`,τ``1s
pωqěα{p2cqu ` n

´%{p2qq }h´i}%H‘pn´1q pt``1 ´ t`q.

So, we get, with probability 1

N i,n,KK
`

r0, T s, ω, α
˘

ď N i,n
´

r0, T s, ω ` h´i,
α

2c

¯

` n´%{p2qq }h´i}%H‘pn´1q T, (A.4)

where N i,n is the full-fledged local accumulation defined in the statement of Theorem
22.

The important point here is that N i,n
`

r0, T s, ¨, α{p2cq
˘

has Weibull tails with
shape parameter 2{%, uniformly in n ě 1, as a consequence of the first step, the
second step and fourth step below – the fourth step is actually a duplication of the
second step. Hence, there exist a positive constant a and a non-negative constant
C such that

E

„

exp

ˆ

a
”

N i,n
´

r0, T s, ¨,
α

2c

¯ı2{%
˙

ď C.

Set

fpωiq “ inf

"

r ą 0 : Pbpn´1q
´

ω´i : N i,n
´

r0, T s, pω´i, ωiq,
α

2c

¯

ą r
¯

ď
1

2

*

.

In the right-hand side, we wrote ω under the form pω´i, ωiq to specify the fact the
random variable is seen on the smaller space Wn´1. For any A ą 0,

!

ωi : fpωiq ě A
)

Ă

"

ωi : Pbpn´1q
´

ω´i : N i,n
´

r0, T s, pω´i, ωiq,
α

2c

¯

ě A
¯

ě
1

2

*

Ă

"

ωi : Ebpn´1q
”

exp
´

a
´

N i,n
`

r0, T s, p¨, ωiq
˘

¯2{%¯ı

ě
1

2
exp

`

aA2{%
˘

*

.

So,

P
`

f ě A
˘

ď 2 exp
`

´aA2{%
˘

,



82

from which we deduce that f has Weibull tails with shape parameter %1 ą 1, uni-
formly in n.

Returning to (A.4) and subtracting fpωiq to both sides, we get
´

N i,n,KK
`

r0, T s, ω, α
˘

´ fpωiq
¯

`

ď

´

N i,n
´

r0, T s, ω ` h´i,
α

2c

¯

´ fpωiq
¯

`
` n´%{p2qq

›

›h´i
›

›

%

H‘pn´1q T.

Now, we can apply Theorem 11.7 in [25] with a “ 0 and pa ě 0 on the smaller space
Wn´1 containing ω´i. We deduce that there exist a ą 0 and C ě 0, independent of
n, such that

Ebpn´1q

„

exp

ˆ

an1{q
´”

N i,n,KK
`

r0, T s, p¨, ωiq, α
˘

´ fpωiq
ı

`

¯2{%
˙

ď C.

Taking expectation and rewriting gpωiq in the form fpWipωqq, we get

Ebn
„

exp

ˆ

an1{q
´”

N i,n,KK
`

r0, T s, ¨, α
˘

´ fpWip¨qq

ı

`

¯2{%
˙

ď C.

Therefore, by Jensen’s inequality,

E

„ˆ

1

n

n
ÿ

i“1

exp

ˆ

a
´”

N i,n,KK
`

r0, T s, ¨, α
˘

´ fpWip¨qq

ı

`

¯2{%
˙˙n1{q

ď C.

Therefore, for any A ě 1,

P

ˆ

1

n

n
ÿ

i“1

exp

ˆ

a
´”

N i,n,KK
`

r0, T s, ω, α
˘

´ fpWip¨qq
˘

ı

`

¯2{%
˙

ě A

˙

ď CA´n
1{q
,

and by Borel-Cantelli lemma, we deduce that, with probability 1, there exists a rank
n0 such that for n ě n0,

1

n

n
ÿ

i“1

exp

ˆ

a
´”

N i,n,KK
`

r0, T s, ω, α
˘

´ fpWip¨qq
˘

ı

`

¯2{%
˙

ď A.

It suffices to duplicate the first step to conclude, this time with the random variables
`

fpWiq
˘

i“1,¨¨¨ ,n
which have Weibull tails with shape parameter %1 ą 1, uniformly in

n. Assuming without of loss of generality that %1 ě %, we complete the proof by
Cauchy-Schwarz inequality together with the fact that

´

N i,n,KK
`

r0, T s, ω, α
˘

¯2{%1

ď C
´”

N i,n,KK
`

r0, T s, ω, α
˘

´ fpWip¨qq
˘

ı

`

¯2{%1

` C
´

fpWip¨qq
˘

¯2{%1

.

