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Mean field rough differential equations

|. BAILLEUL[Y and R. CATELLIER and F. DELARUHE?

Abstract. We provide in this work a robust solution theory for random rough differential
equations of mean field type

dXy = V (X, L(Xy))dt + F(X¢, L(X¢))dWr,

where W is a random rough path and £(X;) stands for the law of X, with mean
field interaction in both the drift and diffusivity. Propagation of chaos results for
large systems of interacting rough differential equations are obtained as a consequence,
with explicit optimal convergence rate. The development of these results requires the
introduction of a new rough path-like setting and an associated notion of controlled
path. We use crucially Lions’ approach to differential calculus on Wasserstein space
along the way.
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Introduction

The first works on mean field stochastic dynamics and interacting diffusions /
Markov processes have their roots in Kac’s simplified approach to kinetic theory
[30] and McKean’s work [37] on nonlinear parabolic equations. They provide the
description of evolutions (;)¢>0 in the space of probability measures under the form
of a pathspace random dynamics

dXt(w) = V(Xt(w), Mt)dt + F(Xt(w), ut)th(w),

LX), (0.1)
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(where £(A) stands for the law of a random variable A) and relate it to the empirical
behaviour of large systems of interacting dynamics. The main emphasis of subse-
quent works has been on proving propagation of chaos and other limit theorems,
and giving stochastic representations of solutions to nonlinear parabolic equations
under more and more general settings; see [38, 39, 28|, 17, [I8] [5, [6] for a tiny sample.
Classical stochastic calculus makes sense of equation , in a probabilistic setting
(Q, F,P), only when the process W is a semi-martingale under P, for some filtration,
and the integrand is predictable. However, this setting happens to be too restrictive
in a number of situations, especially when the diffusivity is random. This prompted
several authors to address equation by means of rough paths theory. Indeed,
one may understand rough paths theory as a natural framework for providing prob-
abilistic models of interacting populations, beyond the realm of It6 calculus. Cass
and Lyons [12] did the first study of mean field random rough differential equations
and proved the well-posed character of equation , and propagation of chaos for
an associated system of interacting particles, under the assumption that

e there is no mean field interaction in the diffusivity, F(z, u) = F(z),

e the drift depends linearly on the mean field interaction
V(w,p) = JV(:):, y) u(dy),

for some function V'(-,-) on R? x R%.

The method of proof of Cass and Lyons depends crucially on both assumptions.
Bailleul extended partly these results in [3] by proving well-posedness of the mean
field rough differential equation in the case where the drift depends nonlinearly
on the interaction term and the diffusivity is still independent of the interaction,
and by proving an existence result when the diffusivity depends on the interaction.
The naive approach to showing well-posedness of equation in its general form
consists in treating the measure argument as a time argument. However, this is of a
rather limited scope since, in this generality, one cannot expect the time dependence
in F to be better than %—Hélder if the rough path W is itself %—Hélder. Clearly, such

a time regularity is not sufficient to make sense of the rough integral {F(---)dW in
the case p = 2. This serious issue explains why, so far in the literature, the coefficient
F has been assumed to be a function of the sole variable .

Including the time component as one of the components of W brings back the
study of equation (0.1)) to the study of equation

dXi(w) = F(X¢(w), L(Xt))dWy(w),

e = L(Xy); 02)

this is the precise purpose of the present paper. Treating the drift as part of the
diffusivity has the drawback that we shall impose on V' some regularity conditions
stronger than needed. Our method accommodates the general case but we leave the
reader the pleasure of optimizing the details and concentrate on the new features

of our approach, working on equation (0.2). The raw driver (Wt(w)) =0 Will be

assumed to take values in some R™ and to be %—Hélder continuous, for p € [2,3),
and the one form F will be an L(R™,R%)-valued function on R? x Py(R?), where
P2(RY) is the so-called Wasserstein space of probability measures p with a finite
second-order moment. Inspired by Lions’ approach [34, [7, 9] to differential calculus
on P2(R%), one of the key point in our analysis is to lift the function F into a function



F defined on the space R? x L2 (Q, F,P; Rd), given by the formula

F(z,2) = F(z,L(2)), (0.3)
for z € R and Z € L%(Q, F,P;R?). So, we may rewrite equation (0.2)) as
dXy(w) = F(Xi(w), Xe()) AWy (). (0.4)

We used the notation X;(-) to distinguish the realization X;(w) of the random vari-
able X; at point w from the random variable itself, seen as an element of the space
L2 (Q,f ,P; Rd). So, Xi(-) is a random variable, and thus an infinite-dimensional
object, whilst X;(w) is a finite-dimensional vector. We feel that this writing is
sufficiently explicit to remove the hat over F.

Our main well-posedness result is stated below, in a preliminary form only. The
precise statement requires additional ingredients that we introduce later on in the
text. In this first formulation

e the quantity w(-,-) = (w(s, t))0<8<t is a random control function that is used
to quantify the regularity of the solution path on subintervals [s, t] of a given
finite interval [0, 7], using some associated notion of p-variation for the same
p as above,

e the quantity N([0,T],«) is some local accumulated variation of the ‘rough
lift” of W that counts the increments of w of size a over a bounded interval
[0, 7] for a given positive a;

see Section [I] for the set-up. The regularity assumptions on the diffusivity F are
spelled-out in Section [3]

. Theorem — Let F satisfy the regularity assumptions Assumption 1 and Assump-
tion 2. Assume there exists a positive time horizon T such that the random variables
w(0,T) and (N((O,T), oz))a>0 have ‘sub’ and super exponential tails, respectively,

o P(w(0,T) >t) < cyexp(—t),
o P(N([0,T],a) = t) < ca(a) exp(—t12@)) o >0,
for some positive constants ¢1 and €1 and possibly a-dependent positive constants

co(a) and eo(). Then for any d-dimensional square-integrable random variable Xy,
the mean field rough differential equation

dX; = F(Xt,E(Xt)) dW
has a unique solution defined on the whole interval [0,T].

Results of that form seem out of reach of the methods used in [12, 3]. Theorem
applies in particular to mean field rough differential equations driven by some
fractional Brownian motion with Hurst parameter greater than %, other Gaussian
processes or some Markovian rough paths; see Section It is important that the
solution depends continuously on the driving ‘rough path’, in a quantitative sense
detailed in Theorem As an example that fits our regularity assumptions, one
can solve the above mean field rough differential equation with

F(z, ) = jfcc,y)u(dy)

for some fuction f of class C’g (meaning that f is bounded and has bounded deriva-
tives of order 1 and 2), or with

F(z,p) =g (m Ld yu(dy)>



for some function g of class C’g. The Curie-Weiss model, where F is of the form
F(z,p) = VU(z) + {(z — y)u(dy), falls outside the scope of what is written here,
because of the linear growth rate in z, but is within reach of our method.

One of the difficulties in solving equation comes from the fact that it
happens not to be sufficient to consider each signal W, (w) as the first level of a
rough path; one somehow needs to consider the whole family (I/V.(w))weQ as an
infinite-dimensional rough path. This leads us to defining in Section [1] a rough set-
ting where (W (w), Wt('))ogth is, for each w, the first level of a rough path over

R™ x L4 (Q, F,P; Rm); seemingly, the natural choice for ¢, as dictated by the afore-
mentioned lifting procedure of the Wasserstein space, is ¢ = 2; we shall actually need
a larger value. Unlike the seminal works [12] [3] that set the scene in Davie’s ap-
proach of rough differential equations, such as reshaped by Friz-Victoir and Bailleul
respectively, we use here Gubinelli’s versatile approach of controlled paths to make
sense of equation (0.2). Our mixed finite/infinite dimensional setting introduces an
interesting twist in the notion of controlled path presented in Section [2.1l Defin-
ing the rough integral of a controlled path with respect to a rough driver is done
classically in Section using the sewing lemma. We prove stability of a certain
class of controlled paths by nonlinear mappings in Section which is precisely the
place where Lions’ differential calculus on Py(R?) comes in. One then has all the
ingredients needed to formulate in Section (3| equation as a fixed point problem
in some space of controlled paths. Local well-posedness is proved, and sufficient
conditions on the law of the driver are given to get well-posedness on any fixed time
interval. As expected from any solution theory for rough differential equations, the
solution depends continuously on all the parameters in the equation, most notably
its law depends continuously on the law of the driving rough path. This point is
used in Section 4| to provide a proof of propagation of chaos for an interacting par-
ticle system associated with equation and quantify the convergence rate; see
equation for the particle system. Among others, it recovers Sznitman’ seminal
work [38] on the case where the noise is a Brownian motion. We formulate this
result here for the case of Gaussian rough signals and refer the reader to Theorem
and Theorem [24] for finer and more general statements.

. Theorem — Let W be a continuous centered Gaussian process defined over some
time interval [0, T]. Assume it has independent components and its covariance func-
tion has finite p-two dimensional variation, for some p € [1,3/2). Let the diffu-
sivity F satisfy Assumption 1 and Assumption 2 and some further mild reqular-
ity assumptions satisfied by the above two examples. Then the empirical measure
% Dy (5Xi,(n)(w) of the interacting n-particle system associated with the mean field
rough differential equation , converges almost surely to E(X()) The marginals
of the empirical measure converge at the same mean speed in 1- Wasserstein distance
as an empirical sample of independent, identically distributed, random variables with
the same law as Xg, provided the latter is sufficiently integrable.

While Lyons formulated his theory in a Banach setting from the begining [35], the
theory has mainly been explored for finite dimensional drivers, with the noticeable
exception of the works of Ledoux, Lyons and Qian on Banach space valued rough
paths [33, [36], Dereich follow-up works [19) 20], Kelly and Melbourne application
to homogenization of fast/slow systems of ordinary differential equations [31], and
Bailleul and Riedel’s work on rough flows [2]. One can see the present work as
another illustration of the strength of the theory in its full generality. However,



although the underlying rough set-up associated to (Wi(w), Wi(+))o<t<r is a mixed
finite/infinite dimensional object, a solution to the mean field rough differential
equation is more than a solution to a rough differential equation driven by an infinite
dimensional rough path. Indeed, the mean field structure imposes an additional
fixed point condition, which is to identify the finite dimensional component of the
solution as the w-realization of the infinite dimensional component. This is precisely
this constraint that makes the equation difficult to solve and that explains the need
for a specific analysis.

The present work leaves wide open the question of refining the strong law of large
numbers given by the propagation of chaos result stated in Theorem [2| — Theorem
in its full form. A central limit theorem for the fluctuations of the empirical
measure of the particle system is expected to hold under reasonable conditions on
the common law of the rough drivers. Large and moderate deviation results would
also be most welcome. In a different direction, it would be interesting to investigate
the propagation of chaos phenomenon for systems of interacting rough dynamics
subject to a common noise. Very interesting things happen in the It setting in
relation with mean field games [8,32]. Also, one would get a more realistic model of
natural phenomena by working with systems of particles driven by non-independent
noises. Individuals with close initial conditions could have drivers strongly correlated
while individuals started far apart could have (almost-)independent drivers. Limit
mean field dynamics are likely to be different from the results obtained here — see
[14] for a result in this direction in the It6 setting. We invite the reader to make his
own mind about these problems.

Notations. We gather here a number of notations that will be used throughout the
text.

e We denote by Sy the simplex {(s,t) €[0,00)2: 5 < t}, and set
ST .= {(s,t) € [0,T]* : s < t}.

» We denote by (2, F, P) an atomless Polish probability space, F standing for the
completion of the Borel o-field under P, and denote by {-) the expectation operator
and by (), for r € [1,+0], the L"-norm on (£, F,P) and by (-)) and {-)), the

expectation operator and the L"-norm on
(02, F®2 P2,
Importantly, when r is finite, L"(Q2, F, P;R) is separable as € is Polish.

e When dealing with processes Xo = (X¢)ses, defined on some time interval I, we
often write X for X,.

1 — Probabilistic Rough Structure

We define in this section a notion of rough path appropriate for the study of
mean field rough differential equations. It happens to be a mixed finite/infinite
dimensional object. Throughout the section, we work on a finite time horizon [0, T'],
for a given T' > 0.

o We define the first level of our rough path structure as an w-indexed pair of
paths

(Wt(w)’Wt('))ogth’ (11)



where (Wt()) o<t<r 18 @ collection of g-integrable R™-valued random variables on
(Q, F,P), which we regard as a deterministic L%(2, F, P; R™)-valued path, for some
exponent ¢ = 1, and (Wt (w))o <t<T stands for the realizations of these random vari-
ables along the outcome w € §2; so the pair takes values in R™ x L9(Q2, F,P; R™).
As we already explained, a natural choice would be to take ¢ = 2, but for technical
reasons that will get clear below we shall require ¢ > 8.

The second level of the rough path structure contains a two-parameter path

(W&t(w))ogsgth with values in R™*™ obtained as the w-realizations of a collection
of g-integrable random variables (W57t(')) 0<s<t<T defined on €2; importantly, this
second level also comprises the sections (W3 (w, '))ossgtsT and (Wj t( w))ogsgth
of a collection of -valued random variables defined on the product space
(Q2,}'®2, P®2) and considered as a deterministic L? (QQ,]-@Q,P@Q; Rmxm)—valued
path (Wé%t(‘7'))0<s<t<T' Each Wj%t(-,'), for (s,t) € ST, belonging to the space

Lq(QQ,}"®2, p®2 Rmxm), we have
<Wj|:t(w7 )>q < 0, <Wj|:t('7w)>q < O, (12)

Rme

for P-almost every w € 2. Below, we shall assume to be true for every w € Q.
This is not such a hindrance since we can modify in a quite systematic way the
definition of the rough path structure on the null event where fails; this is
exemplified in Proposition [ below. Taken this assumption for granted, we can
regard Q 3 w — W3 (w,-) and © 5w — W3 (-,w) as random variables with values in
L9(2, F,P;R™*™): Since LY(Q2, F,P; R™*™) is separable, it suffices to notlce from
Fubini’s theorem that, for any Z € Lq(Q,]:, P;R™ ™) Q3w — <W87 w, Z>q is

measurable, and similarly for Wﬁt(, w).
Hence, the entire second level has the form of an w-dependent two-index path
with values in (Rm x L1(Q, F,P; Rm))®2 and is encoded in matrix form as

< Wep(w)  Wo(w,-)

W (w) Way(-) (1.3)

>0<s$t<T‘

Here,
o W, 4(w) is in (R™)®2 ~ RmM*m
o WL +(w, ) is in R™®L(Q, F,P;R™) ~ LI(Q, F,P;R™*™),
o W (-, w)isin LI(Q, F,P;R™) @ R™ ~ L1(Q, F,P;R™*™),

o Ws’t(-, ) is in L9(Q®? F&2 p®2; Rmxm) the realizations of which read in the

form Q2 3 (w,w') — Wi%t(w,a/) € R™*™ and the two sections of which are
precisely given by Wé%t(w, ):Q3W - Wﬁ%t(w,w'), and Wé%t(-,w) 5w —
Wi (o', w), for w e Q.

As usual with rough paths, algebraic consistency requires that Chen’s relations

Wy (w) = W, ( )+ Wsi(w) + Wi s(w) @ W i (w),

Wiy () = Wiy (@) + Wiy (,w) + Wis () @ Wi (w), (1.4
r,t(wv ) = ( »0) +Ws,t(w=') + Wi s(w) @ Wii(-),
Wi () = ( 2) W)+ W () @ W),
hold for any 0 < r < s <t <7T. We used here the very convenient notation

fr,s = fs - frv



for a function f from [0, 00) into a vector space. In (|1.4) and throughout, we denote
by X(1)®Y(+), for any two X and Y in LY(Q2, F, P;R™), the random variable

(w, &) = (Xi(w)Y; ()

1<i,j<m

defined on the product space Q2. It defines an element of LY (92, F®2 po2. Rmxm).

Remark — The last three lines in Chen’s relations (1.4) are somewhat redundant.
Assume indeed that we are given a collection of random variables (W&t(-, '))ogsgth
satisfying the last line of (1.4). Then, for all0 < r < s <t <T and for P®2-almost
every (w,w') € Q2, it holds

W#;(w,w') = Wi%s(w,w') + Wit(w, W) 4+ Wy s(w) @ Wi (w').

Clearly, for P-almost every w € €1, the second and third lines in hold true
as well. This is slightly weaker than the formulation as, therein, the second
and third lines are required to hold for all w € Q. As exemplified in the proof of
Proposition |ZL one may modify the definition of WL so that the second and third
lines in hold true for all w and for all 0 <r <s<t<T.

Definition — We shall denote by W (w) the rough set-up specified by the w-dependent
collection of maps given by (L1.1)) and (1.3)).

As for the component WL of W (w), the notation I is used to indicate, as we
shall make it clear below, that Wi%t(‘, -) should be thought of as the random variable

(w, ) f t (W, () = W) @ dW, ().

Since 02 5 (w,w’) — (Wi(w))i=0 and Q2 3 (w,w’) — (W(w'))i=0 are independent
under P®2, we then understand Wift as an iterated integral for two independent
copies of the noise. While such a construction is elementary for a random C' path,
the well-defined character of this integral needs to be proved for more general prob-
ability measures P.

. Example — Let W stand for an R™-valued Brownian motion defined on some prob-
ability space (2, F,P). Denote by Wy(-) the equivalence class of Q 3 w — Wi(w)
m Lq(Q,}", P; Rm), and extend W; on the product space (QZ,}'®2,P®2), setting
Wi(w,w') := Wi(w). Define also on the product space the random variable W/ (w,w’)
= Wy(w'). Then, W and W' are two independent m-dimensional Brownian motions
under P®2, and one can construct the time-indexed Stratonovich stochastic integral

0?3 (w,w) — <Ut(Wr ~ W) ® odW,f} (w,w')) € C(Sy; R™™).

s o<s<t<T

The stochastic integral is uniquely defined up to an event of zero measure under P®2.
Up to an exceptional event (of (22, FO2, P®?)) we then let

¢
W (w,w') = <J (W, — W) ®OdW7f) (w,w'), 0<s<t<T.
We can specify the definition of W on the remaining exceptional event and then
modify the definition of W on a null event of (0, F,P) in such a way that Chen’s
relations (1.4) hold everywhere —see the end of the proof of Proposition below for a



detailed proof of this fact—. The process (Ws,t(w))oqq is defined in a standard way
from a Stratonovich integral defined outside a set of null measure:

t
W, () i <J (W, — W) ®odWT) @), 0<s<i<T

S

The principle underpinning the above example may be put in a more general
framework which will be useful to prove continuity of the It6-Lyons solution map to
the mean field rough differential equation . We advise the reader to come back
to this proposition later on.

. Proposition — Let (2,G,Q) be a probability space, and W' := (Wt1>0<t<T and
w2 = (W)

o<t<r b€ two independent and identically distributed R™-valued pro-
cesses defined on Z. Assume they have continuous trajectories and

EQ[ sup |Wt1‘q] < 0.
0<t<T
Let also ((Wj;{)o<s<t<T)ij:1 o be four R™ @ R™ =~ R™*™-yalued continuous paths
such that

Eq [ sup |W;§ q] < o,

0<s<t<T

fori,j=1,2, and (Wl, Wl’l) is independent of W2. Last, assume that, for almost

)

with [0, 1] equipped with its Borel o-algebra B([O, 1]) , and denote by Leb the Lebesque
measure on [0,1]. Then we can find a triple of random variables (T/V, W, WJL), the

first two components being defined on (Q,]—'@B([O, 1)), Q®Leb), the last component
being constructed on the product space, and the whole family satisfying all the above
requirements for a rough set-up, such that

P({i6w: (W) en) = (W) ©)}) -1,

and, for P-almost everyw = (£, u), the law of W(-,w) is the same as the conditional
law of W21 given (Wl(ﬁ),WQ(é), WLI(S)).