Step 4. We now turn to the local accumulation of the second and sixth terms in
(4.3). Proceeding as the second step, we get

pnq
$

%

$

%W‚,‚pωq
,

-

,

-

p{2

q;rs,ts,pp{2q´var

ď c

"

pnq
$

%

$

%

›

›pThW q‚,‚pωq
›

›

p

r0,T s,p1{pq´Hölder

,

-

,

-

q
` n´%{p2qq }h}%H‘n

*

pt´ sq,

at least when the left-hand side is less than or equal to α. Importantly, the coefficient
in front of }h}%H‘n holds for all h. So, the context is simpler than in the two
previous steps. We then conclude as in the second step as for the tails and, using
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the additional n´%{p2qq, we can implement the same Borel-Cantelli argument as in
the third step.

A.3 – An Auxiliary Estimate

We prove in this appendix an auxiliary estimate that was used in Step 1 of the
proof of Theorem 24; this is where the convergence rate ηn for the propagation of

chaos appears. Recall the definition of the terms Ii,n,B
tr,sup¨q and Ii,Btr,sup¨q, given after

equation (4.15) in Step 1 of the proof of Theorem 24.

25. Lemma – Fix % ě 8. Then, there exist an exponent %1 and a constant c such that,
if X0p¨q is %1-integrable, then, for any n ě 1, i P t1, ¨ ¨ ¨ , nu and 0 ď r ď s ď t ď T ,

A!

Ii,n,B
tr,sup¨q ` Ii,n,B

ts,tu p¨q ´ Ii,n,B
tr,tu p¨q

)

´

!

Ii,Btr,sup¨q ` Ii,Bts,tup¨q ´ Ii,Btr,tup¨q
)E

%

ď C ηn ⟪w`pr, t, ¨, ¨q⟫3{p

%1
,

where pηnqně1 is as in the statement of Theorem 24 and

w`pr, t, ω, ω1q :“ wpr, t, ωq ` }WKKpω, ω1q}
p{2
rr,ts,p{2´var.

Proof – Throughout the proof, we use the following notations. For each i P t1, ¨ ¨ ¨ , nu,
we call wi the control associated with W ip¨q through (1.8). For j P t1, ¨ ¨ ¨ , nu, we
also let

wi,jps, t, ωq :“
›

›W i,jpωq
›

›

p

rs,ts,p´var
.

We also make an intense use of Lemma 26 below, giving the convergence rate of
the empirical measure of a sample of independent, identically distributed random
variables towards their common law. By (3.4), we know that, under the standing
assumption, sup0ďtďT

ˇ

ˇXtp¨q
ˇ

ˇ and
�

�Xp¨q
�

�

r0,T s,w,p
are in Lρ as soon as X0p¨q is in Lρ.

We then compute
!

Ii,n,B
tr,supωq ` Ii,n,B

ts,tu pωq ´ Ii,n,B
tr,tu pωq

)

´

!

Ii,Btr,supωq ` Ii,Bts,tupωq ´ Ii,Btr,tupωq
)

“

´

RF
i,n

r,s pωq ´R
F
i

r,spωq
¯

W i
s,tpωq `

´

δxF
i,n
r,s pωq ´ δxF

i
r,spωq

¯

Wi
s,tpωq

`

˜

1

n

n
ÿ

j“1

δµF
i,j,n
r,s pωqWj,i

s,tpωq ´ E
”

δµF
i
r,spω, ¨qW

i,KK
s,t p¨, ωq

ı

¸

,

where

RF
i,n

r,s pωq :“ F i,ns pωq ´ F i,nr pωq ´ δxF
i,n
r pωqW i

r,spωq ´
1

n

n
ÿ

j“1

δµF
i,j,n
r pωqW j

r,spωq,

RF
i

r,spωq :“ F
i
spωq ´ F

i
rpωq ´ δxF

i
rpωqW

i
r,spωq ´ E

”

δµF
i
rpω, ¨qWr,sp¨q

ı

.