£

1 1,1 1,2
((W(é)HW & w :

w2(e) )\ wrig) w2

o~~~

satisfies Chen’s relation. Set

Proof — Recall first from Blackwell and Dubins [4] the following form of Skorokhod
representation theorem. There exists a function

w:[0,1] x P(C(SFiR™ ®R™)) - C(SFiR™ @R™)

such that
o for every probability i on C(ST), equipped with its Borel o-field, [0,1] 3 u —
U (u, p) is a random variable with p as distribution — [0, 1] being equipped with
Lebesgue measure,
o the map ¥ is measurable.



1,2 11
Let now (q(w W5, W, ))wl,wzeC([O,T];Rm);wl’l‘sC(SQT;Rm@Rm)

probability of W21 given (W', W2, W), Define on Q the random variables
W (& u) := W), W(Eu):=WhH(e),

be a regular conditional

and, on 02,
W/((§7 u)’ (5/7 u/)) = W1(§/)7
(& w), (€)= v (!, g(WHE), W€, WH (), ).

Since the law of (VV, W’,W) under P®? is the same as the law of (Wl,WQ,Wl’l)
under Q, we deduce that the law of (VV, W' W, WT) under P®2, with WT (w,w’) :=
WL (W', w), is the same as the law of (Wl, w2, whl, W2’1) under Q. In particular,
with probability 1 under P®% for all 0 < r < s <t < T,

WIt(w,w’) = WIs(w,w') + WIt(w, W) 4+ W, s(W') @ Wy (w),

that is
W,{%t(w,w’) = W,J,%S(w,w') + Wit(w, W) 4+ W, s(w) @ W (w).

Call now A € F the set of those w’s in  for which the above relation fails for w’ in
a set of positive probability measure under P. Clearly, P(A) = 0. Define in a similar
way A’ by exchanging the roles of w and w’. For w € A u A, set W(w) = 0; and
whenever w € A or w' € A’, set Wh(w,w’) = 0. If w ¢ A, we have, by definition of
A, the third identity in — pay attention that we use the fact that the identity
is understood as an equality between classes of random variables that are P-almost
surely equal. If w € A, it is also true since all the terms are zero. The second
identity in is checked in the same way. As for the first one, it holds on the
complementary B® of a null event B. We then replace A by AU B and A’ by A’ U B
in the previous lines and set W(w) =0 and W(w) =0 on Au A’ U B. >

We use in this work the notion of p-variation to handle the regularity of the various
trajectories in hand. The choice of the p-variation, instead of the simplest Holder
(semi-)norm, is dictated by the arguments we use below to prove well-posedness of
equation . As we make it clear in the text, we shall indeed invoke some integra-
bility results due to Cass, Litterer and Lyons [11] which are explicitly based upon
the notion of p-variation and are not proved in Holder (semi-)norm. Several types
of p-variations are needed to handle differently the finite and infinite dimensional
components of a rough set-up W. Throughout, the exponent p is taken in the in-
terval [2,3). For a continuous function G from the simplex SJ into some R, we set,
for any p’ > 1,

n
G = sup Z Gy . 4|P
” H [0,T],p'—var Ot <ty <tn=T A_1| i—15 2‘ ’

and define for any function g from [0, 7] into R,

Hg” [0,T],p—var * HGH [0,T],p—var

as the p-variation semi-norm of its associated two index function G,; := ¢; — gs.
Similarly, for a random variable G(-) on Q with values in C(S7;R?), and p’ > 1, we
define its p’-variation in L? as

<G('>>Z;[O,T],p’7var = sup Z <Gti—1:ti(')>§ ) (15>
i=1

O=to<tyi--<tn=T ;_



10

and define for a random variable G(-) on 2, with values in C([0, T]; R)
P o P
<G(')>q;[0,T],p7var T <G(')>q;[07T],p7var’

as the p-variation semi-norm in L? of its associated two-index function 81 3 (s,t) —
Gst(:) = Gi(-) — Gs(+). Last, for a random variable G(-,-) from (Q2, F®?) into
C(ST:RY), we set

n

(G g = S > (G () (1.6)

O=to<ty-<tn=T i=1
Given these definitions, we require from the rough set-up W that

e For any w € Q, the path W(w) is in the space C([0,T];R™), and the map
W : Q3w W(w) e C([0,T];R™) is Borel-measurable and g¢-integrable
(meaning that the supremum of W over [0,7] is g-integrable).

e For any w € €, the two-index path W(w) is in C(S¥;R™*™), and the map
W : Q3w W(w) e C(S; R™*™) is Borel-measurable and g-integrable (i.e.,
the supremum of W over S has a finite g-moment).

e For any (w,w’) € Q2, the two-index path W (w,w’) is an element of the space
C(ST:R™* ™) and the map WL : Q2 5 (w,w) — W (w,w’) € C(ST;R™*™) is
Borel-measurable and g-integrable. In particular, for almost every w € €2, the
two-time parameter path W (w,-) is in C(SQT; LY(Q, F,P; Rmxm)), and the
map 2 3w +— Wi(w, -) is Borel-measurable and g¢-integrable, and similarly
for WL (-, w); as before, we assume the latter to be true for every w € Q. Also,
the two-time parameter deterministic path W(-,-) is a continuous mapping
from SI" into L¢ (QQ, FO2 pe2, Rme).

We then set, for all 0 < s <t < T and w € (,
U(S’t’w = HW Hp ],p—var + <W ’ >Z, ],p—var
2
+ HW w Hps/t |,p/2—var + <WJL >p/st 1,p/2—var (17)

/2
+ <WJ_ >p/s t],p/2—var <<WJ_(7 ')>>Z;[s7t],p/2—var7

and we assume that, for any positive finite time 7" and any w € €, the quantity
v(0,T,w) is finite. Importantly, we have the following super-additivity property.
Forany 0 <r <s<t<T, and w e Q, we have

v(r,t,w) = v(r,s,w) + v(s, t,w).
Observe also from [27, Proposition 5.8] that w — (v(s,t,w))(svt)esg is a random
variable with values in C (82T ;R4 ). Throughout the analysis, we assume

(v(0,T, -)>q < o0,

for any rough set-up considered on the interval [0,7]. By Lebesgue’s dominated
convergence theorem, the function

T .
82 3 (Svt> — <U(3at7 >>q
is continuous. We shall actually assume that it is of bounded variation on [0,T],

1.€.,

<U(')>q;[s,t],1—var = sup Z<U ti—1,ti, )>‘1 < .

o<ti<- <tK<Tl 1
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Below, we set
w(s,t,w) = v(s,t,w) + W(-))g[s,,1-var- (1.8)
Note the useful inequality
(w(s, t,))g < 2w(s,t,w), (1.9)
and the super-additivity property satisfied by w
w(r,t,w) = w(r,s,w) +w(s,t,w).
Below, we often check that SI 3 (s,t) — (v(s,t,")), is of bounded variation by

proving that it is Lipschitz continuous.

. Example — Gaussian processes — Start from an R™-valued collection W :=
(WL, ... .W™) of independent and centered continuous Gaussian processes, defined
on some finite time interval [0,T], such that the two-dimensional covariance of W
is of finite p-variation for some p € [1,3/2) and there exists a constant K such thalt,

for any subinterval [s,t] < [0,T] and any k =1,--- ,m, one has
p
sup 3 [E[ (Wi, —wE) Wk, —wh)]||" < Kt — s, (1.10)
i,J

where the supremum is taken over all dissections (t;); and (sj); of the interval [s,t].
See Definition 5.5/ in [27]. This setting includes the case of fractional Brownian
motion, with Hurst index greater than 1/4. Without any loss of generality, we may
assume that the process W is constructed on the canonical space (Q, F,P), where Q =
W, with W := C([0,T];R™), F is the Borel o-field, and W is the coordinate process.
We then denote by (2, 'H,P) the abstract Wiener space associated with W, where H is
a Hilbert space, which is automatically embedded in the subspace C¢ V2" ([O7 T]; Rm) of
C([O, T, Rm) consisting of continuous paths of finite p-variation. By Theorem 15.34
in [27], we know that, for w outside an exceptional event, the trajectory W(w) may
be lifted into a rough path (W(w),W(w)) with finite p-variation for any p € (2p, 3),
namely W(w) has a finite p-variation and W(w) has a finite p/2-variation. We lift
arbitrarily (say onto the zero path) on the null set where the lift is not automatic.
The pair (W, W), indezed by w is part of our rough set-up. In this regard, we recall
from Theorem 15.34 and Theorem 7.44 in [27] that the random variables

Qowm |[W(w Qsw— [Ww (1.11)

)H [0,T],p—var’ )” [0,T,p/2—var’

have Gaussian tails, and thus have a finite LY-moment.

One can proceed as follows to construct the other elements
W w,)) ey WHC @) WHCS )

of our rough set-up. We extend the space into (2, FO2, P®2) with Q embedded
in the first component say, and denote by (W, W') the canonical coordinate process
on Q2. They are independent and have independent Gaussian components under
P2. The associated abstract Wiener space is nothing but (QQ,’H @H,P®2). The
process (W, W') also satisfies Theorem 15.34 in [27] for the same exponent p as
before, so, we can enhance (W, W') into a Gaussian rough path, with some arbi-
trary extension outside the P®?-exceptional event on which we cannot construct the
enhancement. To ease the notations, we merely write W(w) for W(w,w') as it is
independent of w; similarly, we write W'(w') for W' (w,w’). Proceeding as before, we
call (Wl(w,w/))ww,eﬂ, the upper off-diagonal m x m block in the decomposition of
the second-order tensor of the rough path in the form of a (2m) x (2m)-matriz with
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flour blocks of size m x m. Chen’s relationship then yields, for P®?-almost every
(w,w’),

W,,t(w W) = W#s(w,w') + Wj%t(w, W) 4+ W s(w) @ W (w),

for all r < s < t. As before, the paths of (Wil'(wju/))ww,EQ

of finite p/2-variation and the p/2-variation semi-norm has we know from Theo-
rem 15.33 in [27] that the 1/p-Holder semi-norm of W(w), which we denote by
W (w)]| 0.7], 1/p) Holder, and the 2/p-Hoélder semi-norm of WL (w,w’), which we de-

note by HW w, ') [0,T1,(2/p)—Hélder’

when considered as random variables on the spaces (0, F,P) and ((22, F®?, P®2). In
particular, for almost every w € 2, we may consider (WéLt(w, ~))(S pesy @5 @ contin-
) s )

are almost surely

have respectively Gaussian and exponential tails,

uous process with values in LY. Moreover,

/2 /2
<WJL >7’ [0,T],p/2—var Z<th Lt ’)>§

0= t0<t1< <tp=
p/2
< T (W (@, Moz, 2ot )

< T (W W (o)),
which shows that the left-hand side has finite moments of any order. Arguing in the
same way for (WJ'(',LL)))WEQ and for WL, we deduce that v in s almost surely
finite and q-integrable. Obviously, by replacing [0,T] by [s,t] < [0,T], we obtain
that the g-moment of v is Lipschitz, as required.

All these properties (that hold true on a full event) may be extended to the full set
0% by arquing as in the proof of Proposition@

To use that rough set-up in our machinery for solving mean field rough differential
equations we need a version of an integrability result of Cass, Litterer and Lyons
[11] whose proof is postponed to Appendix Given a continuous positive valued
function w on S, a non-negative parameter s and a positive threshold «, we define
inductively a sequence of times setting 79(s, ) := s, and

T (s, a) == inf{u >17(s,a) t w(r7(s,@),u) = a}, (1.12)
with the understanding that inf (J = +00. For t > s, set

Nw([s,t],a) = sup{n eN : 77(s,a) < t}. (1.13)

Below, we call N, the local accumulation of w (of size « if we specify the value of
the threshold). When w(s,t) = w(s,t,w) with w as in and when the framework
makes it clear, we just write N ([s,t],w, ) for N5 ([s, t] ) Similarly, we also write
Tn(S,w, a) for 77(s, ) when w(s,t) = w(s,t,w). We will also use the convenient
notation

T (s,t,a) == 17 (s,a) At

The proof of the following statement is given in Appendix Recall that a
positive random variable A has a Weibull tail with shape parameter 1/p if AYP has
a Gaussian tail.
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6. Theorem — Let W be a continuous centered Gaussian process, defined over some fi-
nite interval [0,T]. Assume it has independent components, and denote by (W, H, P)
its associated Wiener space. Suppose that the covariance function is of finite two
dimensional p-variation for some o € [1,3/2) and satisfies the Lipschitz estimate
(L.10). Then, for p € (20,3) and a > 0, the process N(-, &) :== (N([0,T],w,q))weq
associated to the rough-set up built from W has a Weibull tail with shape parameter
1/p.

The integrability estimate on N required in Theorem [I]is satisfied in this setting.
For the same value of p, the quantity w(0,7") in also satisfies the integrability
statement of Theorem the latter then applies in the above Gaussian setting.
Building on Cass-Ogrodnik’s work [13] on Markovian rough paths one can prove a
similar result as Theorem [6] for Markovian rough paths.

2 — Controlled Trajectories and Rough Integral

With a rough set-up at hands on a given finite time interval [0, T'], one can follow
Gubinelli [29] and define an associated notion of controlled path and rough integral.
This section is dedicated to that task, for which we follow a now classical approach.

2.1 — Controlled Trajectories

We first define the notion of controlled trajectory for a given outcome w € ).

7. Definition — An w-dependent continuous R -valued path (Xi(w))o<i<t is called an
w-controlled path on [0,T] if its increments can be decomposed as

Ko@) = 8 Xo(@)Wor (@) + E[uXo(w, )Wor ()] + B (w), - (21)

where

( Xy (w>)0<t<T belongs to C([O,T]; Rde)}

o (0 Xt( "))OstsT belongs to C([0,T]; L¥3(Q, F,P;R™*™)),

o (Be(W) s gesy is in C(85;RY),
and

X @)l forang = o)+ [8Xo(w)] + (BuXolw )y + IX @ o1, < o,

with

11X @) llo, 71,00 = 1X @) 0,77, + 102X (@)llfo,77,0, + <X (@, )10 170 pra/a
+ IRX (@) lj0,7700/2:

and
K@y = s m
Xl = sup Sl
X (@, ) o 1w pays = e <5w)((:t, w)lzf/ 2,
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R (w)|

RX = ’ = .

IR (W)l 0,77,,p/2 [S’t]sg[%ﬂ w(s. £,

We call §; X (w) and 6, X (w,-) in the decomposition (2.1 the derivatives of the
controlled path X (w).

The value 4/3 is somewhat arbitrary here. The analysis provided below could be
managed, if needed, with another exponent strictly greater than 1, but this would
require higher values for the exponent ¢ than that one we use in the definition of
the rough set-up — recall ¢ > 8. It seems that the value 4/3 is pretty convenient,
as 4/3 is the conjugate exponent of 4. It follows from the fact that || X (w)||. [0,7),»
is finite that an w-controlled path is controlled in the usual sense by the first level
(Wi (w), Wt(~))0 <1< Of our rough set-up, provided the latter is considered as taking
values in an infinite dimensional space.

We now define the notion of random controlled trajectory, which consists of a
collection of w-controlled trajectories indexed by the elements of (2.

8. Definition — A family of w-controlled paths (X (w))ueq such that the maps

Q5w (X (w))geper € C([0, T RY)

Q3w (6:X:(w))geper € C([0,TT;RT*™)
Q5w (0,X0(w)) eper € C[0,T]; LY3(Q, F, P;R™))
Qawn—»( )steST’

are measurable and satzsfy

(Xo())y + NXO o175 < © (2:2)
is called a random controlled path on [0,T].

Note from ([1.9) the following elementary fact, whose proof is left to the reader.

9. Lemma - Let ((Xt(w)))o<t<T)W€Q be a random controlled path on a time interval
[0,T]. Then, for any 0 < s <t < T, we have
1/2
Kty < (X Oy 11,0 005,827

< UXOllporympys (ol 1)y < 2AXOllfor1pyy wls: tw) .

Similarly,
(Xat()Dy < X Ol o105 (05,895 < 22X Ol o175 w5, w) V2.

A straightforward consequence of Lemma[9]is that a random controlled trajectory
induces a continuous path from [0, 7] to L?(Q, F,P;R9).

2.2 — Rough Integral

Set U := R™ x L9(2, F,P;R™) and note that U ® U can be canonically identified
with

(R" @R™) @ (Rm ®LUQ, F,P; Rm))
® (Lq(Q,f, P.R™) ® Rm) ® (Lq(Q,J-“, P;R™) ® LY(Q, F, P; Rm)).



10.

15

We take as a starting point of our analysis the fact that W (w) may be considered
as a rough path with values in U @ U®?, for any given w. Indeed the first level
W (w) = (We(w), Wi(+)),~, of W (w) is a continuous path with values in U and
its second level

t=0

. Wo ¢ (w) Wlt(w’ )

is a continuous path with values in UQU, with Wy ;(w) seen as an element of R ®R™,
with W&t (w,-) seen as an element of R @ LI(Q2, F,P;R™), and W&t(-, w) seen as an
element of LI(Q2, F,P;R™) ® R™, and W&t(-, -) as an element of L1(Q, F,P;R™) ®
L9($2, F,P;R™). Condition then reads as Chen’s relation for W (w).

We can then use Feyel-de la Pradelle’ sewing lemma [23], in the form given by
Coutin and Lejay in [I5] [16], to construct the rough integral of an w-controlled path
and a Banach-valued rough set-up.

Theorem — There exists a universal constant cy and, for any w € Q, there exists a
continuous linear map

(e gercy = ([ Xeatr @ aW, )

(s,t)eST

from the space of w-controlled trajectories equipped with the norm || - |

«,[0,T],ps onto
the space of continuous functions from S into RTQR™ with finite norm |- 0, 77,w,p/2>
with w being evaluated along the realization w, that satisfies for any 0 <r < s <t <
T the identity

) X)) ® AW ()

_ f X (w) @ AW o () + J X () ® AW (@) + Xoa () @ War (),

together with the estimate

Lt Xou(w) ® AW, (w) — {53:Xs(w)ws,t(w) B[ X (w, Wi (- “’)]}’ (2.3)

< o [|X ()] .

[0,7],w,p W(S, T, w)

To make notations clear, 0, Xs(w)W;s(w) is the product of a d x m matrix and
an m x m matrix, so it gives back a d x m matrix, with components

(5:rXS(W)WS,t(W)) 7= Z (5IXS(W)) (Ws,t("‘))) ]a
k=1
forie {l,---,d} and j e {1,--- ,m}. We also stress that the notation

E[6,X(w, ')Wil,_t('v w)],

which reads as the expectation of a matrix of size d x m, can be also interpreted as a
contraction product between an element of R? ® L/ 3(Q, F,P;R™) and an element of
L7(Q, F,P; R™)®R™. While this remark may seem anecdotal it is actually important
for the proof below.
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Proof — The proof is a consequence of Proposition 2 in Coutin and Lejay’s work
[15], except for one main fact. In order to use Coutin and Lejay’s result, we consider
W (w) as a rough path with values in U @U®? and (X (w), 6, X (w), 6, X (w), RX (w))
as a controlled path; this was explained above. When doing so, the resulting integral
is constructed as a process with values in R¢ ® U, whilst the integral given by the
statement of Theoremtakes values in R?. We denote the R‘®@U-valued integral by
(I X5 u(w) ® qu(w))(&t)eszT. We use a simple projection to pass from the infinite
dimensional-valued quantity I'X;,(w) ® dW,(w) to the finite dimensional-valued
quantity Si Xsu(w) ® dW (w). Indeed, we may use the canonical projection from
RIQU ~ (Rd ® Rm) ® (Rd ®LI(Q, F,P; Rm)) onto RY ® R™ to project IEXS,u(w) ®
dW ,(w) onto Si Xsu(w) ® AW, (w). >

As usual, we define an additive process setting
¢ £
j Xy(w) ®dW  (w) = f Xosu(w) @AW, (w) + Xs(w) @ Wit (w),
S S

for 0 <t < T. We can thus consider the integral process (S(t) Xs(w)®dW 4(w))
Rdxm

0<t<T
as an w-controlled trajectory with values in , with x-derivative a linear map

from R™ into R*™, and entries

<5x[ L X, (w) ®dWs(w)]t> e (Xe(@)) 05k

for i € {1,---,d} and j,k € {1,--- ,m}, where §;; stands for the usual Kronecker
symbol, and with null p-derivative, namely

5, [ f X.(w)® dWs(w)] 0. (2.4)
0 t
This property is fundamental for the fixed point formulation of the mean field rough
differential equation (0.2)). The remainder RIX®IW can be estimated by combining
(2.3) together with the inequality

02 X () Woyt (1) + E[8, X, (w, W (- w) |

< { sup [0 X, (w, )|+ sup <(5MXT(OJ)>4/3} w(s,t,w)2/p
re[0,11] rel0,T]

< [[X(w)]

*,[0,T],w,p (1 + w(O,T,w)l/p> w(s,t,w)Q/P7

so that, with the notation as in Definition [7]

When X (w) is given as the w-realization of a random controlled path (X (w)).eq,
the integral may be defined for any w’ € Q. For the integral §; X (w) ® dWj to
define a random controlled path, its || - [|{0,7],.,p-Semi-norm needs to have finite 8-th
moment. When the trajectory X (w) takes in values in R? ® R™ rather than R?, the
integral

L X, (@) ® AW o (w)

< 0. (2.5)
[0,T],w,p

t
f X, (w) @ dW 4(w) e RI@ R™ @ R™
0
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may be identified with a tuple

((L X,() MW&“"))M,J

We then set for i e {1,---,d}

<£ Xs(w)dWs(w)>i = g(ﬂ X,(w) ® dWs(w)> :

4,053

(4,5,k)e{1, - d} x{1,- ,)m}x{1,-- ;m}

and consider Sé X, (w)dW 4(w) as an element of R?.

2.3 — Stability of Controlled Paths under Nonlinear Maps

We show in this section that controlled paths are stable under some nonlinear,
sufficiently regular, maps and start by recalling the reader about the regularity
notion used when working with functions defined on Wasserstein space. We refer
the reader to Lions’ lectures [34], to the lecture notes [7] of Cardaliaguet or to
Carmona and Delarue’s monograph [9, Chapter 5] for basics on the subject.

e Recall (€2, F,P) stands for an atomless probability space, with Q a Polish space
and F its Borel o-algebra. Fix a finite dimensional space E = R* and denote by
L? : = L%(Q, F,P; E) the space of E-valued random variables on § with finite second
moment. We equip the space Po(E) := {L£(Z); Z € L?} with the 2-Wasserstein
distance

a1, i2) o= inf {21 = Zolas £(21) = o, £(Z2) = pia}.

An RF-valued function u defined on Py(FE) is canonically extended into L? by setting,
for any Z € L?,
U(Z):= u(E(Z))

o The function u is then said to be differentiable at € Po(E) if its canonical
lift is Fréchet differentiable at some point Z such that £(Z) = u; we denote
by VzU € (L?)* the gradient of U at Z. The function U is then differentiable
at any other point Z’ € L? such that £(Z’) = u, and the laws of VU and
VU are equal, for any such Z’.

o The function u is said to be of class C' on some open set O of Po(E) if its
canonical lift is of class C! in some open set of L? projecting onto O. It is
then of class C' in the whole fiber in L? above O. If u is of class C', then
VzU is 0(Z)-measurable and given by an £(Z)-dependent function Du from
E to E* such that

VLU = (Du)(2); (2.6)
we have in particular Du € Li(E; EF):= L2(E,B(E), u; E¥) , where B(E)
is the Borel o-field on E. In order to emphasize the fact that Du depends
upon L(Z), we shall write Du(L£(Z))(-) instead of Du(-). Sometimes, we
shall put an index p and write D,u(£(Z))(-) in order to emphasize the fact
that the derivative is taken with respect to the measure argument; this will
be especially useful for functionals u depending on additional variables. Im-
portantly, this representation is independent of the choice of the probability
space (€2, F,P); in fact, it can be easily transported from one probability
space to another. (A simple proof of the structural equation can be
found in [40].)



18

As an elementary example, think of a real-valued function u of the form u(u) =
f(§2?u(dz)), for which the lift Z —U(Z) = f(E[Z?]) has differential (dzU)(H) =
2f'(E[Z?]) E[ZH] and gradient 2" (E[Z?%]) Z, so Du(u)(z) = 2f'( § z*u(dz))z here.
We refer to [7] and [9, Chapter 5] for further examples.

e Back to controlled paths. Let F stand here for a map from R% x L%(Q, F, P; R%)
into the space L(R™,R%) = R?® R™ of linear mappings from R™ to RY. Intuitively,
F should be thought of as the lift of the coefficient driving equation (0.2)), or, with
the same notation as in , as F itself, with the slight abuse of notation that it
requires to identify F and F. Our goal now is to expand the image of a controlled
trajectory by F.

Regularity assumptions 1 — Assume that F is continuously differentiable in the
joint variable (z,Z), that 0, F is also continuously differentiable in (x,Z) and that
there is some positive finite constant A such that

sup |F(z, 1) v |0F (z, )| v |5£F(m,,u)| <A,
zeR4, uePy(R?)

sup HVZF(%Z)HQ v ||3xVZF(x,Z)||2 <A,
zeR4, L(Z)eP2(R%)

(2.7)

and
VzF(x,-) : L3(Q, F,P;RY) — L*(Q, F,P; L(RY,R?®@R™))
Z—NVzF(x,Z)=D,F(z,L(Z))(Z)
is a A-Lipschitz function of Z € L2(Q, F,P;R%), uniformly in x € R%.

Importantly, the L2-Lipschitz bound required in the second line of may be
formulated as a Lipschitz bound on Py(RY) equipped with da. Moreover, notice
that L2(Q,F,P; L(RY,R? @ R™)) can be identified with L*(Q, F,P;R?)?*™; also,
0:F(x,Z) and VzF(x,Z) will be considered as random variables with values in
L(Rd, RY® R™) ~ R?®R™ @R, As an example, the functions

F(z, ) = jf(zc,y)u(dy)

for some fuction f of class C’g, and

Flz,p) =g <fv Jyu(dy)>

for some function ¢ of class C?, both satisfy Regularity assumptions 1.

We expand below the path (F(X;(w), Y;(+))) < ;<p> Which we write F(X (w), Y (+)),

where X (w) is an w-controlled path and Y(-) is an R%valued random controlled
path, both of them being defined on some finite time interval [0,T"]. Identity
tells us that a fixed point formulation of the mean field rough differential equation
will only involve pairs (X (w), Y (:)) such that

0uX(w) =0, 0, Y(-) =0, (2.8)

which prompts us to restrict ourselves to the case when X(w) and Y have null
p-derivatives in the expansion ([2.1)).
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11. Proposition — Let X (w) be an w-controlled path and Y (-) be an R%*-valued random
controlled path. Assume that condition (2.8]) hold and we have the w-independent
bound

M = OZ?ET (’(5$Xt(w)‘ v <(5$Yt(')>oo> < 0.

Then, F (X (w),Y (:)) is an w-controlled path with
5 (F(X(w), Y(-)))t = 0,F (X (w), Yi(+)) X (w),

which is understood as (ﬁxeFi’j (Xt(w),Yt(‘)) (6fo(w))k)ijk, with i,k € {1,--- ,d}
and j € {1,--- ,m}, and (with a similar interpretation for the product)

0 (F(X(@),Y () = V2F (Xe(w), Yi() 83l
— D,F(Xy(w), £(X0)) (Xi()8: i),

and one can find a constant Cy ar, depending only on A and M, such that
IPX @)Y O lpiryg < Ot (L 1K@y + Y Ollor70002)-

Proof — For 0 < s < t, expand F(X(w),Y(:))s into

F(X (@), Y () = F(Xe(w), Yi()) - F(X ()
= {P(Xe(w), Yi() = F(X(@). Yi() |
2.9
+{F(X()Yt<)) ( o). %:0)) } 2

—{W+@+®f+{@+6)}
where

(1) 1= 0P (Xo(w), Ys()) {8 Xo (@) Wea (@) + B, (@)},
(2) = f [eP (X060, 1)) — 2B (X2 (). Yo)) | Xenlw)

OF| [0 (X0 @ Y50)) = 2P (X, Vo) | Ku)
(4) 1= (V2F (Xo(@), Ys()) Yaal)),
(5) := j 1 (VAP (K@) Y ()) = V2P (Ko@), V() ) Yaal) ) dA;

we used here the fact that X (w) and Y (-) have null p-derivative and where we let

J(W) = Xo(w) + AXa (@), Y () = Yalo) + AYau(-). (2.10)

0]
X s;(s,t)

s;(s,t
We read on the decomposition 1.' the formulas for the z and p-derivatives of

F(X(w),Y(:)). The remainder R ) in the controlled decomposition of the path
F(X(w),Y(-)) is

0.F (X (), V5 ()) B (@) + (VR (Xo(w), Vo)) RL()) + (2) + (3) + (5). (211)

We now compute ||F (X (w),Y(-))

*7 [O7T] 7w7p
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e We have first from the regularity assumptions on F that the initial conditions
for the quantities

F(X(@).Y(), 6 (F(X@). Y (). 4(F(X (@) Y()),
are all bounded above by AM.

e Variation of F(X(w),Y(-)). Using the Lipschitz property of F and Lemma [9]
we have

[F(X@),Y()],,| = [F(X@).YO)], - [F(X ). Y ()],
<A (’Xs,t(w)‘ + <Y:9t()>2>

< 28 (JIX @) o105 + IV O

[O,T],w,p>4) w(57 tv w)l/p’

e Variation of 6, (F(X(w),Y(-))) and 6,(F(X(w),Y(-))). The Lipschitz proper-
ties of 0,F and VzF(z,-) also give

5. [F (X(), Y ()], < 240 (1X(@)lljo 110 + IV O
+A H‘X(w) m [0,T],w,p w(37 t, w)l/p7

1/p

[0,T],w,p>4> U)(S, t, w)

and, applying Holder’s inequality with exponents 3/2 and 3,

(OulFX@. YO,
< 28485, (IX @0y + Y Olljo 71.p01) (s, )7
+ A0, Y54(+))a
< 20M (| X (@) o 10 + Y (Vo 77,901 ) (.t )7
+ 20 Y Ol o 11,905 (5, £,0) 7.

e Remainder (2.11)). The first two terms in are less than
A X oy, (s, 8, w)*P + AR (),
< MIX 0,1, w(s, t,w0)*P + ALY ()]
< ANX o0 w0C5, 6,002 + AV (o104 (s, 1,327
< A X oz (s )22 + 28 LY () o 1 (st )27,
from Lemma [0l We also have
1(2)] < A Xs (W) RO
<2 || X ()| [0,7],w,p Y Yo, 7,094 w(s, £, 0)*.

[0,T],w,p w(s, t, .)2/p>2

and ) )
|(3)| <A |X57t(w)’ <A |||X(w) ‘H[O,T],w,p w(s, 2 w)Z/p'

Last, since VzF is a Lipchitz function of its second argument,

(5) < AYea())s < ANV Olljor1p); w(s, t,0) %P,



12.

21

3 — Solving the Equation

We now have all the tools to formulate the mean field rough differential equation
(0.4) (or ) as a fixed point problem and solve it by Picard iteration. Our
definition of the fixed point is given in the form of a two-step procedure: The first
step is to write a frozen version of the equation, in which the mean field component
is seen as a mere exogenous collection of w-controlled trajectories; the second step is
to regard the family of exogenous controlled trajectories as an input and to map it to
the collection of controlled trajectories solving the frozen version of the equation. In
this way, we define a solution as a collection of w-controlled trajectories. In order to
proceed, recall the generic notation (X (w); ;X (w); X (w,-)) for an w-controlled
path and its derivatives; we sometimes abuse notations and talk of X (w) as an
w-controlled path.

Definition — Let W together with its enhancement W satisfy the assumption of
Section |1| on a finite nontrivial time interval [0,T], and let Y (-) stand for some R%-
valued random controlled path on [0,T], with the property that 6,Y (-) = 0 and that
sUPg<i<7 (02Y(*))on < 0. For a given w € Q, let X(w) be an R -valued w-controlled
path on [0,T], with the properties that 6,X(w) = 0 and supgc;<7 |62 X (w)| < 0.
We associate to w and X (w) an w-controlled path by setting

F(o‘)7 X(OJ), Y())

= <X0(w) +f F(X,(w), Y5()dW s(w); F(Xt(w),m‘));())

0 0<t<T

A solution to the mean field rough differential equation
dX; = F(Xy, L(Xy)) dWy,

on the time interval [0,T], with given initial condition Xo(-) € L?(2, F,P;R%) is a
random controlled path X () starting from Xo(-) and satisfying the same prescription
as Y (-), such that for P-almost every w the path X (w) and I’ (w, X (w), X (+)) coincide.

We should more properly replace X (w) in I'(w, X (w), Y'()) by (X (w);6,X (w);0)
and Y (-) by (Y(-);6,Y(-);0), but we stick to the above lighter notation. Observe
also that our formulation bypasses any requirement on the properties of the map I’
itself. To make it clear, we should be indeed tempted to check that, for a random
controlled path X(-), the collection (T'(w, X (w), Y(')))weQ’ for Y(-) as in the state-
ment, is also a random controlled path. Somehow, our definition of a solution avoids
this question; however, it should not come as a surprise that, at the end of the day,
we need to check this fact carefully; below, we refer to it as the stability properties

of ', see Section

What remains of the above definition when W' is the It6 or Stratonovich en-
hancement of a Brownian motion? The key point to connect the above notion of
solution to the mean field rough differential equation (0.2 with the standard notion
of solution to mean field stochastic differential equation is to observe that the rough
integral therein should be, if a solution exists, the limit of the compensated Riemann
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sums o
Z <F(th(w)vth('))Wtjvtjﬂ(w)
=0
+ 61'F(th (w), Xt ())F(Xty (w), th('))Wtjthl(w)

(D (X, (@), X1, () (X, () P (X, (@), X1, ()W, w)>> ,

as the step of the dissection 0 =ty < -+ < tg =t tends to 0. When the solution is
constructed by a contraction argument, such as done below, the process (X (+))o<t<r
is adapted with respect to the completion of the filtration (F;)o<t<r generated by
the initial condition Xy(-) and the Brownian motion W (-). Returning if necessary

to Example [5], we then check that
E[WZ ..., (w) [ Fiy] =0,

whatever the interpretation of the rough integral, It6 or Stratonovich. Pay attention
that the conditional expectation is taken with respect to “.”, while the element w is
kept frozen. This implies that, for any j € {0,--- , K — 1}, we have

(DUF (Xt (@), X, () (X, () F (X, (@), X, (D)W, () ) = 0.

This proves that the solution to the rough mean field equation coincides with the
solution that is obtained when the equation (0.2) is interpreted in the standard
McKean-Vlasov sense.

tjt1

We formulate here the regularity assumptions on F(z, 1) needed to show that I'
satisfies the required stability properties and to run Picard’s iteration for proving

the well-posed character of the mean field rough differential equation (or )
in small time, or in some given time interval. Recall from the definition of
D,F(z,-)() as a function from Py(R?) xR? to L(R?, RI®R™) =~ RI®R™®R? such that
D,F(x,L(Z))(Z) = VzF(x,Z), where we emphasize the dependence of D,F(z, ")
on p = L£(Z) by writing D, F(x, ;t)(-). In addition to Regularity assumptions 1, we
make the following assumptions on the interaction-dependent diffusivity F.

Regularity assumptions 2 — o The function 0, F is differentiable in (x,p) in the
same sense as before.

o For each (z, 1) € R¥xPy(R?), there exists a version of D, F(z,p)(-) € Li(Rd; RY®
R™) such that the map
(z, 1, 2) = DyF(z, 1)(2)
from RY x Pg(Rd) x R% to RT®@ R™ ® R? is of class Cl, the derivative in the direction
u being understood as before.

e The function
(z,2) — 02F (z,L(Z))

from R% x L2(Q, F,P;R%) to RT@R™ ® RY ® R? ~ L(R?® RY,RY ® R™) is bounded
by A and A-Lipschitz continuous.

e The following three functions
(z,2) — 0:D,F(z, L(Z))(
(z,2) — D,0.F (z, L(Z))(
(z,Z) — 0:D,F(x,L(Z))(

N NN
N— N~— S~—
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from R% x L2(Q, F,P;R%) to L2 (Q,}", P:RT®R™ @R ® Rd), are bounded by A and
A-Lipschitz continuous. (By Schwarz’ theorem, the transpose of @;DHFi’j s in fact
equal to D,0,F", for anyie {1, -+ ,d} and je {1,--- ,m}.)

o For each ju € P2(R?), we denote by
2
D#F(%H)(Za )

the derivative of D, F (z, 1) (z) with respect to p — which is indeed given by a function.
For ' e RY, D2F(z, p)(z,2") is an element of RI@R™ ® RY®@R?.

Denote by (SNI,]?, IS) a copy of (Q,F,P), and given a random wvariable Z on
(Q, F,P), write Z for its copy on (SNI,]?, |5) We assume that the function

(z,Z) — D2F (2, L£(2))(Z(), Z(")),

from R x L2(Q, F,P;R%) to L2 (2 x 0, F®F,P®P;R?@R™ ®R!®R?), is bounded
by A and A-Lipschitz continuous.

The two functions
Fa.p) = | Fla)n(dy)

for some fuction f of class C2, and

F(z,p) =g (sv fyu(dy), nyM(dy)>

for some function g of class Cf, both satisfy Regularity assumptions 2. We refer to
[9, Chapter 5] and [10, Chapter 5] for other examples of functions that satisfy the
above assumptions and for sufficient conditions under which these assumptions are
satisfied. We feel free to abuse notations and write Z(-) for £(Z) in the argument
of the functions J,D,F, 0.D,F and DZF. We prove in Section that the map I’
sends some large ball of its state space into itself for a small enough time horizon T
The contractive character of I' is proved in Section and Section [3.3]is dedicated
to proving the well-posed character of equation and continuity of the law of its
solution with respect to all the parameters in the problems.