(A.5)

Following (4.14) and (4.15), we define differentiable functions Gx and Gµ of their
arguments setting

δxF
i,n
t pωq “: Gx

`

X
i
tpωq, µ

n
t pωq

˘

,

δxF
i
tpω, ω

1q “: Gx
`

X
i
tpωq,LpXtq

˘

,
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and

δµF
i,j,n
t pωq “: Gµ

`

X
i
tpωq, µ

n
t pωq

˘`

X
j
t pωq

˘

,

δµF
i
tpω, ω

1q “: Gµ
`

X
i
tpωq,LpXtq

˘`

Xtpω
1q
˘

.

Finally, we can write the whole difference in the form
!

IBtr,supωq ` IBts,tupωq ´ IBtr,tupωq
)

´

!

IBtr,supωq ` IBts,tupωq ´ IBtr,tupωq
)

“
`

RF
i,n

r,s pωq ´R
F
i

r,spωq
˘

W i
s,tpωq

`

”

Gx
`

X
i
pωq, µnpωq

˘

´Gx
`

X
i
pωq,LpXq

˘

ı

r,s
Wi
s,tpωq (A.6)

`
1

n

n
ÿ

j“1

”

Gµ
`

X
i
pωq, µnpωq

˘`

X
j
pωq

˘

´Gµ
`

X
i
pωq,LpXq

˘`

Xjpωq
˘

ı

r,s
Wj,i
s,tpωq

`
1

n

n
ÿ

j“1

”

Gµ
`

X
i
pωq,LpXq

˘`

X
j
pωq

˘

ı

r,s
Wj,i
s,tpωq ´ E

”

δµF
i
r,spω, ¨qW

i,KK
s,t p¨, ωq

ı

.

Step 1. Observe that
”

Gx
`

X
i
pωq, µnpωq

˘

ı

r,s

“

ż 1

0
BxGx

´

X
i,pλq
r;pr,sqpωq, µ

n,λ
r;pr,sqpωq

¯

X
i
r,spωqdλ

`
1

n

n
ÿ

j“1

ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq, µ

n,λ
r;pr,sqpωq

¯

`

X
j,pλq
r;pr,sqpωq

˘

X
j
r,spωqdλ

“

ż 1

0
BxGx

´

X
i,pλq
r;pr,sqpωq, µ

n,λ
r;pr,sqpωq

¯

X
i
r,spωqdλ

`

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq, µ

n,λ
r;pr,sqpωq

¯

pyqzdλ



dνn,λr;pr,sqpω; y, zq

where

µ
n,pλq
r;pr,sqpωq :“

1

n

n
ÿ

j“1

δ
X
j,pλq
r;pr,sqpωq

, ν
n,pλq
s;ps,tqpωq :“

1

n

n
ÿ

j“1

δ`
X
j,pλq
r;pr,sqpωq,X

j
r,spωq

˘,

with

X
j,pλq
r;pr,sqpωq :“ X

j
rpωq ` λX

j
r,spωq.

Proceeding similarly with
“

Gx
`

X
i
pωq,LpXq

˘‰

r,s
, we get

”

Gx
`

X
i
pωq, µnpωq

˘

´Gx
`

X
i
pωq,LpXq

˘

ı

r,s

“

ż 1

0

”

BxGx

´

X
i,pλq
r;pr,sqpωq, µ

n,pλq
r;pr,sqpωq

¯

´ BxGx

´

X
i,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯ı

X
i
r,spωq dλ

`

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq, µ

n,pλq
r;pr,sqpωq

¯

pyqzdλ



dν
n,pλq
r;pr,sqpω; y, zq

´

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

pyqzdλ



dL
`

X
pλq
r;pr,sq, Xr,s

˘

py, zq,
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where, as before, X
pλq
r;pr,sqpωq “ Xrpωq`λXr,spωq. Splitting the last two terms in the

above expansion into

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq, µ

n,pλq
r;pr,sqpωq

¯

pyqzdλ



dν
n,pλq
r;pr,sqpω; y, zq

´

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

pyqzdλ



dL
`

X
pλq
r;pr,sq, Xr,s

˘

py, zq

“

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq, µ

n,pλq
r;pr,sqpωq

¯

pyqzdλ



dν
n,pλq
r;pr,sqpω; y, zq

´

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

pyqzdλ



dν
n,pλq
r;pr,sqpω; y, zq

`

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

pyqzdλ



dν
n,pλq
r;pr,sqpω; y, zq

´

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

pyqzdλ



dL
`

X
pλq
r;pr,sq, Xr,s

˘

py, zq,

we get

ˇ

ˇ

ˇ

”