3.1 — Stability of Balls by

Recall A was introduced in Regularity assumptions 1 and 2 as a bound on F and
some of its derivatives. The following lemma, of a technical nature, brings back the
general case to A = 1.

13. Lemma — There is no loss of generality in assuming A = 1 in Regularity assump-
tions 1 and Regularity assumptions 2.

Proof — We may indeed change F into A™'F. Doing so, we need to change in
equation the driver W into AW and W into AW, and also WL into A2W.
Importantly, for an w-controlled path X (w) and a random controlled path Y () on
a segment [0,T], for T > 0, this change of variable leaves invariant the definition of
the integral

(] tF(Xs<w>,m<~>)dWs<w>)

0 0<t<T
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Indeed, changing the first-level WO of the rough set-up into W) = AW D)
requires to change 6, X (w) into 53(6A)X(w) = A"10, X (w). Also,

SV[ATIF (X (W), Y ()], = AT 0F (X(w), Ya()) 88V X (w)
= A720,F (X, (), Y (")) 80 Xa(w)
= A5, [F(X(w),Y ()],
and, with similar notations,
SIF(X(w),Y ()], = A20,[F(X (), Y ()],
Setting WM .= A2W @ for the second level of the rough set up, we then observe

that, up to a small remainder,

ft AT'F (X (w), Yu(-))dww (w)
~ AR (X (@), Y () WS (@) + SN [ATTF (X (), Y ()] WY (w)
[ (X Y () WE )]
= F (X (w), Ya()) War(w) + 6,[F(X (@), Y ()
+E[Bu[F(X (@), Y ()] W) |

As the last line is the second order expansion of SZF(Xu(w),Yu(-))qu(w), this
shows indeed that

JA—lF(Xu(w),Yu(-))dwgf\)(w) :J F(Xy(w), Y () dW y(w).

S S

Recall from identity (1.13]) the definition of the local accumulated variation
N([0,T],w; ).

We use the notations || - [[[14,b],w,p [a,b],w,p> fOT sSome interval [a, b], to denote
a quantity defined in Definition |8 for paths defined on some interval [a,b] rather
than on the interval [0, T7].

Proposition — Let F satisfy Regularity assumptions 1 with A = 1. Consider an
w-controlled path X (w) together with a random controlled path Y () satisfying

OZ?ET(@XMM vV, <1 (3.1)

Assume that there exists a positive constant L such that we have

2 2
<HY(‘)H[O,T],w,p>8 < \/Z» <H‘Y() ],w,p>8 <L, (3-2)
and
IX @Mt < VE (3.3)
for all 0 < i < N, with N := N([0,T],w,1/(4L)), and for the sequence (t,; =

7(0, T, w, 1/(4L)))i:0___ n1 gwen by (L12). Then, these bounds remain true for
possibly larger values of L, and there exists a universal constant Ly such that the
following two properties hold for every L = Ly.
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e The path F(w,X(w),Y(~)) satisfies for each w the size estimate (3.3), and
there exist two positive constants ¢ and Cr,, with ¢ universal and Cy, depending
only on L, such that the following estimates hold for each w:

I (e, X (), Y O)) <o {1+ N([0,77,, 1/(4L)>2(1_1/p)}’
’”F(w7 X(w), Y()) HE,[O,T wp < C’Xo(w)‘Q (3.4)

+Cy, {1 + N([O,T],w, 1/(4L))2(1—1/p)} ;

o If X(w) is the w-realization of a random controlled path X (-) = (X(w’))w,eﬂ,
such that the estimate H‘X ‘ [t:) t1+1] wp S < VL holds for all ', for the w'-
dependent partition (t; := 7;(0,T,w',1/(4L))),_, N1 of [0,T], with N :=
N([0,T],w',1/(4L)), and if T is small enough to have

<N([0,T], L 1/(AL)) + 1>z(p_1)/p <2

then

AP XO ) lorrwpys < VI (T X

and
<H|F('7X( ).Y)| *7[07T]7wﬁp>z <CL (1 + <X0(-)>§>.

The measurability properties of the function w — F(w,X (w),Y(-)) implicitely
required above can all be checked by approximating the integral in the definition of

I'(w, X (w),Y(:)) by means of (2.3).

Proof — We proceed in three steps.

Lun)s <

e For a given w € Q, consider a subdivision (¢;)o<i<n+1 of [0,T] such that

w(ti, ti+1,w) <1

for all + € {0,---, N}, for some integer N > 0. Then, by Proposition 4 in Coutin
and Lejay [16] (rearranging the terms therein), we know that

| e vi)aw )

[tistiv1],w,p

<7+ qwtistisn, )7 [F(X(@), Y ()

*[titis]wp
for a universal constant v > 1. By Proposition [11] and ( ., we deduce that
[tistiv1],w,p (3.5)

[ re@voaw.e)
<v+ Criyw(t tivi,w )1/p<1 + I X1 [t wp T Y ) ],w,p>§>'

For a given constant L > 1 that will be fixed later on, assume that we have both
Criyw(ti,tiv1,w)/P < 1/(4Ly) <1 and

AY Olorywye <VL, Y Ollortwps < L (3.6)

z:tz+1 P

and

1 (@) < VL. (3.7)

[tutH»l] w,p
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Then .
[ Py e <2, (33)
ti [tistiv1],w,p
Hence,
. 2
' f F(X,(w), Y. (") dW . (w) <4y <L,
ti [tisti+1],w,p

if L > 16v*, in which case I'(w, X (w), Y ()) satisfies (3.3).

e We now use a concatenation argument to get an estimate on the whole interval
[0,7"]. For all s <t in [0,T], we have

Z! @, X(@).Y O],y

373+

0w, X (w)

st

N 1/p
<2y [ Y wt) b ) (N + 1) D
7=0

< 29w (s,t,w)l/p(N + 1)(p71)/p,

where we let ¢ = max(s, min(¢,t;)) and where used the super-additivity of w in the
last line. In the same way,

62| (w, X (w)

W), YD) ]y 4

N
; 7+

< 27w(3,t,w)1/” (N + 1)(p71)/p.
Setting, with a slight abuse of notation,

Flw, ) = (Fr(w,)) geper = (FXr (@) Yo ())) geper

Iz

we have

Rsr,t(w)

= J Fr(w, )dW(w) — F(w, )Wiz(w) — 6:Fs(w, )W, (w) — E[0,Fs(w, -)Wit(',w)]

(e
= r(w, ) dW . (w
;L o (. )AW ()
— Fy(w, Y)Wy — 6,Fs(w, )W,y (w) — E[0,Fs(w, )Wy (-, w)] (3.9)

N
= SR, @)+ (Fy(w,) = Fo(w, )Wy (@)

7+ J J7i+1

+ 5th; (w, ')Wt;,t;H (w) + E[5uFt;( )Wt; v
— 0pFs(w, )Wy (w) — E[‘SMFS(W’ ')le:t('»w)]a

where §,F,(w, ) and §,F,(w,-) stand here for the z and p-derivatives of the w
controlled path
(Fr(w’ ‘))0<r<T’

s

()]}
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We recall that the product §,F¢(w, -) W ¢(w) is understood as the result of the action
of an element of R? ® R™ ® R™ onto an element of R™ ® R™, i.e., as an element of
R? with it* coordinate

(51F5 (w, ')stt(W)) .= (5IF§'((JJ, ‘)Ws,t(w)

(8.F7) (. ) War (@),
Jik=1

a similar notation is used for §,F. Above, F%'(w,-) is an m dimensional vector
obtained by considering the i line in the d x m matrix (F%/(w, ))i<i<d,1<j<m, and
0-FY (w, ) is an m x m matrix.

The most difficult term to handle in is Z] 0 (Fy (w,) — Fo(w, )) Wt;,t;H(w).

J

We first notice that the increments Ft/( )= (w, ), for j = 0,--- N, can be
bounded by Zg:é“Xt;H(W) — Xy (w)| + <Y;/ ) =Yy (- )),), since F is 1-Lipschitz
continuous. Then, |Xt;+l(w) — Xy (w)] is less than 12X () £ Jwp (tl,t;H, w)l/p
and, following Lemma@ <Yt’i+1(') =Yy () <2y ()l [t ] wp>8 thth ,w)l/P.

Invoking the first bound in (3.6|) —this is the rationale for it— together with ((3.7] ., we
deduce that the sum Z;-V:O (Ft; (w, ") = Fs(w, ")) Wt}t;H (w) is bounded by

N N
37L1/4Z (Z tzaterlv )1/> (t t]+17 )1/p

7=0 \2=0
< 3y LYA(N 4+ 1)20=D/P (s, t,w) /P

In order to proceed with the other terms in (3.9)), we note that since |F|, |0,F| and
(VzF), are less than A = 1, and |6, X (w)| = (|0, X¢(w)]) g p and {(5,Y (- >OO
(<5th(')>OO)O<t<T are all less than 1, Proposition (11| ensures that

0[P (X (@), Y ()| v <5u[F<X<w>,Y<->>]>2 v

The other terms in the last two lines of ( are easily handled using the above
bound. As for the remainder term RY ( ), it can be estimated by means of

[T, X (@), Y ()] <1

vt
(3.8). Finally, one can find a constant C’ depending only on v such that

|RL(w)] < Oy (1 + LYY (N + 1)207D/Pay (s, ¢, w) 2P,

Changing the value of C from line to line, we end up with

2

P(w, X (@), (), < C (N + 120-D/r,

[0,T],w,p
mr(w,X(w),Y(-))H2 C, (1+ VL) (N + 1)20-Dl7,

[0,T],w,p

which proves the bound (3.4) by choosing the sequence
(ti)i:O,--- N+1 = (Ti(ov Ta W, 1/(4L)))l:0’ N+1

defined in (1.12) and N = N([0,T],w,1/(4L)).
o Assume now that X (w) is the realization of a random controlled path X(-) =
(X (w"))weq satistying the bound (3.3)) for any «’, for the w’-dependent partition



28

(ti)io,-. N+1. Then, integrating with respect to w the conclusion of the second point

we get
<HF("X(')’ Y) H [o,T],w,p>: <Gy <N([07T], - 1/(4L)) + 1>Z(p1)/p
(It x0.y)] [o,T],w,p>Z <Gy (1+ VI) (N (10,71, 1/(4L)) + 1>z(p1)/p

We get the conclusion of the statement if one assumes that
2(p—1)/
(o1 1/ 1) <2
by choosing L such that 2C, < +/L and 2C,, (1 + /L) < L. >

Remark that if (N ([0,1],-,1/(4L)) + 1) is finite, then we can choose T' < 1 small

enough such that the condition (N ([0,T1],-,1/(4L)) + 1>§(p_1)/p < 2 is satisfied.
(Since N ([0,¢],w,1/(4L)) converges to 0 as ¢ \, 0, for any w € €, the result follows
indeed from Lebesgue’s dominated convergence theorem.)

3.2 — Contractive Property of

15. Proposition — Let F satisfy Regularity assumptions 1 and Regularity assumptions
2 with A = 1. Consider two w-controlled paths X (w) and X'(w), defined on a time
interval [0,T], together with two random controlled paths Y (-) and Y'(-) satisfying

0. X (w)| v |6 X" (w)| v (8.Y (1)), v {6.Y'(1)) <1, (3.10)

together with the size estimates

Y Olportwsys < Vo Y Ollprtwss < Lo,

(3.11)
Y Olortwprs < VLo Y Olljorwpys < Lo
and
X @l 0. 00 < VI IX @0, gp < V0 (312)

forie{0,--- NO}, for Lo given by Proposition and N = N([0,T],w,1/(4Ly))
given by (L.13), and for the sequence (t? = 7,(0,T,w, 1/(4L0)))z’:0,~--,N0+1 given
by . Then, we can find a constant v depending on Ly such that, for any
partition (t;)i=o,... N refining (t9),—¢... yo and satisfying w(t;, tis1,w) < 1/(4L) for
some L = Lg, we h(we

VL()AW ) = | F(X,(0), Y()aW ()

[tistiv1],w,p

w(0,10)" (14 22) (IAX @) gy + DAY Ollor10)5)

2 (Xl ey + ISFOl10005)

where

AX,(w) = Xi(w) - Xj(w),  AYi():=Yi() - Y/(), te[0,T].
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Proof — We get the conclusion after four intermediate steps. Proceeding as in the
proof of stability, we consider a subdivision (¢;);—o,... n+1 of the interval [0, T] such
that w(t;,t;y1,w) < 1/(4L), for a frozen value of w € Q. The value of L > Ly will
be fixed later on. We can assume without any loss of generality that the parti-
tion (t;)i—o,.. N1 refines the partition (¢f = 7;(0,T,w,1/(4Lo))), ... No41» Where
NO(w) = N([O T],w,1/(4Ly)). Like in the first step of the proof of Prop081t10n
we start from the estimate

J Yo()) AW (w) — J.F(Xé(w),Y;’(-»dwT(w)

i

[tistsr1],w,p
<v(|Xti<w>—X;<w>|+Hm(-) v 0)ll) (3.13)
+ywits, ti,w) P [F(X (@), Y () = FX @)L YO, o

for a universal constant v > 1.
The first point is to bound the quantity H|F(X(w), Y()) —F( ) M [ts,tis1]w,p-
Step 1. We first analyse the term
AF(w,") == F(X(w),Y () = F(X'(w),Y'(-))
= (F(Xiw), Yi0) = F(X[@). /() )

<
o Initial condition of AF(w,-) — As [[AF(w,)]t,| < (JAX:, (w)] + (JAYE()])2),
we have from Lemma [J] and from the two identities AXO( ) =0and AYp(-) =0

(0,160 (IAX @010 + DAY Ollo04)-

e Variation of AF(w,-). Using the notations (2.10)) together with similar ones for
the processes tagged with a prime, we have

tST

|[AF(w, Ve | < 2w

[AF(M’ .):Is,t
1
- jo {2 (X5 @), Y1 0) Xeaw) = 0F (X G ) @), Y () XL (w) fax

[ B[V (X 03 0) Yarl) = V2 (X 0V 0) YE0 b

We now use the following three facts. First, we recall once again that Xo(w) = X{(w)
and Yp(-) = Y{(-); second, we know from Regularity assumptions 1 that, for any
z € R" and Z € L?(Q, F,P;R%), the quantities [0,F(z, Z)| and (V;F(z,Z))s are
bounded by 1; last, the two mappings (x, Z) — 0,F(z, Z) and (z,Z) — VzF(z, 2)
are 1-Lipschitz continuous. Hence, we get, for a new value of the universal constant
v, and for s,t in the interval [¢;,;1+1], the estimate

[[AF (w, )]s¢| < |AX g0 (w)] + (AY54(-)),
+ (1K@l + Vo))
x {IAX )] + AYy(Da + [AX ()] + (AYsal()), )
< (a) + (b),

where

(a‘) =7 U)(S, t, w)l/p (H‘AX(M) m [tistiv1],w,p + <|||AY() H| [ti,t¢+1],w,p>4) )
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and (b) = (b1) x (b2) with
(b1) 1=y (s, t,) " (X @)t g0 + <mY<~>||\[ti,ti+1],w,p>4)
(b2) = w(0,1:,0) " (IAX @)l 010 + DY Oll 01004 )

witi,ti1, )P (IAX @ty 1 + <|||AY<->|||[ti,ti+1],w,p>4).

It follows that we have
AR, Mgt < 71X @) it + DAY Olltironds)

(X @ g + Y Ol aganpys) * (2).

Allowing the constant v to depend on Ly and using (3.11)) and (3.12), we get

JAF @, Mgt < V(IAX @)t + DAY Ol 110004 )

+vw<o,t,~,w>1/p(mAX<w>[ s+ IAY Ol ), )

Step 2 — We now handle the Gubinelli derivative 0;[AF(w,-)]. We start from the
algebraic identity

B[ AF(w, )]y = [0:F (Xy(w). Yi()) — 2aF (X} (@), ¥/ ()] 82 X (w)
0T (X{(), Y] () A8 X ().

o Initial condition of §,[AF(w,-)]. Combining Regularity assumptions 1 and

, we obtain the estimate
|02 [ AF (w, )]tzl < [0 AX (w)] + [AX, (w)] + (AY (),

w(0,t5,0)"? (18X @)l e + DAY Ollfo s )

e Variation of d,[AF(w,-)]. Similarly,

S [AF@, )], | < (B X @)ot] (18%,00)] +(AY;(),)

+[[F (X(), Y ()~ 6F (X' (). Y'()],,
#[a0x (@], |+ a6 [ (K@), YO, |

(3.14)

The second term in the right-hand side is handled as [AF(w,-)]s+ in the first step,
with s and ¢ in [¢;,¢;41]. Observing by linearity that Ad, X (w) = 6,AX(w),
the third term is seen to be less than w(s,t,w)"/? IAX (W)t ¢4 17,0,p- The term
|AG, X (w)||[02F (X' (w), Y’(-))]s| may be bounded above by

p*

s, 1) (w(0, tr, ) PIAX @) o + 0t ti11,0) PIAX @)t 11100

x (I @) e et + YOl et
< s, t,w)"7 (w(0, 1) P AX @) o e + IAX @) g1y 100 )
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where we used again (3.11]) and (3.12)). Now, the first term in (3.14]) is less than

(s, ) P 1 X N 110
x w0, t5,0) P (I AX @) o0 + DAY Olljo 1007, )
 w(ts, tisn, @) (DX teiip + DY Ollisiatp)a) -
Hence, by ,
16X @) (|A X ()] + JAYS ()]s
<y (s, W) {w(0,t,0)"7 (IAX @) o agp + AY lliosups)
+ (IAX @)t 100 + DAY Ol tesrtaes) b
So, the final bound for |0, [AF (w, )]

is
[tistiv1],w,p

7 (IAX @t + DAY Olli s
£y w(0,t,0) " (AX@oag00 + AY Ollfodanss )
which yields the same bound as in the first step.

Step 3 — We now handle the other Gubinelli derivative J, [AF(w, )], for which we
have

0u[AF(w, )], = | V2P (Xi(w), Yi() = V2P (X{(@), Y/ () | i)
+ VzF(X{(w), ¥/ (1) AdYi(:).

¢ Initial condition of §, [AF(w, )] Proceeding as before,
<5#[AF(U)7 ')]tz‘>4/3 < |Ath (w)‘ + <AY21()>4 + <5$AY22()>4

<y w(0,t:, )" (IAX @) o s + UAY Ol sV )

where we used the Holder inequality

£ 80,0V 2F (x4 v/ ()]

<efjasi0f!| g ar i, o)

with exponents 3 and 3/2.

e Variation of 0,[AF(w,-)]. Using again Hélder inequality with exponents 3 and
3/2, we get

<[5H[AF(W7 '>]]s7t>4/3
< (1Y O, (1A%, @)] + AV ()),)
+{[VAF (X (@), Y () = V4F (X' (), Y'<‘>>]s,t>4/3

+ (ALY (Vi) + <A5mié(-)>4<[VZF(X’(w), Y’(‘))]s,t> :

2

(3.15)
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Thanks to Lemma@ the third term is less than 2w(s, t,w)"/? {IAY (-) “‘[ti,ti+1],w,p>8'
As for the fourth term, we have

<A5st(-)>4<[VzF(X<w%Y<'>)]s7t>2
< (s, t,0) P (18X @)l ceagany + AY Ollistradansds)

x w0, t:,0) 7 QAY Ol ,p>8+<IIIAY Mitetin, m>8}
<35, t ) (00,6 JIAY Ollpeganss + TAY Ollrsaonds):

where we used ([3.11)).