Gx
`

X
i
pωq, µnpωq

˘

´Gx
`

X
i
pωq,LpXq

˘

ı

r,s

ˇ

ˇ

ˇ

ď c

ż 1

0
W1

´

µ
n,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

dλ

ˆ

˜

~X
i
pωq~r0,T s,wi,pw

ipr, s, ωq1{p `
1

n

n
ÿ

k“1

~X
k
pωq~r0,T s,wk,pw

kpr, s, ωq1{p

¸

` c
ˇ

ˇ

ˇ
Si,nr,s

`

ω, |X
‚

r,spωq|
˘

ˇ

ˇ

ˇ
,

where Si,nr,s
`

ω, |X
‚

r,spωq|
˘

is the n-empirical mean of n random variables that are

dominated by
`

|X
j
r,spωq|

˘

j“1,¨¨¨ ,n
and n´ 1 of which are conditionally centered and

conditionally independent given the realization of the path pX
i
,W i,Wiq. Recalling

(1.9) and allowing the value of the constant c to increase from line to line, we obtain

ˇ

ˇ

ˇ

”

Gx

´

X
i
pωq, µnpωq

¯

´Gx

´

X
i
pωq,LpXq

¯ı

r,s
Wi
s,tpωq

ˇ

ˇ

ˇ

ď c

ż 1

0
W1

´

µ
n,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

dλ

ˆ

»

–~X
i
pωq~r0,T s,wi,p `

˜

1

n

n
ÿ

k“1

~X
k
pωq~2

r0,T s,wk,p

¸1{2
fi

fl

ˆ

»

–wipr, t, ωq3{p `

˜

1

n

n
ÿ

k“1

wkpr, t, ωq2{p

¸3{2
fi

fl` c
ˇ

ˇ

ˇ
Si,nr,s

`

ω, |X
‚

r,spωq|
˘

ˇ

ˇ

ˇ
wipr, t, ωq2{p.

In order to conclude for the second term in the right-hand side of (A.6), it suffices to
recall from Rosenthal’s inequality (applied under the conditional probability given
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the realization of the path pX
i
,W i,Wiq) that

A

Si,nr,s
`

¨, |X
‚

r,sp¨q|
˘

E

3%{2
ď c n´1{2

A

~Xp¨q~r0,T s,w,pwpr, s, ¨q
1{p

E

3%{2

ď c n´1{2
@

~Xp¨q~r0,T s,w,p
D

3%

@

wpr, t, ¨q
D1{p

3%
.

If ρ is large enough, we deduce from Lemma 26 that

A”

Gx
`

X
i
p¨q, µnp¨q

˘

´Gx
`

X
i
p¨q,LpXq

˘

ı

r,s
Wi
s,tp¨q

E

%

ď c

ˆ
ż 1

0

A

W1

´

µ
n,pλq
r;pr,sqp¨q,L

`

X
pλq
r;pr,sq

˘

¯E

3%
dλ

˙

@

~Xp¨q~r0,T s,w,p
D

6%

@

wpr, t, ¨q
D3{p

6%

` c n´1{2
@

~Xp¨q~r0,T s,w,p
D

3%

@

wpr, t, ¨q
D3{p

3%

ď c ηn

´

1`
@

sup
0ďuďT

|Xup¨q|
D

3%

¯

@

~Xp¨q~r0,T s,w,p
D2

6%
⟪w`pr, t, ¨, ¨q⟫3{p

6%
.