Observing as before that Ad, Y (-) = 0,AY(+), the third term in (3.15) is seen to be
less than 2w(s,t,w)1/7’ <H‘AY(.)H‘[ti,ti+1],w,p>8'

We now handle the first term in (3.15]). Proceeding as in the second step, we have
0¥ (Voay, (18X, (@)] +(AY()), )
<y (s,t,0) " {0, 1,0 P (1AX @)l g + A Olloe 00, )
+ (IAX @t a0 + DAY Oty s )

As for the second term in (3.15)), we write [VzF (X (w),Y (1)) = VzF (X' (w), Y’(-))]Syt
in the form [D,F (X (w),Y (")) (Y(-)) = D,F(X'(w),Y'(-)) (Y'(-))]
it as

5 and then expand

f (0D, F (XG) @), Y. t)(-)) (Y30 Xaa(w)

0 = e DuF (X (@) Y 0)) (Vi () XEu(w) fax
+ [ o (x3 Ys?zt 0) (¥ilag ) ¥aet)
= 2.0, (X0 ). Y 00) (Y ) Vit o
o e{DgF(Xg;;t)wY;?zm) (Va0 0 Tl Vo)
= {0 (X () Y 0) (Yl O Vi ) V240 b

where the symbol ~ is used to denote independent copies of the various random
variables and where, as before, we used the notation , with an obvious analogue
for the processes tagged with a prime or a tilde. By using Holder inequality with
exponents 3 and 3/2, we get

<[VZF(X(w),Y(-)) - sz(X'(w),Y’(~))]s,t>4/3
< ’)’{|AX5,t(w)} + (AYei(),
F1X e @) (18X ()] + AV (), + |AX (@) + (AYar()),)

+ Yo, (JAX(@)] + AV (D), + [AX ()] + (Ao, ) |,
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where, to get the first line, we used the fact that 0,D,F and 0,D,F and the function

R % PoRY 2 (o) = [ [ D) e Pt

are bounded by A = 1. We end up with the same bound as in the first and second
steps, namely

<5M [AF(w7 .)]>[ti7ti+1]7w7p74/3
<7 (IAX @)t + DAY Ol 10005

+7w(0, 15, 0) P (AX @) o + DAY Ollo100)s )

Step 4 — We use to write the remainder term R2Y in the form
REF = (0.F (X,(w), V() = &F (XL(), V() ) R, ()
+ 0.F (X1 (w), V() (B (@) — R ()
+E[ (Vo (Xo(w), Ya()) = VoF (X(w), YI()) ) RE ()
+ E[ V2P (X4(w), YI0) (RY() - BY())
+(2) - (2)+(3) = (3) + (5) - (5,
with

{
(57 = | ({V7F (X, Vi) = V2R (X4, YI0) Y0) )

We start with the analysis of the first fourth lines in R®F. Proceeding as before,
the first line is less than

[02F (Xo(@), Yo()) = P (X1(w), YI() | RE ()|
< yw(s,t,w)?" {w(0, 1) (IAX @) o p + DAY Olliostmp)s)

+ (IAX @)t 1100 + LAY Ol s) -

We also have

0P (X4(), Yi()) (BEw) = RE@))] < ws,t, ) IAX (@)1 14110
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Similarly,

E[(V2P(X.(@), Vo) ~ V2 (X(w), V() ) B0
< yuls 1P {w(0, 07 (J1AX @) o1 + AV ()

041005

+ (‘HAX(W)H‘[ti,twﬂ,w,p + <”‘AY(')”’[ti,t1+1]7w,p>8) }7

and
E[V2F (X(@), Y 00) (B2 = RO || < 200,027 QAY Oll 11,05
Now, [(2) — (2°)] is bounded above by

yw(s,t, w)2/p }HAX(w)|

[tistiv1],w,p

so |(2) — (2)] is bounded above by

yw(s,t, w)2/p |HAX(w)|

[tl 7t’i+1]’w’p

(s, t,0)2P {w(0,t,0) P (IAX@) o e + LAY Ol s )

[titiv1],w <H‘AY H‘ [titiy1]w ,p>8}

The difference (3) —(3’) can be handled in the same way. We end up with the term
(5) — (5%). As Yy, and Y/, may be estimated in L*, it suffices to control both

+ || AX (w)|

(52) 1= VF (Xy(w), Y1) () = VZF (Xs(w), Yi())
and
(52) — (52°) i= (V2F(X,(w), Y, () = V2F (X,(w), Ys()) )
— (V2P (X4(w), Y () = VAR (X1(w), YI())),
in L*2. We have first

<(5a)>|_4/3 <(53)>|_2 yw(s,t W)l/p

In order to estimate (5a)-(5a’), we rewrite (5a) in the form
(52) = DuF (Xo(w), Y1 ) (Y0 () = DuF (Xo(w), o)) (%)
1
_ % ON) v
- )\J() azDuF<X ( ) Y7(5 t)( )) (Y:g (5 t)( ))}/;,t( )d)‘
1

=2 (AX) ANy FON) (v /
+ )\JO E[D#F<Xs(w)’}/s;(s,t)(')> (YS;(s,t)( ) Y, s5(s,t )( ))}/S,t()]d)‘ ’

with the symbol ~ used to denote independent copies of various random variables.
Then, using Hélder inequality with exponents 3 and 3/2 as in the first lines of the
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third step, we obtain that {(5a)-(5a’)), 4 is bounded above by

yw(s, t, )P NAY (Wl b1

s, t,w) P {w(0,ti,w) " (JAX @)llo 1 + IAY ()

Jws)s)

iy AY() m[ti,tm],w,p%}-

+[|AX (w)|

and end up with the bound

HRAF(w

<7 {w(0,t:,)"" (IAX @)llo g + UAY o))

totentn = IAY Olleotisuns )

Conclusion. Plugging the conclusion of the previous steps into equation (3.13]), we
get

[tistiv1],w,p/2

+ ”}AX(w)|

LF(XM LF Y/() AW ()

< (| (@) = X, (@) + ¥ () = ¥ H)
ﬂw(ti,ml,w o X ), Y1)~ FOX (), Y()

[tistiv1],w,p

W Jtitiv1]wp (3.16)

oa)s)
#ywtis i) { (IAX @)t + <\HAY(->m[ti,tiﬂ]wg)
(0, 1,0)" (IAX @) o100 + AY Ollg00)5) }-

Choosing the subdivision such that w(t;, t;1,w)"? < 1/(4L), we finally get

l

< 7w (0,t5,0) " (JIAX @)l ¢ + NAY ()

J, P 0w ) - | PR O]

w00 (14 37 ) (18X 0100 + AT Ollorrann)s)

A IAX @)t + <|||AY<~>|||[0,T],w,p>8},

which completes the proof. >

3.3 — Well-posedness

We first prove a well-posedness result in small time from which our global in time
result, Theorem |1, follows. Recall from and the definition of w(0,7),
and from Definition (12| the fact that the map I depends on X(w); recall also from
Lemma that there is no loss of generality in assuming A = 1 in — this
explains the bound for d; X (w) in the statement below.

Theorem - Let F satisfy Regularity assumptions 1 and Regularity assumptions
2 with A = 1. Assume there exists a positive time horizon T such that the random
variables w(0,T,-) and (N([O,T],~,a))a>0 have ’sub’ and super exponential tails
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respectively
P(w(O,T, )= t) < eXp(—tsl)’ -
P(N([O7T]7 ‘y Of) = t) < CQ(O[) eXp(—t1+€2(a)), ( . )

for some positive constants ¢ and €1, and possibly a-dependent positive constants
co(a) and eo(w). Then, there exist a positive random variable A satisfying

<A(.>N([07T]7'71/(4L))>1 < w’

together with three positive reals Lo, L and n with the following property. For any
0< S <T such that

<N([0, S, 1/(4Lo)) + 1>z(p1)/p <2, (3.18)

and
AN([0,8],,1/(4L) \ <
<A( ) >1\ n, (3.19)

and for any d-dimensional random square-integrable variable Xy, there exists a ran-
dom controlled path X () = (X (w))weq defined on the time interval [0, S] satisfying
the estimates

and
2
(X Ol st <

such that, for every w € Q, the paths X (w) and I'(w, X (w), X(+)) coincide on [0, S].
Any other random controlled path X'(-) with X}, = Xo almost surely, and such that
the paths X'(w) and T'(w, X' (w), X'(+)) coincide almost surely, satisfies

P(IX() = X'O)ll. jo.spunp = 0) = 1.

Proof — We construct a fixed point of the map I', in the sense of Definition as
the limit of the following Picard sequence

(X”+1(w); 6, X" (w); 0) = F(w, (X”(w); 0, X" (w); 0), (X”(w/); S X ™ (W'); O)w’eQ)’

started from
(Xo(w);ﬁmXo(w);O> = (Xo(w);(); O),

for each w € ). Importantly, we deduce from the tail estimates that Propo-
sition applies iteratively: Following the discussion that comes right after the
statement of Proposition each X"(-) = (X"(w))weq, n = 1, is a random con-
trolled trajectory.

Step 1. Instead of working with S such that (N ([0, S]-,1/(4Lo)) + 1>Z(p_1)/p < 2,

we can assume, using (3.17), that (N([0,T],-,1/(4Lo)) + 1>§(p_1)/p < 2, with Ly
as in the statement of Proposition We deduce that, at any rank n > 1, both
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X™ and X" ! satisfy the esimates (3.11]) and (3.12). Hence, by Proposition the
quantity [|(X" — X")(w) is bounded above by

[tistiv1],w,p’
w0, (1+ ) {10 = X0 s

+<||| = X" O llor100), |

A = X @l + I = X Oli01 00 -

for any n > 1 and for a sequence (t ) —0,-..,N as in the statement of Proposition
We start with the case ¢ = 0. The above bound yields, for all n > 1,

m (Xn+1 . Xn)(w)

|||[0,t1],w,p

T = X rmp + I = X O om0, )

so we have, for any n > 1,

H\ (X" — X™)(w) ||| [0,t1],w,p

< () 15" gy + (3”)”“ EE = X o300 ), 20
We proceed with a similar computation when ¢ > 1. We have, for n > 1,
I = X, 410
< (22) 1 @100
()" w0 (14 ) UK - XDl )

s ()" {2 + w1+ 1)

x (N = X Ollior1ms),

Following the second bullet point in the proof of Proposition [I4] we can prove that,
for a new value of v,

et = XM @)oo

<Al X = XM () + [l (X" = X (w)

|||[0,ti],w,p [ti:ti+1]aw’p’

SO

l (X" — X™)(w) I [0,ti41],w,p

<A = Xl g +7 (57) 15 @

[titiv1]w,p
+93] ()" [rwo,tiwye (14 4L) G = X g 10
B B o+ )

< (IEXE = X5 Olliogrrm), |
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which we can rewrite as

[[C SRR S IC] TP

<l ()t 2l + () 10

n

+Z(4L)"“ "l - xR >u|[o,ﬂ,w,p>8},

provided we choose v > 1, and with

C(w) i= 1+ w(0,T,w)"? (1 + ﬁ)

Step 2. Combine the above estimate together with (3.20) to get

H‘ Xn+1 _ X’n

n+1

@ 3 (5 ) ) I @l

k=1
F 2w () 11X

n

% 3 () 50 I - X 0.0,

k=1

(lL)"JF <||| inl)(')”’[O,T],w7P>8.

@) l0.027.0
‘Ht tiv1],w,p

+ 7 ((w

n

Ed
—_

Hence we have

m (Xn+l - Xn> (w) m [0,¢2],w,p

<26 () (1+ S0 10 @l

()" R (- mom>23’“
+ 7% (w Z3<4L>n+1 k<m inl)(')m[o,TLw)S'

Therefore, using the bound > 7'_. 3% < 3"*1/2, we deduce

|H (X" — X™)(w) ||| [0,t2],w,p

< 372<<w>(3i)” 1
zl

[tistir1],w

Y
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We here assumed that L was chosen big enough to have 3v < 4L. The above
inequality may be summed up into

3y\n
7p <)(7L> H‘Xl )H‘Otz],w,p

el X (3 i -

=1

!H (XnJrl _ Xn

],w,p>8v

where ca(w): = 372¢(w). Set now
ci(w) == (37°¢w))"

Comparing the previous estimate of |[(X™*! — X”)((,u)|||[0 to]wp With (3.20) and
iterating over the time index t; from the conclusion of the first step, we obtain

X = X @) 4,0 < 1) <4L> Mo

e 3 () = Ol

aslong as t; < T.

Step 3. Noting that we can take the number of points NV in the statement of Theorem
less than No([0,T],w,1/(4Lo)) + No([0,T],w,1/(4L)) < 2N ([0,T],w,1/(4Lo)),
where we recall the definition (L.13) of N([0,7],w,1/(4L)), we deduce that

I = XM Mo 17,0

< (372<(w))2N(w,1/(4L)) (31)” |||X1(w)|” — (3.21)
+ (3%() (37)"“ I = XD Ol
k

where we let N(w,1/(4L)) := N([0,T],w,1/(4L)). It follows from the assumed tail
behaviour of the random variables N (-,1/(4L)) and w(0, T, -) that we have, for a > 1
and any integer k the upper bound

P({w e Q: (N@IEL) () > a}) <P(N(-,1/(4L)) = k) + P(¢? = a'/%)
aa/(%)) (3.22)

Cc

< cexp(—kH@) + cexp (—
for a constant ¢ > 1 depending on L and with ey = e2(1/(4L)). Choosing k =
(Ina)'/(+£2/2) then gives
V¢ e N\{0}, P({w e CN@EAL) () > a}) < Cypa™t,

for a constant Cy depending on ¢, from which we deduce that

22N (-1/(4L))
{39 )i <"

Set now A := (372¢)2NGV(AL)  Importantly, A depends on the time horizon T
through ~,¢ and N(-,1/4L) (and this on L as well). In order to emphasize the
dependance upon the time argument, we expand the notation and write

A (37 C )2N 0T],,1/(4L))
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Clearly,
Ag < (393¢r) N (051 1/AD),

since yp and (p are greater than 1. Since the quantity N ([0,5],-,1/(4L)) tends to
0 as S tends to 0, we have

. 2 2N([O’S]7”1/(4L)) _
Jim {(13¢r) D=L

SO
éi{%<A5 >16 =1

Hence, taking the L® norm in ([3.21)) with 7" replaced by S, there is a quantity §(.9)
with zero limit as S goes to 0 such that

E™ = XM Ollio.s10),

< (1+6(5) (31>”<mxl Ollios1):
= (09) X ()" X0l g0,
—(1+5(5)) (g)"@uxwm 051001
) 3 (5 7O X0 )

so we have

S X0,
<560 % (7)) I Olhosyan,

0 T (3" - X000, 3 ()"

= k=i+1

<(1+ 5(5))(2’2) ( ) /2<H| |||[0,S]:va>16

(/3><>2<> U =X ),

Without any loss of generality, we can assume that 3v/(4L) < 1/16, so

1 3\ 1/2
—( 'y) / <1,
3y/(4L) ML
and we can choose S small enough such that
1+46(5) (37)1/2
a:=—-——>-"|(—
3y/(4L) \AL
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Then, we can find a positive constant C such that

2 ()" =0,
<O( )" I Olsyune o B U = X001,

Changing the value of C' if necessary, we obtain

(" e - 90sse0), <€ ()" I Olhos10),

S]9w7p>16.

which leads to

= X Ol 510 < €@K Ollg

It then follows from (3.21) that we eventually have
H|(Xn+1 _ Xn w

< (372C (w)

n 0(3724((‘]))2N([0,T],w,1/4L)an<|||X1(‘)

w,p
2N ([0, T] w 1/4L)
) X @y

:P>16 Z (4?)[7@)”7@"

As we can assume that 3y < 4La, we can change the value of C' and get

||| (Xn+1 _ Xn)(w)

llio.57.0.0
IN([0,T)w,1/4L) { 3V \™
< (39%¢(w)) O (X ) i 1y

2N([0,T|w,1/AL) pn
+ O (37%¢(@)) M @ (X ) o101

In order to conclude, we notice the following two facts. First, the above estimate
remains true if we replace [|(X™* — X")(w)|| (0,5].w.p by [|(X"H = X™)(w)]|, o [0.5]w.p

in the left-hand side. Second, Proposmon guarantees that || X ()/lljo,s7,wp)16 <
c0. Using a Cauchy hke argument, we deduce that, for any w € €, the sequence
(X™(w), 0, X™, RX") 0 «[0,5],w,p- Using Proposition
[15] the limit is a fixed point of T as required.

(3.23)

Uniqueness — Let (X'(-);0,X'(+);0) stand for another fixed point of T', with
6, X' (w) =F(X'(w), X'(), weq,

and (6, X'(-))., <1 together with (|| X’(-)lljo17,wp)s < % A careful inspection of
the proof of Proposition [15| shows that the conclusion still holds true if we increase
the value of the constant Ly. Hence, we can assume that

WY Olorrwsye <VIo Y Ollorywpde < Lo
By , we can also assume that
X @) (040, Jwp < VL0

Therefore, we can duplicate the analysis of the convergence sequence, replacing

X — X" by X — X', Similar to (3.21), [[(X — X")(w)|| 5 7., i bounded above
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by
(37%c@) ™" (Y x -
) f;(?’”)"+ U = X Ol
Letting n tend to oo, this yields i
X=X @) 0,70,
< (32¢()) O 2IEE S K = XD oiyns ),
Taking the L® norm, we deduce that uniqueness holds in small time. >

Applying iteratively Theorem [16| along a sequence of times (Sp = 0,---,S; =T)
satisfying
2(p—1)/p

<N([Sj—17 Sl - 1/(4Lo)) + 1>8

the mean field rough differential equation is seen to have a unique solution defined
on the whole interval [0,7"]. This is Theorem

<2, and <A(')N([Sj_l’Sj]"’l/(u))>1< n,

3.4 — Uniqueness in Law on Strong Rough Set-Ups

Since the solution given by Theorem [16]is constructed by Picard iteration on each
interval [Sj_1, 5], for j = 1,--- , ¢, we should expect its law to be somehow indepen-
dent of the probability space used to build the rough set-up W. However, although it
seems to be a relevant concept in our context, uniqueness in law requires some care as
the rough set-up explicitly depends upon the underlying probability space (2, F,P);
recall indeed that the random variables Q 3 w — W (w, ) and Q 3 w — WL (-, w) are
not only defined on (2, F,P) but also take values in L?(Q2, F,P;R™). The fact that
the arrival spaces of both random variables explicitly depend upon the probability
space is a serious drawback to get a form of weak uniqueness. It is thus relevant to
identify the canonical information in the rough set-up that is needed to determine
the law of the solution. To do so, we keep track of the information required at each
step of the Picard iteration used in the proof of Theorem To this end, recall
from the estimate on rough integrals the expansion

Xn+1( )

Z t] 1 Xt] 1())Wty 1,t5 ( )
AR 0, X8 0) (FOEL @) 50O, @)
j=1

+Z<D F(XP_ (@), X7 () (X2, () (F(XE_ (X2 ()W 1, () )

n+1
+ Z J 17
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it holds true for any subdivision 0 = ty < --- < txg = T, the last term converging
to 0 as the step size of the subdivision tends to 0. Hence, if we assume that the
C([0,T]; R%)-valued random variable X" (-) is measurable with respect to the o-field
generated by some variable ©" with values in an auxiliary Polish space S,,, we have
that X™*1(w) is the image, by a measurable function, of

(Ko(w), W(w), W(w), 0" (w), £(O7 (), WH(w)) ).
The random variable right above takes values in
RY x C([0, T];R™) x C(SFiR™ @R™) x S x P8 x C(ST;R™ ®R™)),

the last factor being equipped with the standard topology of weak convergence.
Noticing that S can be chosen as {0} and ©Y(-) as ©%(-) = 0, this defines a countable
sequence of Polish space-valued random variables; basically, the law of the whole
sequence suffices to determine the law of the solution to .