Step 2. By the same argument, we have

ˇ

ˇ

ˇ

”

Gµ

´

X
i
pωq, µnpωq

¯

`

X
j
pωq

˘

´Gµ

´

X
i
pωq,LpXq

¯

`

X
j
pωq

˘

ı

r,s
Wj,i
s,tpωq

ˇ

ˇ

ˇ

ď c

ˆ
ż 1

0
W1

´

µ
n,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

dλ

˙

wj,ips, t, ωq2{p

ˆ

»

–

�

�X
i
pωq

�

�

r0,T s,wi,p
`
�

�X
j
pωq

�

�

r0,T s,wj ,p
`

˜

1

n

n
ÿ

k“1

~X
k
pωq~2

r0,T s,wk,p

¸1{2
fi

fl

ˆ

»

–wipr, s, ωq1{p ` wjpr, s, ωq1{p `

˜

1

n

n
ÿ

k“1

wkpr, s, ωq2{p

¸1{2
fi

fl

` c
ˇ

ˇ

ˇ
Si,j,nr,s

`

ω, |X
‚

r,spωq|
˘

ˇ

ˇ

ˇ
wj,ips, t, ωq2{p,

where

A

Si,j,nr,s

`

¨, |X
‚

r,sp¨q|
˘

E

3%{2
ď c n´1{2

@

~X~r0,T s,w,pwpr, s, ¨q
1{p

D

3%{2

ď c n´1{2
@

~X~r0,T s,w,py3%
@

wpr, t, ¨qy
1{p
3% .

Observing that xwj,ips, t, ¨q2{py3% ď ⟪w`pr, t, ¨, ¨q⟫2{p
3% – this is the rationale for intro-

ducing w`, and taking expectation, we get

A”

Gµ
`

X
i
p¨q, µnp¨q

˘`

X
j
p¨q

˘

´Gµ
`

X
i
p¨q,LpXq

˘`

X
j
p¨q

˘

ı

r,s
Wj,i
s,tpωq

E

%

ď c

ˆ
ż 1

0

A

W1

´

µ
n,pλq
r;pr,sqp¨q,L

`

X
pλq
r;pr,sq

˘

¯E

3%
dλ

˙

@

~Xp¨q~r0,T s,w,p
D

6%
⟪w`pr, t, ¨, ¨q⟫3{p

6%

` c n´1{2
@

~Xp¨q~r0,T s,w,p
D

3%
⟪w`pr, t, ¨, ¨q⟫3{p

3%
.
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Taking the mean over j, we obtain for upper bound for the third term in the right-
hand side of (A.6) the quantity
C

1

n

n
ÿ

j“1

”

Gµ
`

X
i
p¨q, µnp¨q

˘`

X
j
p¨q

˘

´Gµ
`

X
i
p¨q,LpXq

˘`

X
j
p¨q

˘

ı

r,s
Wj,i
s,tpωq

G

%

ď c

ˆ
ż 1

0

A

W1

´

µ
n,pλq
r;pr,sqp¨q,L

`

X
pλq
r;pr,sq

˘

¯E

3%
dλ

˙

@

~Xp¨q~r0,T s,w,p
D

6%
⟪w`pr, t, ¨, ¨q⟫3{p

6%

` c n´1{2
@

~Xp¨q~r0,T s,w,p
D

3%
⟪w`pr, t, ¨, ¨q⟫3{p

3%
.

By Lemma 26, we get the same bound as in the first step.

Step 3. We now turn to the last term in the right-hand side of (A.6). It reads as the
empirical mean of n random variables, n´1 of which are conditionally centered and

conditionally independent given the realization of the paths pX
i
,W i,Wiq, namely

1

n

n
ÿ

j“1

“

Gµ
`

X
i
pωq,LpXq

˘`

X
j
pωq

˘‰

r,s
Wj,i
s,tpωq ´ E

“

δµF
i
r,spω, ¨qW

i,KK
s,t p¨, ωq

‰

.

Invoking Rosenthal’s inequality once again (in a conditional form), it suffices to
compute the L% norm of

“

Gµ
`

X
i
pωq,LpXq

˘`

X
j
pωq

˘‰

r,s
Wj,i
s,tpωq.

Proceeding as before, it is less than c
@

~Xp¨q
�

�

r0,T s,w,p

D

3%
⟪w`pr, t, ¨, ¨q⟫3{p

3%
. So,

C

1

n

n
ÿ

j“1

”

Gµ
`

X
i
pωq,LpXq

˘`

X
j
pωq

˘

ı

r,s
Wj,i
s,tpωq ´ E

”

δµF
i
r,spω, ¨qW

i,KK
s,t p¨, ωq

ı

G

%

ď c n´1{2
@

~Xp¨q~r0,T s,w,p
D

3%
⟪w`pr, t, ¨, ¨q⟫3{p

3%
.