Although this approach could be made entirely rigorous to address uniqueness
in law in the upmost general framework, all the examples we have enter in fact a
simpler setting. Somehow, the problem we face with weak uniqueness is the same
as the one we encountered in the example of a rough set-up given by Proposition
The difficulty is indeed to reconstruct the iterated integral WA (w’,w) from the
observation of W (w), W(w') and W(w); in the proof of Proposition |4, this is made
at the price of an extra source of randomness. When addressing weak uniqueness,
this extra source of randomness has to be identified in a canonical way; this is
exactly what the above iterative procedure, based on the sequence (0"),>o, does.
Interestingly (and fortunately), all this cumbersome construction becomes trivial
when W (w',w) can be (almost surely) written as the image of (W (w), W (w')) by a
measurable function. In that case, there is no need of an extra source of randomness.
Equivalently, all the (@”,8@7121 can be chosen as (@” = (Xo, W™, W), S, = R? x
C([0,T];R™) x C(ST;R™ ® Rm)>n21' Indeed, £(W(-,w)) writes, for almost every
w € Q, as the image of W (w) by a measurable function. Importantly, both Examples
and [f] fall within this case. More generally, in the framework of Proposition [}
we can write W21 as the almost sure image of (Wl, WQ) by a measurable function
from C([O, T, Rm)2 into C(SZT; Rm®Rm), when, for almost every £ € E, the quantity
W21(¢) can be approximated by the iterated integral of mollified versions of W*(€)
and W?2(¢), provided the mollification procedure defines a measurable map from
C([0,T];R™) into itself. This is for instance the case with linear interpolation or
convolution by a smooth kernel.

Proposition — Within the framework of Proposition |ZL define, for 1 < i < 2,
and for all n = 0, the linear interpolation W™ of W*' at dyadic points (tfl =
k:T/2”)k:0m on_q1 Of [0,T], namely, set

N = - on(t —th
th (f) = Z ( tlﬁl(f) + Wtitb;”tfl‘*'l <€)(T)> 1[t§l,tﬁ+1)(t)'

k=0

If for Q-almost every € € =, for all (s,t) € ST,
W) = lim | (W2n(e) — W2 (€)) @ aw(¢),

n—w Jo,
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then there exists a measurable function I from C([0,T];R™)? into C(S7;R™ @ R™)
such that

Q({E e = W2(g) = T(W2(8), Wl(€)>}> .

The scope of Proposition is limited to so-called geometric rough paths, but
the underlying principle is actually more general. This prompts us to introduce the
following definition.

18. Definition — A rough set-up, as defined in Section[d], is called strong if there exists

19.

a measurable mapping T from C([O, T, Rm)2 into C(S2T; R™ ® Rm) such that
P®2<{(w,w’) e 02 Wh(w,w') = Z(W(w), W(w'))}) ~ 1 (3.24)

So, Proposition provides a typical instance of strong set-up, which covers in
particular Examples [3| and However, it is worth mentioning that strong set-
ups may not fall within the scope of Proposition since the latter is limited to
geometric rough paths. This is for instance the case if in Proposition [ we take
W1(-) and W?2(-) to be two independent Brownian motions and W?!(-,-) to be the
It6 integral between W2(-) and W(-) rather than their Stratonovich integral. Also,
we refer the reader to Deuschel and al. [21] for a related use of the notion of strong
set-up, although the terminology strong does not appear therein.

Proposition 4] sheds a light on the rationale for the word strong in Definition
Here strong has the same meaning as in the theory of strong solutions to stochastic
differential equations: The second level W2! of the rough-path is a measurable
function of (W2, W1). In contrast, the general set-up considered in the statement
of Proposition [4| may not be strong as W2! may carry, in addition to (W', W?2), an
additional external independent randomization. If this additional randomization is
not trivial, the set-up should be called weak. An instance is given by the collection
of real-valued rough paths:

Wle) =w2(e) =0, Whig) =o,
W2H(E) = ale)(t—s), (s,t)eST,

(
for £ in a probability space (Z,G,Q), where a is a real-valued random variable on
(2,G,Q). If the support of a does not reduce to one point, then the set-up induced
by (W(-), W2(:), Whi(:), Wh2(.)) is strictly weak. We now have all the ingredients

to formulate a weak uniqueness property.

—_
—
—

Theorem — Let Xo(-) := (Xo(w)) . and X4(-) == (X{(w)) .o and

W():= (W(w),W(w),Wl(w,w/))weQ’w,eQ,
W'(.):= (W’(w),W’(w),WL'(w,w’))

we ,w'eN?
be two square integrable initial conditions and two strong rough set-ups with the same
parameters m, p and q, defined on two probability spaces (2, F,P) and (', F',P’),
and such that the random variables

0?3 (w,w') = (Xo(w), W(w), W(w), W (w,w)),

(2)? 3 (w,0) = (Xg(w), W (w), W (w), W (w,)),

have the same law on R? x C([0,T]; R™) x C(ST; Rm @R™) x C(ST; R™®@R™). Then,
the corresponding two solutions (X(w))wEQ and (X’(w))weQ, to (0.2) have the same
law on C([0,T];R™).
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As the two set-ups have the same law, we can use the same mapping Z in the
representations ([3.24) of W and of WL~

3.5 — Continuity of the It6-Lyons Map

As expected from a robust solution theory of differential equations, we have con-
tinuity of the solution with respect to the parameters in the equation, most notably
the rough set-up itself. The next statement quantifies that fact.

Theorem — Let F satisfy the same assumptions as in Theorem [I6] Given a time
interval [0,T] and a sequence of probability spaces (p, Fpn,Pr), indexed by n € N,
let, for any n, XP(-) := (X (wn))w,eq, be an Ri-valued square-integrable initial
condition and

W) = (W ), W (), W, ) )

W Wi, EQn

be an m-dimensional rough set-up with corresponding control w"™ and local accumu-
lated variation N, for fized values of p € [2,3) and q > 8. Assume that

o for positive constants €1, c1 and (e2(a), c2(a))a>0, the tail assumption (3.17)
hold for w™ and N™, for all n = 0;
o associating v"™ with each W"(-) as in (1.7), the functions

(S2T 3 (S,t) — <U”(8,t, ')>2¢I)n>0
are uniformly Lipschitz continuous;

Assume also that there exist, on another probability space (2, F,P), a square inte-
grable initial condition Xo(-) with values in RY and a strong rough set-up

W) i= (W(w), W(w), W (@,o))

w,w'eN
with values in R™, such that

o The collection (P, o (|X6‘(-)]2)_1)n>0 is uniformly integrable.

o The law under the probability measure P®% of the random variable Q2 >
(wn,wly) = (X (wn), W (wy), Wy (wn ), Wit (wy, wh)), seen as a random vari-

able with values in C([0, T];R™) x {C(S7; Rm®Rm)}2, converges in the weak
sense to the law of Q% 3 (w,w’) — (Xo(w), W (w), W(wy), W (w,w’)).

Then, W (-) satisfies the requirements of Theorem for some p' € (p,3) and
q € [8,q9). Moreover, if X"(-), resp. X(-), is the solution of the mean field rough
differential equation driven by W"(-), resp. W (-), then X"(:) converges in law to
X () on C([0,T]; RY).

The rationale for the framework and the assumptions used in the statement of
Theorem [20]is two-fold. First, it allows for a proof based on compactness arguments;
in particular, the proof completely bypasses any lengthy stability estimate of the
paths with respect to the rough structure, which, in our extended framework, would
be especially cumbersome. Also, this compactness argument is pretty interesting
in itself and complements quite well Subsection [3.4] on weak uniqueness; noticeably,
it allows the set-ups to be supported by different probability spaces. Second, our
formulation of the continuity of the It6-Lyons map turns out to be well-fitted to the
applications we have in mind, see the next section.
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The assumption that the limiting rough set-up is strong is tailored-made to the
compactness arguments we use below; indeed, our strategy is to prove that the
sequence of laws induced by the solutions to the equations , when driven by the
(W™(-))n=0’s, are tight. Even if this procedure is quite simple, it also requires to
pass to the weak limit along the laws of the rough set-ups (W"(:))n>0 and identify
the limiting law. As explained in Subsection this is much easier to come when
the set-ups are strong; hence the assumption.

Proof — Throughout the proof, we call p € [2,3) and ¢ > 8 the fixed indices used
to define the set-ups and, in particular, to control the variations in the definition
of each w™, n > 0. This is important because, at some points of the proof,
we will use other values p’ > p and ¢’ < q.

Step 1. This step is dedicated to the proof of several key properties on the tightness
of the sequence (W"(-))n>0.

la. For any n > 0, we introduce the modulus of continuity of (W™ (-), W™(-), WL (.)),
namely we let, for any ¢ > 0,
(8, wnswp) = sup (Wi (wn) — Wi (wn)|
|s—t|<d
+ sup ‘W?,’t, (wn) — Wg, (wn)|
[s—t|+|s'—t'|<d

+osup W (wnswh) — W (wn, )
[s—t|+|s'—t'|<d

where (wy,,w},) € Q2.
Since the 1aw5 of the processes (W"( ), W (-), WL (- )),=0 are tight in the space
C([0,T};R™) x {C(ST;R™ ®@R™) } we deduce that

Ve >0, limsup P§)2<{(wn,w;) e 2. gn(é Wy W ) 5}) = 0.
o0 n=0

1b. We now prove that, for any ¢’ € [8,¢), the laws of the processes (Q 3w, —
S R ) , are tight, and similarly for the laws of the processes (Qn 2w —

(wm JL( 7wn)>q )n>0'

Obviously, we have, for any w, € €2,

sup »—><Wst (wns )y, < w™(0,T,wy).
(s,)eST 1

By the first bullet point in the assumption, the tails of the right-hand side are
uniformly dominated. So,

lim sup P({wn €Q,: sup <W (W, -)>q > A}) =0,

A=%D n=0 (s)esT
which is one first step in the proof of tightness.
For any a > 0, we now consider the following event:
E,(d,a) := {wn e, : Pn<{wq’1 € Qi (0, wn,wl) = 5}) > a}.
By Markov’s inequality and then Fubini’s theorem,
P.(En(5,a)) <a 'PP? ({(wn,w;) € 2 : G (6,wn,wl)) = 8})
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Clearly, for any € > 0, we can find a collection of positive reals (a-(9))s>o such that

c%i\r.% a-(0) =0, and }% P, <En((5, aa(é))> = 0.

Take now w, € E,(d,a.(5))" such that

sup <WZ’tJL (W, -)>q < A,
(s,t)eST

for a given A > 0. Then, for any ¢’ € [8,¢) and (s,t), (s',t') € ST,
, JL m, 1L n, 1L m, 1L
W (s ), = W (s D) | < (W s ) = WEE oy ) )
q
<e+ Aa(6)77/9,

For A fixed and § small enough, the right-hand side is less than 2¢. We easily deduce

that
= 5}) = 0.

. mn, L
Ve > 0, %nn sup P, ({wn e Q, ‘<W S (wn, .)>q/ — <W5,t (wn, .)>q/
Of course, we can proceed in a similar way for (Qy, 3 wy, — <W"’l(~,wn)>q/)n>0. In

0n>0

fact, the same argument shows that the deterministic functions (<W”(-)>q/)n>0 and
((wmt(, Ia'),=0 are relatively compact in C([0,T];R) and C(S3;R).

1c. For each of the following family of processes, we know that the corresponding
family of laws is tight in C(SJ'; R) and that the associated family of p-variations over
[0, 7] has tight laws in R (because of the first item in the assumption):

o (3 (V= W) st )
° (Qn S wy —

n>0;
( st Wn )st)ES ) 20;

° (Qnawn (< wn,'> )(st)632> )
(

T/ n=0
(Q 3wy, <W >q)(st)€5 >n>0

As a consequence, we can apply Lemma [21] . 1| below, with any p’ € (p, 3) instead of p
itself, and with Z¢,(w) equal to one the above process.

We proceed similarly with the deterministic sequences

o (e = W = WOy g pest)
. ((zgt (WA e S§>n> .

=0

)
n=0

We deduce that, for any p’ € (p, 3), the sequence of probability measures (P o (82T 3
(s,t) — V™ (s,t, -))*1) . is tight in C(S§%;R) and that
>

Ve >0, limsup P, sup v (s,t,:) >¢e | =0,
6=0n>0 (s,t)eST :t—s<6

where v™ is associated with W"(-) through (1.7) and where we put a prime in the
notation to emphasize the fact that we use the pair of parameters (p',¢’) instead of

(p: q)-
1d. Obviously, v™/(s,t,-) < (v"(s,t,-))? '/P. Since P /p <2 and
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o the tails of w™ > v™ decay faster than any polynomial function, uniformly in
n = 0;
o the function ST 5 (s,t) — (v™(s,t,-)), is Lipschitz continuous, uniformly in
n = 0;
we deduce that (s,t) — (W™(s,t,-)), is Lipschitz continuous, uniformly in n > 0.
Hence,

Ve >0, limsup P, sup w™(s,t,:) >¢e| =0,
6=0n>0 (s,t)eST :t—s<6

where, as above, we put a prime in the notation w™’ to emphasize the fact that the
rough set-up is driven by the parameters (p,¢’). Importantly, we deduce from the
bound (v™(0,T, )" < (v™(0,T,-))"/? that, similar to w™ and N (the latter is
associated with w™ through ), the function w™’ and the corresponding local
accumulated variation N™ (given by with @ = w™’) satisfy the tail assump-
tion , uniformly in n > 0. The bound on the tails of N™' is easily obtained by
comparison with the tails of N".

Step 2.

2a. The next step is to observe, as a corollary of the proof of Theorem that
there exist a constant C' and a real S > 0 such that, for all n > 0,

(X" Ollp.spane ), < C.

The fact that C' and S can be chosen independently of n is a consequence of the fact
that the tails of N™ and w™ are controlled uniformly in n > 0. Here S is chosen small
enough so that the two constraints and appearing in the statement are
satisfied, uniformly in n > 0.

2b. Arguing as in the derivation of Theorem [I| from the statement of Theorem
we can iterate the argument and construct a sequence of deterministic times
0=5Sy<S5=5<...<Sg =T, for some deterministic K > 1, such that, for all
n>0andall je{0,- -, K — 1},

(IX"O)lls, 5yt < C-
Up to a modification of the constant C, we deduce that, for all n > 1,
<H‘Xn(')|||[O,T]7w”7’7p’>8 <C.

Recalling that (P, o (|X6"‘(-)|2)_1)n>0
2 71 . . .
that (Py, o (supg<i<r [ X7"(1)[?) )n>0 is also uniformly integrable.

A

is uniformly integrable, it is easily checked

2c. As another result of the previous step, for any € > 0, we can find a > 0 such
that

sup P"(”|Xn(')H‘[07T]7w"*’vp’ > a) < g,
n=0
from which, together with 1d, we deduce that
Va >0, Je>0 : supP, (V(s,t) e ST, \X;ft]p/ > aw"”(s,t)) <e.

n=0

Combining with the conclusion of the first step, this yields

Ve >0, limsup P, ( sup | X&| > e) =0.
(s:t)

d—0 >0 , eSg:tfséé
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From the conclusion of 2b, the sequence (P, o(X™(-))™") _ is tight in C([0,T7; R%).
Step 3.

3a. As a consequence of the assumptions of Theorem [20| and of Step 2, we have the
following tightness properties:

o The families of distributions (P, o (W™ (- ))_1)n>0 and (P, o (Xn('))_1>n>0 are
tight in C([0,7];R™) and in C([0,T];R?);

o the family of distributions (P, o (W™)~1(- )) o 1s tight in C (S7;R™®R™);

e the family

-1
<P®2 (Q 5 (wn, why) > W (wy, n)eC(S2,Rm®Rm)) )
nz=0

is tight in C(S7;R™ ® R™);
e the family

<Pn o <v””(wn) 1 Qy 3wy (S5 3 (s,) = v™ (s, t,wy)) € C(Sy s R)>1>

is tight in C(S7;R);

n=0

3b. By Skorokhod’s representation theorem, we can find an auxiliary Polish prob-
ability space (Q F, P), such that, up to a subsequence, the following convergence
holds for P-almost every W € Q. We have

n—o0

lim (Wnl( )Wn2( )Wn,l,l( )Wn21( )1’)\71,1,/(&\)) 1’}%2/( )an( )XnQ( ))
= (W(@), W2(@), W (@), W21 (@), (@), 0 (@), X' (@), R2(@) ). (3.25)

where (W1, W2 Wbl 2 gnl/(G) 502/(@), X&), X™2(@)) has the same
law as the random variable

9121 3 (wn,w;)
o (W7 (), W) W ) W w1, ), 0 ), 07 (), X7 (), X () ).
which takes values in

{c([0,T;R™}? x {C(8T;R™ @R™}? x {C([0,T;RH}* x {C(5T;R)},

and where (I//[\/l(), 17[\/2(-), 17[\/1’1(-), I//I\/z’l(-),X&(-)) has the same law as the random

variable

0% 5 (w,0) (W(w), W(w'),W(w),wi(w’,w),Xo(w)). (3.26)

3c. At this point of the proof, the difficulty is that (I//I\/l(), WQ(-), WLI(-), 171\/21())
does not form a rough set-up. Still, we have the following two properties. First,
using the fact that the limiting set-up is strong, we have

ﬁ({&\) € ﬁ : W2,1(&)) = I(WQ((D)’ W1<&\)))}> _1,

for a measurable mapping Z : C([0, T]; R™)? — C(ST;R™ ® R™), which follows from
the identification with the law of (3.26)). Also, passing to the limit in Chen’s relations
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satisfied by each W™, we have, for P almost every @ € Q, andall 0 <r<s<t<T,
Woit @) = W (@) + W (@) + WL (0) © Wi, (@),
Wi (@) = W (@) + W) + W0 @ W,(0).