We conclude as before, by invoking Lemma 26.

Step 4. We now handle the remainders in (A.6). By expanding (A.5) and by using

similar notations for the remainders in the expansion of each
`

X
j˘

j“1,¨¨¨ ,n
, we have

RF
i,n

r,s pωq

“ BxF
´

X
i
rpωq, µ

n
r pωq

¯

RX
i

r,s pωq `
1

n

n
ÿ

j“1

DµF
´

X
i
rpωq, µ

n
r pωq

¯

`

X
j
rpωq

˘

RX
j

r,s pωq

`

ż 1

0

”

BxF
´

X
i,pλq
r;pr,sqpωq, µ

n,pλq
r;pr,sqpωq

¯

´ BxF
´

X
i
rpωq, µ

n
r pωq

¯ı

X
i
r,spωq dλ

`
1

n

n
ÿ

j“1

ż 1

0

”

DµF
´

X
i,pλq
r;pr,sqpωq, µ

n,pλq
r;pr,sq

¯´

X
j,pλq
r;pr,sqpωq

¯

´ DµF
´

X
i
rpωq, µ

n
r

¯

`

X
j
rpωq

˘

ı

X
j
r,spωq dλ.

(A.7)

Expanding RF
i

r,spωq in a similar way, we have to investigate four terms in order to

estimate the difference RF
i,n

r,s pωq ´ RF
i

r,spωq. The first term corresponds to the first
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term in the right-hand side of (A.7)
ˇ

ˇ

ˇ

”

BxF
´

X
i
rpωq, µ

n
r pωq

¯

´ BxF
´

X
i
rpωq,LpXrq

¯ı

RX
i

r,s pωq
ˇ

ˇ

ˇ

ď cW1

´

µnr pωq,LpXrq

¯

~X
i
p¨q

�

�

r0,T s,wi,p
wipr, s, ωq2{p.

Then, we must recall that, in the first line of the right-hand side in (A.6), the

difference RF
i,n

r,s pωq´R
F
i

r,spωq is multiplied by W i
s,tpωq, which is less than wips, t, ωq1{p.

In other words, we must multiply both sides in the above inequality by wipr, t, ωq1{p.
By Cauchy Schwarz inequality, the L% norm of the resulting bound is less than

c
@

W1pµ
n
r p¨q,LpXrq

D

3%

@

~Xp¨q
�

�

r0,T s,w,p

D

3%

@

wpr, t, ¨q
D3{p

6%
.

The second term that we have to handle corresponds to the second term in the
right-hand side of (A.7). With an obvious definition for RXp¨q, it reads
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

DµF
´

X
i
rpωq, µ

n
r pωq

¯

`

X
j
rpωq

˘

RX
j

r,s pωq ´
A

DµF
´

X
i
rpωq,LpXrq

¯

`

Xrp¨q
˘

RXr,sp¨q
E

ˇ

ˇ

ˇ

ˇ

ˇ

.

Proceeding exactly as in the first step, we get
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

DµF
´

X
i
rpωq, µ

n
r pωq

¯

`

X
j
rpωq

˘

RX
j

r,s pωq ´
A

DµF
´

X
i
rpωq,LpXrq

¯

`

Xrp¨q
˘

RXr,sp¨q
E

ˇ

ˇ

ˇ

ˇ

ˇ

ď cW1

´

µnr pωq,LpXrq

¯

˜

1

n

n
ÿ

j“1

ˇ

ˇRX
j

r,s pωq
ˇ

ˇ

¸

` c
ˇ

ˇ

ˇ
Si,nr,s

´

ω,
ˇ

ˇRX
‚

r,s pωq
ˇ

ˇ

¯ˇ

ˇ

ˇ
,

where Si,nr,s
`

ω, |RX
‚

r,s pωq|
˘

is the n-empirical mean of n random variables that are

dominated by
`

|RX
j

r,s pωq|
˘

j“1,¨¨¨ ,n
and n´ 1 of which are conditionally centered and

conditionally independent given the realization of the path pX
i
,W i,Wiq. Hence, the

L% norm of the right-hand side, after multiplication as before by wips, t, ωq1{p, is less
than

c
´A

W1

´

µnr p¨q,LpXrq

¯E

3%
` n´1{2

¯

@

~Xp¨q~r0,T s,w,p
D

6%

@

wpr, t, ¨q
D3{p

6%
.

As for the third term in the right-hand side of (A.7), it fits exactly, up to the

additional factor X
i
r,spωq, the analysis provided in the first step. So we get as an

upper bound for its L% norm, after multiplication by wips, t, ωq1{p, the quantity

c

ˆ
ż 1

0

ż 1

0

A

W1

´

µ
n,pλλ1q
r;pr,sq p¨q,L

`

X
pλλ1q
r;pr,sq

˘

¯E

3%
dλdλ1

˙

@

~Xp¨q~r0,T s,w,p
D2

6%

@

wpr, t, ¨q
D3{p

6%

` c n´1{2
@

~Xp¨q~r0,T s,w,p
D2

6%

@

wpr, t, ¨q
D3{p

6%
.

Following Step 2, we get exactly a similar bound for the fourth term in the right-hand
side of (A.7). Applying once again Lemma 26 completes the proof. B

26. Lemma – There exists a real qd ě 1 such that, for any q ě qd and any probability

measure µ on Rd satisfying Mqpµq :“
` ş

Rd |x|
qµpdxq

˘1{q
ă 8, it holds

E
”

W1

`

µnp¨q, µ
˘q{2

ı2{q
ď cq,dMqpµq ηn,
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for a constant cq,d depending on q and d, where pηnqně1 is as in the statement
of Theorem 24 and µnp¨q is the empirical distribution of n independent identically
distributed random variables

`

X1p¨q, ¨ ¨ ¨ , Xnp¨q
˘

of law µ, namely

µnpωq “
1

n

n
ÿ

i“1

δXipωq.

Proof – Without any loss of generality, we can assume that Mqpµq “ 1, see the
argument in [9, Chapter 5]. Then, by [24, Theorem 2], we obtain, for d ě 3,

P
´

W1

`

µnp¨q, µ
˘

ě Aηn

¯

ď C exp
´

´cnηdnA
d
¯

` Cn
`

nAηn
˘´q{2

,

in which case the result easily follows. When d “ 1, we have

P
´

W1

`

µnp¨q, µ
˘

ě Aηn

¯

ď C exp
´

´ cnη2
nA

2
¯

` Cn
`

nAηn
˘´q{2

,

and the result follows as well by our choice of ηn. Finally, when d “ 2,

P
´

W1

`

µnp¨q, µ
˘

ě Aηn

¯

ď C exp

ˆ

´
cnη2

nA
2

plnp2`A´1η´1
n qq

2

˙

` CnpnAηnq
´q{2.

Assuming without any loss of generality that A ě 1, we have lnp2 ` A´1η´1
n q ď

lnp2` η´1
n q “ lnp1` 2ηnq ´ lnpηnq, which is less than ´2 lnpηnq for n large enough.

Given our choice of ηn, we have ´ lnpηnq “ lnpnq{2´ lnplnp1`nqq, which is less than
lnpnq{2. Hence, modifying the value of the constant c, we get, for A ě 1 and for n
large enough, independently of the value of A, we get the bound

P
´

W1

`

µnp¨q, µ
˘

ě Aηn

¯

ď C exp

ˆ

´
cA2 lnp1` nq2

plnpnqq2

˙

` CnpnAηnq
´q{2,

which suffices to complete the proof. B
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[28] Gärtner, J., On the McKean-Vlasov limit for interacting diffusions. Math. Nachr., 137:197–
248, 1988.

[29] Gubinelli, M., Controlling rough paths. J. Funct. Anal., 216(1):86–140, 2004.
[30] Kac, M., Foundations of kinetic theory. Third Berkeley Symp. on Math. Stat. and Probab.,

3:171–197, 1956.
[31] Kelly, D. and Melbourne, I., Deterministic homogenization for fast-slow systems with chaotic

noise. arXiv:1409.5748, 2014.
[32] Kolokoltsov, V.N. and Troeva, M., On the mean field games with common noise and the

McKean-Vlasov SPDEs. arXiv:1506.04594, 2015.
[33] Ledoux, M. and Lyons, T. and Qian, Z., Lévy area of Wiener processes in Banach spaces.
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