By preservation of independence under weak limit, (17[\/2,)22) is independent of

(T//‘\/l, I//[\/'l’l, )?1, 171”). Following the proof of Proposition |4}, in a simpler setting here
since the limiting rough set-up is strong, we can find:

e four random variables ﬁ\/( ), W(-), o/ ( ) and X (-) from (ﬁ,]?, |3) into the spaces
C([0,T];R™), C(8F;R™@R™), C(S7;R) and C([0,T]; R?) such that

P({oct: (W W7, 2)@) = W, Wt o, X @)}) =1
@

/\ /\

o arandom variable W (-, ) from (Q2, F&2,P®?2) into C(SJ;R™ ®R™) such that

ﬁ®2({(@,@') e Q2 WH@,0) =Z(W VAV(@’))}) =1 (3.27)

() Vi (+), iL( ) satisfying (|1 Yith perbability 1
and Q2 5 5 (@,&) > (W(@), W ( ),W(Q) WJL( o), 6’(@),6’(w’),X@),X(§/)) hav-
L), W2L(), 82(), 92/(), X (), X2(-)) on

the rough set-up W( ) = (W( ), W

ing the same law as (Al() W2(),
the product space

(C(0.TER™)) x {(ST:R™ @R™)} x {e(sF:R)}*  {e([0. T1RY) )

3d. We now check that ﬁ\/() satisfies the required regularity properties.

We start with the variations of I//I\/(@), <I//I\/(-)>q/, W(®), W@, Nq' WL, & D))y
and (WL(-,-)),. To do so, we recall that, for almost every @ € Q, (@) is the limit
of 0™'(©). By passage to the limit, 9’ inherits the super—additive property of the
(V™" )=0"s and its tails satisfy (unlformly in n > 0) a bound similar to that satisfied
by the (v"),>0’s in the first item of the assumption, see 1d. Also, SI 3 (s,t) —
(V'(s,t,-))q is Lipschitz.

Using once more the passage to the limit, we get that, for almost every @ € SAZ, for
any (s,t) e ST, |W37t(&})|p/ < v'(s,t,w), from which we deduce that the p’-variation
of W(@) is dominated (in an obvious sense) by ©’. A similar augment applies for
V(@) W(@) and (WL(, )y

It thus remains to handle <V’\\/i(@, -)>q, and <V’\\/i(~, cf))>q,. Observe first from Fatou’s
lemma that

<<( s?%T|W )\»q, < . (3.28)

Hence, arguing as in the presentation of a rough set-up, see Section|[I} we can consider

~ ~ /\JL ~ .
Q36 = WO ) qup, o2y WL (@) <00}

and Q38— Wt (o)1 {¢supseo, 7 IWL (-,@)[)gr <00}

as random variables with values in the spaces
C(ST;R™®@ LU, F,P;R™), and C(ST;L9(Q,F,P;R™) ®@R™).

Continuity of the preceding two paths follows from the fact that WL has continuous
paths and from the bound (3.28]), which makes licit the application of Lebesgue’s
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dominated convergence theorem to prove continuity. In order to control the vari-
ations, we proceed as follows. For any non-negative valued bounded continuous
function g on C([0,T];R™) x C(S¥;R) and for every (s,t) € ST, we have

| [s7@).7@) Wi,y ] @
- | oF@). @) (Wh@.2)" |#=@.2)

lim | g (W™ ), 0™ (@) (W2 (n ) |dPE2(s0m),

n—aoo 02 n
n

where we used Fubini’s theorem to pass from the first to the second line together
with (3.25)) to pass from the second to the third line. Now, we use the very definition
of v™" and the second item in the assumption to deduce that

oW (@), 7@)(Wh@,)% | dP@)
i

< lim | [g(W™(@a), 0™ wn)) (0" (s, t0a)) 77 | dPr ()

n—o0 Q
n

- Jﬁ[g(ﬁ\/(@),ﬁ’(@))(v""(s,t,@))q/]dﬁ(@).
Recalling from (3.27)) that Q3 & — <WJL( ) o 18 U{I//I\/(-)}—measurable, we get,
for any (s,t) € 82 and for almost every & € €,
WE@, ) < 0™ (5,1,).

By continuity, this holds for almost every @ € Q, for all (s,t) € SI. The same holds
for <W$(-,@)>q,.

Associating with the rough set-up W a (random) control function v’ through the
definition (1.7)) with (p, q) replaced by (p',¢’), we deduce that, for P-almost every
& e, for all (s,t) € ST, v/(s,t,®) is less than (s, t, ).

Modifying the definition of the set-up on the possibly non-empty null event where
one of the aforementioned properties fails (see the proof of Proposition for details),
we can assume without any loss of generality that, for any & € ﬁ, the variation of
ﬁ\/(@) is dominated by v'(©) and that the latter is finite for all @ € Q. Also, we can
assume that Chen’s relationship, see , is satisfied for every @& € Q.

3e. We let @'(s,t, @) := 0'(s,t,&) + C(t — s), where C' is the Lipschitz constant
in the second item of the assumption. Clearly, @’ satisfies the first tail estimate in
(3-17). Moreover, if we associate with @’ the (random) local accumulation N'(-, ) =
Ng ([0,T], ) as in ((1.13]), then, by lower semicontinuity of the local accumulation

(see [2I, Lemma 4.2]), N'(-, o) satisfies the second tail estimate in (3.17). Obviousy,
the same holds for the counter N'(-, «) associated with ¥’(-). This completes the

proof of the fact that ﬁ\/() satisfies all the requirements of Theorem
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Step 4.
4a. For each n > 0, we define 53,)?"() and R)?n() as
5. X7(@) = F(X@), LX), te[0.T], Ded,
éﬁ%@=i?@wa%%>—6X%>W'@> (s,)esy, BeQ,
from which we easily deduce that ((5xX (), RXn( )) , converges with probability
to 1 to ((5905((),]:22()) defined as
5. X (@) == F(Xu(@), L(Xy)), te[0,T], &eQ,
RE®) = Xu(@) — (@) — 6, X@)War(@), (s,t)e Sy, @ed.
In order to pass to the limit in the measure argument of F, we use the fact that, for
any t € [0,T], (L(X}"))n>0 converges in the weak sense to £(X;). By the uniform

integrability property 2b, the convergence also holds in 2-Wasserstein distance ds.
By continuity of F with respect to dz, we easily conclude.

4b. By the second step, the sequence (Py, o ([| X" (-)[ljo,77,wmr ) 1), 5 is tight in R,
where, without any loss of generality, we take w™'(s,t, w,) = v™(s,t,w,) + C(t —s),
for the same C' as in 3e.

So, using the fact that P, o (X"(-),4 X”() RX" (1), ””(~))_1 has, for each n >

0, the same law as P o ()A("(o),émf(”( ), RXn( ), 0™ (- ))_1, we can assume that the
sequence (|||)/(\'”() [
o™ (s, t,0) + C(t — s).

Moreover, by 1dent1ty in law of (W"( ), X"™(-)) under P,, and of (I//I\/”(), X "(-)) under
P we have, for P-almost every W € Q for any (s,t) € 87,

an,/(s’ t, &\))) 1/27"

. /\n / A~ _
o ,p/)n>0 is almost surely convergent, where W™/ (s,t,0) =

XL @) < X" j029,8m0 (

By 3c, we get, for P-almost every @ € Q, for all (s,t) € ST,
~ ~ . S/~ N ~y 1/p
|X87t(w)‘ < (nl%o H‘X (w) ‘H[O,T],@"”,p’) (w/(87 i, w)) ’

Proceeding similarly for 6,X "(-) and R)?n()7 we deduce that, for P-almost every
weQ,
X @) 0,71, < N [[X™ (@) 10,77,

which shows in particular by Fatou’s lemma, see step 2b, that

(X Oloryaym ), <

Although ?'(@) (and thus @'(@)) is not associated with ﬁ\/(@) through (1.7), we
shall say that, for almost every @ € , X (@) is an w-controlled trajectory for the
rough set-up W (-).

Step 5.

5a. So far, we have constructed (X X(@); F()A((&\;), )2'()) ;0) as an &-controlled trajec-
tory for the limit rough set-up W (), but for & in a full event ' c Q. For free, we
can modify the definition of X (&) for & € Q\Q and define 0, X (@) accordingly so
that (X(@); 6, X (®);0) is an &-controlled trajectory for any &. Then, the collection

()A( (@))aeﬁ forms a random controlled trajectory.
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5b. In order to conclude, it remains to identify ( (@); F()?(@) X(- 1));0), for P

almost every & € Q, with
e (R@)F(R@), X(9)s0),

where the index W in Iy is to emphasize the rough set- up upon which the map I’
in Definition |12|is constructed To do so, we recall from ) the expansion

X (wn)

= XM wn) + 2 F(X,Zfl(wn%ﬁ( ))Wt] 1t (wn)

j=1
+—}:61F(ijﬂ(wn%lX)Q;4))(F(inﬂ(wn%lX)Q;J)MNgihw(u%)> (3.29)
j=1

+ 2 DUF (] (), £0X7_)) (X7, ) (FOXE_ (), £ _D)WE  (own)) )
j:1

+ES] iy

that holds true for any wy, € €),,, any n = 0 and any subdivision 0 =ty <t; <--- <
tg =T, with K > 1, and with (see Theorem Proposition [L1{ and 2b)

17ty )| < C(14 X @I pmep ) 0™ (o1, s
In order to pass to the limit in (3.29)), we consider a non-negative valued bounded
continuous function g on C([0,T];R™) x C(S1;R™ ®R™) x C(ST;R) x ([0, T];RY).
We then multiply both sides of (3.29) by g(W"(wy), W™ (wp), v™ (wp), X" (wn)) and
integrate w, with respect to P,. It is absolutely obvious that
T Ep | g(W"(), W (), 0™ (), X" () X7 () | = E|g(W (), W), 87, X () Xa ()
and similarly with ¢; replaced by 0. In the same way,

Tim By [g (W7 (), W (), 0™ (), X C)E (X, (), LK )W, 0]
— E|g(W (), WE), (), XOVF (R () L0 0) Wy, ()],

and similarly for the terms on the second line. As for the fifth term in the right-hand
side, we have

limsup E,, [g(W”(-),W"(-), "™ (), Xn('))sfj_l,tj(‘)]

n—a0

< Ch;nsggp En [g(Wn(.)’Wn(_)7vn,/(_)’ Xn()) <1 + ‘”Xn(')m%O,T],w"”,p>
X w”"(tj,l, tj, .)3/17/]‘

Transferring the right-hand side into an expectation on ((AZ, F , IS) and using obvious
uniform integrability properties, see 2b, we deduce from 4b that

lim sup Ex [ g (W (), W*(), 0™ (2, X" ()17, 1, ()]

n—0o0

< CE[g(W(),WC) 7(), X)) (1+ T I1X" Oy ry,0m ) @'t 5,07 |

J
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Of course, the most difficult term to treat in (3.29)) is the fourth one in the right-hand
side. This can be done by using Fubini’s theorem:

[, Pt o 07" ) W ), 7 ), X )
(DX (), LX) (X0, 0) (F(XE, (0, L)W Geon) ) )]

- L dP®2<wn, [0 (@0). WP (), 0™ (). X7 ()

.D#F(Xgil(wn),ﬁ(ngl))(Xt’;fl(w;))(F(X,Z ) LR DIWE () )|
= E[g(W1(), W1 (), (), X))

DUE(REL O£ )) (X722, 0) (PER2 0. L0 ))W™ ) )

We now use in order to pass to the limit. The only slight difficult is that we
must ensure that the regularity conditions satisfied by D, F are compatible with the
almost sure convergence property . Recall indeed that the continuity property
Regularity assumptions 1 is formulated in Lp; at first sight, it seems needed to
assume that the pair (X £ () X2 ,(+)) is independent of (X,Z’_l1 (), thjil (+)) in order
to take full advantage of 1t In fact we can overcome this difficulty by invoking [9]
Proposition 5.36], which basically asserts that the mapping v — D, F(x,u)(v) is
Lipschitz continuous, uniformly in x and u, see Section 5.3.4 for more details. The
latter guarantees that, for almost every & € Q,

lim D, F (X[ (@), L(X] ) (X2, (@) = DF(X] (@), £(X,_)) (XE (@),

n—> tj1 tj1
So, the limit of the summand on the fourth line of is
E[g (W (), WH(),8(), R())
DR, LRE D) (X2 O) (PR, 0L LR )W, ) .
and our reconstruction of the limiting set-up permits to rewrite it in the form
. @7 @), W@, (@), X@)
(DR, @), £01,)) (R, ) (F(R, 0, £, 0)WE (w) )

Importantly, since the limiting set-up is strong, the term in bracket in the last line
is o{W, X }-measurable.

5c. Let now

T (@) = X, (®) — Xo(®)
- Z L(X, 71))Wtj )

~ ~

- Z axF(X\Vﬁjf1 (&\))’ E()?tjfl )) (F (thf1 (&})7 L(th—l ))v\vtjflytj (@))



21.

55

By the conclusion of 5b, it is U{W,W,X }-measurable and it satisfies, for any g as
in the previous step,

E[g(W (), W(),7(), X())T ()]
<E[g(W(), W), (), X)) (1 + Tim [1X" Oy 2,00, Z@ i1ty )7 |-
j=1

Therefore, for P-almost every @,

T@) < O @ (t-1, ;)" VB timn [1X" () ry,m | oV, W7, K.

j=1
By the super addltwlty property of @', this suffices to identify Xt( ) with XO(A)
So X (- ))dW (w). Note that thls is true although the functionals /(&) and
W' (& ) that control the variations of X are not associated with W ) through (L.7);
the sole fact that ©'(©) dominates v’(@) (which is associated with W( ) through
(1.7)) suffices.

Again, the sole domination of ¥/(@) by v/(@), the latter satisfying the required tail
propert1es in Theorem [16] suffices to duplicate the uniqueness 5 argument. In words,
X (+) is the solution to the mean field rough equation driven by w and, by uniqueness
in law, X(-) has the same law as X (-). >

We used the following lemma in the proof of Theorem

Lemma - For a separable Banach space (E,|-|), call C§~"(ST; E) the space of
continuous paths G from SI into E that are null on the diagonal, i.e. Giy = 0 for
all t € [0,T], and have a finite p-variation, i.e.

N-1
HGH [0,T],p—var — sup Z ‘Gtz,tz+1| < .

os<t1<-<tny=T i=0
For eachn =0, let (Z" (Z;‘,t)&tesg)nzo be a process defined on (0, Fr, Pr) with
trajectories in CP~Y* (81 E). Assume that
o the family of distributions (Pn o (Z”)*l)
o the family of distributions (P o (|27
Then, for p’ > p
o the family of distributions (P o (8§ 3 (s,t) — 1Z™ 5,61,/ —var € R)_l)n>0 is
tight in C(ST;R). In particular, for any ¢ > 0, there exists § > 0, such that

P sup ”ZnH[s,t],p’—var =& <g
(5,t)eST t—s<5

Proof — Take a compact subset K of C(S1; E) and a sequence (2"),>¢ with values
in K such that

o is tight in C(83; E);
1s tight in R.

nz=

-1
]7pfva'r) )n?()

< 0.

[ 2 ]7p7va‘r
nz

Up to a subsequence, the sequence (z"),>¢ converges in C(S3; E). Obviously, the
limit 2 is in C} ™" (ST E). Now, by the same argument as in the proof of Proposition
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5.5 in [27] we have

Z ‘ t11t1+1’ Sup |(Z St‘p P Z ‘ t17t1+1’

(s,t)esg

for any subdivision 0 = ty < --- < ty = T. Taking the supremum over such

subdivisions, we deduce that (2"),>0 converges to z in Cgl_var(ST; E), which proves
that

<limsup sup [2" — 2|5, p/—var

limsup sup ‘HZ’ Hst,p—var HZHst ],p’ —var
N0 (st)esSy

n—o0  (s,t)eST

< nh_{%o |2" — ZH[O,T],p’—var = 0.

Hence the family (85 3 (s,t) = |2][s.4]p'—var)zek is relatively compact for the uni-
form topology. In particular, it is equicontinuous. Using the fact that |2 p/—var =
0 for each t € [0,T], we deduce that

li —var = i — _ = 0.
51\‘1% |t8151\p< HZH [s,t],p'—var 5111(1) |tSlsl|p H H [s,t],p'—var “Z”[t,t],p’ var
This proof is easily completed. >

4 — Particle System and Propagation of Chaos

We now have all the ingredients to write down our limiting mean field rough
differential equation as the limit of a system of particles driven by rough signals.

4.1 — Empirical Rough Set-Up

Loosely speaking, the finite particle system associated with (0.1)) has the form

t

Xi(w) = Xj(w) + | F(Xi@) s @)dWiw), €0 (1.1

0

for 1 < i < n, where (X}(-))1<i<n is a collection of R%-valued independent and
identically distributed variables with the same distribution as X in the statement
of Theorem |16{and (Wg()) L<i<n 18 a collection of R™-valued independent and iden-
tically distributed processes ‘with the same distribution on the space of continuous
functions as W (-) in Theorem All of them are constructed on a single prob-
ability space (€2, F,P). Obviously, equation must be understood as a rough
differential equation driven by an (n x m)-dimensional signal (W?!(w), -+, W"(w)),
and with (X'(w),---,X"(w)) as (n x d)-dimensional output. This requires that
we lift (W!(w), -+, W"(w)) into an enhanced rough set-up W (w). In order
to do so, it suffices to define the various iterated integrals. Without any loss of
generality, we can assume that, instead of (Wl(-)7 . ,W”(-)), we have in fact n
independent copies (Wi(~),Wi(-))1$i<n of the pair (W (-),W(:)), where W(w) is the
iterated integral of W(w), see Section [l] for details; and, in fact we assume that
(X40), Wi(-),Wi(-))lgign are n independent copies of (Xo(-), W(-), W(+)). For sure,
Wi (w) is understood as the iterated integral of W*(w). However, this does not suffice
as we also need to define the iterated integrals of W/ (w) with respect to W¢(w), for
j F i. We do so under the additional assumption that W is a strong set-up, namely
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under the assumption that there is a measurable map giving Wi (w) from Wi(w)
and W7 (w),
W (w) = I<Wz(w)a w (w))a i ¥ J
see Definition If we require P®?({(w,w’) : W (w,w’) (0.T]p/2—var < 00}) in
Definition then it is pretty clear that, for almost every w € €2,
w) (w) = ((WZ(W))KKW (WZ’] (w))lgi,jsn)

- (WW(W),w(”)(w)),

is a rough path, with the convention that W% (w) = W'(w), for i € {1,---,n}. As
explained in Proposition [l we may change the definition of the whole collection
(Wi (w))1<i<ns (W5 (w))1<i,j<n) on a P-null set so that W is in fact a rough
path for any w € Q.

e The striking fact of the analysis was already noticed by Cass and Lyons in their
seminal work [I2]. The quantity W(™ (w) may be seen as a rough set-up defined on a
finite probability space for any fixed w € €2; we call it the empirical rough set-up. To
make it clear, observe that, throughout Section [I} the rough structure is supported
by the probability space (2, F, P) itself. Here, w is fixed, and we see the probability

space as <{17...,n},P({L'"v”})’igéi)’

where P({1,--- ,n}) denotes the collection of subsets of {1,--- ,n}. The reader may
object that such a probability space is not atomless whilst we explicitly assumed
(Q, F,P) to be atomless in the introduction; actually, the reader must realize that, in
the paper, the atomless property is just used to guarantee that, for any probability
measure 4 on a given Polish space S, the probability space (2, F,P) carries an
S-valued random variable with p as distribution. So, it is not a hindrance that
{1,---,n} is finite. Hence, in comparison, with (L.3)), the role played by w € Q is
played by i € {1,--- ,n} and the matrix ((1.3) must read

W) Wi
(wzx ) Wi ) .

where Wé;(w) is understood as {1,--- ,n} 3 j — W”]( ), W;;(w) as {1,---,n} 3
J > Wi (w) and Wi (w) as {1, n} 3 (i, j) — WZ’,]t( w).
In the same spirit, the variation function v in is

U (8 t w | H [s,t],p—var + " (W.( ))q [s,t],p—var
i 2 (n i,e 2
+ HW Hps/t |,p/2—var )[W ( ))}q);/[s,t],p/Q—Var (4'3>

n X p/2 n LX) p/2
+ ( )[W (w))q;[s,t],p/2fvar +( )[(W (W)Dq;[s,t],p/vaar’
where we used the notations
(MpX g, = < Z IXJ\‘]> , pxeg, = < Z !X““Iq>
7,k=1

the corresponding p-variation being defined as in (|1.5)) and . In order to check
that W) (w) defines a rough set-up, it remains to check that it satisfies (|1.8]).
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To do so, we now let

Wi (w) = Wy ()]

W(w . = sup

” ( )H[s,t],(l/p)—Holder [/ /] [5.4] |t/ _ S/|1/p

: W ()]

We = —

H (W)H[S,t],m/p)—ﬂolder [S,j}lcp[syt v — s/[2p

. W27 (w)]

W57 (w = sup

H ( )H[s,t],(Q/p)—Holder [/ ] [5.4] |t/ _ 8/|2/p

stand for the standard Holder semi-norms of the rough path, see e.g. Theorem 11.9
in [25]. Then, we can find a universal positive constant ¢ such that

vy (s, t,w) {HWZ H 1,(1/p) oier T W () Hp/2 1,(2/p)—Hélder
+ (W (w) H s.4,(1/p) Hélder]q
OIW )22 -1 (4.4)
OIW @), o/ or0er )

+ (W (w Hm 1.(2/p)Hislder) }(t —5)-

Taking the empirical mean over i € {1,--- ,n} and invoking the law of large numbers,
we deduce that, for almost every w € 2,

(”)[v;,’n(s, t, w)]
limsup sup 1

n=1 0<s<t<T t—s

< cE| W)

2 4.
WO e (4:5)

W

T1,(1/p)—Holder

1/q
1,(2/p) Hélder] ’

for a new value of the constant ¢. Observe that, in order to derive , the law of
large numbers can be directly applied to each of the first five terms in the right-hand
side of , since each of them can be put in the form J (Wl(w)), for a suitable
form of the functional 7. Differently, the last term in requires a modicum of
care as it reads

iz S T(Wi(w), Wr(w)). (4.6)
k=1

Still, we let the reader check that, provided that the summand in the above right-
hand side is integrable, the limit is E[J (W (-), W¥(-))]. Hence (4.5). Now, if the
right-hand side of (4.5) is finite, then

(n)(U;’n(s,t,w))
sup sup 1 < o0,
n>10<s<t<T t—s

which guarantees that the 1-variation in the mean in is uniformly controlled
in n > 1, the mean therein being understood as the mean on the probability space
({1,---,n}, P{1,--- ,n}), %Z?:l 6;). Here are two examples under which the above
assumption holds true.
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Example 1 — Assume that the index ¢ used in (1.7)) satisfies the inequality
- 1
1—p/3’

and that, for some constant Kr > 0, (v(s,t,-)),; < Kr(t — s) for (s,t) € SI'. Then,
we get the bounds

q

E[I(W: = W) ()] < K |t = sl°,
E[\Ws,t(')\pq/Q] < Kr |t —s|9,
ES2[|W (-, P92 | < K Jt — s

(We write here and below E®? for the expectation operator with respect to P®2))
By Kolmogorov’s criterion for rough paths, Theorem 3.1 in [25], we deduce that W
has paths that are (1 —1/¢)/p > 1/3-Holder continuous. Similarly, W and WL have
paths that are 2(1 — 1/q)/p > 2/3-Hélder continuous and

ES2( W,

/2
T],(1/p/)—Holder T “W(')Hfg,T] (

/2
,(2/p")—Holder + HWL(W ')HI[Dg,T] (

, 2/p’)th')lder]
< Q0.

So, the empirical rough set-up satisfies the required conditions provided we replace
p by p' and (v(s,t,))gy/p < Kr(t — ), for all (s, t) € S3 .

Example 2 — Another instance is given by Example With the same notation
as therein, [|[W(-)|0,7],(1/p)—Hslder has Gaussian tails and HW(')H[O,T]7(2/p)—Hélder and
HWJL(-,-)H[O T1.(2/p)—Holder DAV exponential tails; see Theorem 11.9 in [25].  This
suffices to conclude.

e Now that we have defined the empirical rough set-up, we must make clear the
meaning given to the rough differential equation in Definition when the
rough set-up therein is precisely the empirical rough set-up. We call the correspond-
ing rough differential equation the empirical rough differential equation.

For a given w € €2, the probability space that carries the empirical rough-set up
is ({1,---,n},P({1,--- ,n},%Z?:l 6;). Despite the fact it is not atomless, whilst
(Q, F,P) is, Theorem [16| applies and guarantees existence and uniqueness of a solu-
tion to the empirical rough differential equation must. In this regard, observe that
the square integrability requirement on the initial condition takes the simple form

1
*Z | X4(w)|* < o0,
nizl

which is obviously satisfied (at least for w in a full event). The solution reads in
the form of a n-tuple X ™ (w) = (X*(w))1<i<n in C([0,T];RY)". Each X*(w) is con-
trolled, in standard Gubinelli’s sense, by the enhanced rough path (VVZ (w), W (w))
The coefficient driving the equation for X*(w) reads

F (X, x/"Vw), telo.1],

where 6,,(-) is a uniformly distributed random variable on the probability space
({1,---,n},P({1,--- ,n}, 2 3 | §;). Here the dot in the notation Xf"(‘)(w) refers

to the current element in {1,---,n}. As a result, the law of Xf"(‘)(w) must be
understood as the empirical distribution p}(w).
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The key fact in our analysis lies in the interpretation of the two Gubinelli deriva-
tives 6, [F(X*(w), X (w))] and 4, [F(X*(w), X )(w))] in Proposition First,
it is elementary to check that

b (F(X7(0), X0 w)) ) = 8 (X[ (@), X/ ()X )
= 0aF (X} (w), 1} () 62X} (),

where 6, X"(w) is the standard derivative of X*(w) with respect to (W*(w), W'(w)).
More interestingly, we have

0 (F (X1 (), X0 (w) ) = DuF (X () (@) (X" (@) 8,X7" V@), (48)

(4.7)

and the right-hand side may identified with an n-tuple
(DuF (X (@), 1)) (X7 (@))0. X7 (@)
Y
So, we get
5, (F(Xi(w),XM')(w)))

1
t n

25 DuF (X7 (@), 1) (X] (@) 8,X] ().
j=1
This shows that the integral
¢
| P x00@)aw )

0
is the limit of the compensated Riemann sums

K-1
by (PO @) X)W ()
+ 0. F (X, (), X0 (@) F (X, (), X{7 O (@)W, 4, (@) (4.9)
v ijﬁlDHF(X,?M,mm)<X£k<w>>F(X§;<w>,Xf:('><w>)wz‘;f,tk+l<w>),
as the mesh of the dissection 0 = t;3 < -+ < tg = t tends to 0. This al-

lows to compare the latter quantity with (4.1)) if we intepret the integral with
respect to Wi(w) as a rough integral with respect to W) (w), and consider the
leading coefficient F(X}(w), uf'(w)) as a standard Euclidean function of the tuple

Xt(n) (w) = (X} (W), -+, X;"(w)) and if we understand the integral therein as the

integral with respect to the rough driver w () (w). Indeed, under the standing
Regularity assumptions 1 and 2, the function

. 1 &
i, Rd n 1. TN i = k
froRY s (2" (LnZw
is C? with Lipschitz derivatives and

il gn) = L L S I I
Qﬂf(:r, ,x)—nDHF<a:,an>(x),

for j + 4, and

il omy i 1 ¢ 1 ilnk 0.
0xzf($, ,x)—@J‘(m,an)—l—nD#F(:r,nZw)(x),
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see Chapter 5 in [9]. Therefore, is uniquely solvable in the classical sense and
the above formulas for the derivatives show that the rough integral therein may be
approximated by the same Riemann sum as in (4.9). This proves that the solution
to , when the latter is understood as a rough differential equation driven by
the enhanced setting above (W!(w),---, W™ (w)), coincides with the solution of the
empirical version of , when the latter is understood as a mean field rough
differential equation driven by the empirical rough set up.

4.2 — Propagation of Chaos

We now have all the ingredients to prove that the solution to (4.1)) converges,
in some sense, to the solution of the rough mean field equation (0.2) when the
rough set-up is interpreted as originally explained in Section [I} This should read as
propagation of chaos. The statement takes the following form.

Theorem — On top of the assumptions of Theorem assume that the rough
set-up W is strong. Assume also that

e there exists a real €1 > 0 such that
E[eXp(“W(’)’fé,T],(l/p)_HaldeJ] + E[eXp(”W(‘)HE,/;],(z/p)—Hélder)]

+E®? [eXP(“WJL(" ‘)Hfé,/:/%L(z/p)—Halder)] < %

e for almost every w € Q, for any a > 0, there exists a constant €9 > 0 such
that, for all n > 1,

n

1 .
sup — »  exp <N”‘(O,T,w, a)””) < o0,

n>1 1=
where N*(0, T, w, «) is defined as the local accumulation
N[0, T],w,a) := Ne([0,T], ),

when w(s,t) = v;’"(s,t,w), see ([1.13]).

Then, for almost every w € €,
1 n
ﬁ Z (SXi,(n)(w) i ;C(X()),
i=1

where X (w) is the solution to (A1) and X(-) is the solution to (0.2)), the conver-
gence being the convergence in law on C([O,T]; Rd). Moreover, for any fixed k > 1,

the law of (XL(N)(.), e ,ka(n)(.)) = X(”)(~) converges to C(X(-))®k.

Strangely enough, and somewhat disappointingly, we did not manage to provide a
generic simple condition on the limiting set-up W that forces the empirical set-ups
to satisfy the estimate of the second item in the assumptions right above. Still, as
pointed out in Theorem 23| below, we can check by hand that this condition is indeed
satisfied in the Gaussian case, see Example 5] and the subsequent Theorem [ which
serve us as a benchmark throughout the article. The main difficulty in proving
Theorem [22]is in controlling the accumulated local variation of the empirical rough
set-up.
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Proof — The key tool for passing to the limit is the continuity Theorem To
make the notations clear, we write Xé’(n) for X4, Wo( for Wi, Wa(" for Wi and
Wid () for W |

Step 1. As a starting point, observe that, from the law of large numbers, for any
real-valued bounded and measurable function f on

2
RY x Cpovar ([0, THR™) x {2 (ST:R™ @R™) |,

for almost every w € Q, we have (see (4.6]))

,}E%OTT Z f( )’W’iy(n)(w)vwiv(n)(w)’Wivjv(n)(w))

i,j=1
— E[F(Xo(), W(),WE), WA, ) .
In fact, for p’ > p, the spaces Cp—var ([0, T]; R™) and Cja_yar (S5 ; R™ @R™) embed in
([0,T7;R™) and CY, (83 ;R™QR™) of Cpy—var ([0, T]; R™)

p' /2—var
and Cpy /2—var (8T; Rm®R™), respectively; see for instance [27, Proposition 5.38]. The
above is true for any real-valued bounded and continuous function f on

X Cg var( ) { p/2—var 82 7Rm®Rm)}2

By choosing f in a countable convergence determining class, we deduce that, there
exists a full subset ' < 2, whose precise definition may change from line to line as
long as F remains of probability 1, and such that, for any w € F, the sequence of
probability measures

() = <n2 2 DX ) W09 )vvi»<n><w>,ww’<n>(w>>>

converges in the weak sense to (Xo(-), W(-), W(-), WL(-,-)) on R? x C([0,T];R™) x
{c(ST;R™ @R™)}”.

Polish subspaces C%

p’ —var

n=1

Step 2. Our strategy now relies on Theorem The third item in the statement is
a consequence of the law of large numbers. As for the fourth item, it follows directly
from the previous strep.

We now have a look at v;" (s, t,w) in (£.3). We already know that

(n) (v;,’"(s, t, w)]

limsup sup 2pq
n=1 0<s<t<T t—s
CE[HW ’ T1,(1/p)—Holder + w( ’ T1,(2/p)—Holder

1/q

1L pq

+[WE )| [o,T],(z/p)—Halder] ;

which proves the second item in the statement of Theorem We end up with the
proof of the first item. By (4.4]), there exists a constant ¢’ such that, for any & > 0,
the quantity

sup ™ [exp ([vp™(0,T, w)]g)]l (4.10)

n=1
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is finite if
cps
iglfn oXp (HWl [0,71,(1/p)— Holder) < %,
W (w) 75 <
ilill) n: exp 1.(2/p)—Holder g
. p/2 c'e
b ZeXp<(n [HW “ [ ](2/p)—H<'jlderJq ) < @,
. p/2 c'e
b EGXP<(n [HW “ H 1.(2/p) Hélder)q ) < @

By the law of large numbers, the first two lines hold true on a full event if ¢'pe < ¢.
As for the third and fourth lines, we use the following trick. Notice that the function

(0, +0) 3 — exp(mda/q), (4.11)

is convex on [A., ), for some A; > 0. Therefore, Jensen’s inequality says that, in
order to check the third line, it suffices to prove that

Sup 5 Z eXpKAC My W (w ”CPE/2 1,(2/p) Hélder)] < 0, (4.12)

n=1 n

and similarly for the last line. Obviously, under the standing assumption, the latter
holds true with probability 1 provided that ¢pe < ;. This proves (4.10). In the
statement of Theorem this proves the condition related to the tails of w™ by a
standard application of Markov inequality.

The bound on the local accumulation in the first item of Theorem [£.10l is a conse-
quence of the second item in the standing assumption. Indeed, we let the reader
check that it suffices to work with the local accumulation associated with v™ instead

of the local accumulation associated with w”, see if needed the inequality (A.1) in
Appendix.

Step 3. Theorem says that, for a fixed w € E, the solutions associated with
the rough set-ups (W(”) (w))n>1 converge in law to the solution associated with the
limiting rough set-up, i.e., the empirical law of the solutions associated with the
(W(”))nZ1 converges to the law of the solution of the mean field equation, which is
exactly to say that, for any w e F,

1 n
S 200,

where X (+) is the solution to (0.2). Here, the convergence is the convergence in law
on C([0,T];R%). By Proposition 2.2 in [38], we deduce that, for any fixed k > 1, the
X1

law of (X ) Xk(n )) converges to E(X(-))®k. >

As an example of application, we have the following statement, proved in Appen-

dix

Theorem — Let W be a continuous centered Gaussian process, defined over some
finite interval [0,T]. Assume it has independent components. Suppose that the
covariance function is of finite p-two dimensional variation for some o € [1,3/2).
Then, for p € (20,3), the conditions of Theorem are satisfied.
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4.3 — Rate of Convergence

The goal of this subsection is to elucidate the rate of convergence in the conver-
gence result stated in Theorem Note the use of the Wasserstein Wi-distance in
the regularity assumption required from F in the statement.

24. Theorem — On top of the assumption of Theorem 22|, assume that

o The first and second order derivatives of ¥, (x, ) — 0F(z, ), (x,p,2) —
D,F(z,pn)(2), (z,u,2) = 0D F(x,p,2) and (z,p,2,2") — DiF(z,,u,z,z’),
are bounded on the whole space and are Lipschitz continuous with respect to
all the variables, the Lipschitz property in the direction u being understood
with respect to the Wi-Wasserstein distance;

e for any a > 0, there exists a constant €2 > 0 such that, for any n > 1,
for any p' € (1/3,1/p), and any random variables , ' : Q — [0,T], with
P( < ') =1, we have

~ 1
[<N1,n([ : /],W,Oz)> +52]
sup sup E [exp T < o0,

n=11<i<n

where ]/\\7”‘([ , ', w, a) is defined as the local accumulation
Nz,n([ ) /],W,Oé) = Nw([ ) /],Oé)
with

~1,M
when w = wp,

@;’,"(s,t,w) = wp "(s,t,w) + U (st w) + (n)[A; n(w)]q;[s,t],l—var + (=),
w;/n(&taw) = Zln(s t w) + (n)[ Uy (w)]q[ t],1—var’ (413)
~i,n _ z7JL P/ % J’ P/

Uy (s,t,w) = <W > i[s,t],p' /2—var <W (o > i[s,t],p'/2—var’

Then, for any r > 1, there exists an exponent q(r) = 8 such that, if ¢ = q(r), with
q as in Sectlonl and Xo(-) is in LI7) | then

1/r
sup E[ sup |Xt Xl(n)| ] < Cnp,
1<isn  lost<T
for a constant C' independent of n, and n, = n=2 ifd =1, 5, = n~2In(1 + n) if
d=2andn, =n"Y% ifd > 3.

Let us make a few remarks on this statement before embarking on its proof.

o We refer to [0, Chapter 5] for examples of a function F satisfying the first
item in the assumptions of the statement.

e The rate which is obtained corresponds to the usual rate for the convergence
in the 1-Wasserstein distance of an empirical sample of independent, identi-
cally distributed, random variables toward the limiting common distribution.

o As before, Theorem [24] applies when W is a continuous centered Gaussian
process defined over some finite interval [0, 7] with independent components
and with a covariance function that is of finite p-two dimensional variation for
some g € [1,3/2), see Theorem The proof is pretty similar to that of Theo-
rem[22]given in Appendix. In order to check the second item in the statement,
the trick is to notice that all the bounds we have for the local accumulation
on [0,T] depend linearly on T'. Put differently, we can provide bounds for
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quantities of the form N ([0,T], -, «)/T, where w denotes the corresponding
function in hand. In order to do so, we can treat separately the local accumu-
lation associated to each of the terms entering the definition of @;’,n, see (A.1)).

As for ’U’,", the computations fit exactly those performed in the proof of The-

orem As for @;’,", the proof derives from Theorem@ In order to handle

the local accumulations associated to S 3 (s,t) +> (")([v;}n(w)]]q,[s f.1—var

and ST > (s,t) (”)[(17;;”(w)]]q;[sﬁt]’l_var, it is necessary to slightly adapt
the proof of Theorem the arguments are left to the reader. For sure, the
local accumulation associated to the additional ¢ — s in 117;’,"(8, t,w) is easily
taken.

o By inspecting the proof of the theorem, we could make explicit the value of
q(r), but we feel that it would not be so useful.

Proof — The proof consists in a variation of Sznitman’s original coupling argument,
see [38]. To do so, we recall that, on the probability space (€2, F,P), the pairs
(W), W), -+, (W™(:),W™(-)) are n independent copies of (W(-),W(:)). For
eachi € {1,---,n}, the pair (W*(-),W(-)) is completed into a rough set-up W'() =
(Wz()7 WZ()? Wi’i(ﬁ )) ) with

Wil (w, ') = I(Wh(w), Wi(W')), (w,w')e Q2

Here we put a bar on the symbol W' in order to distinguish it from the finite-
dimensional rough set-up W™ (w) that lies above (W(w), -+, W"(w)). The second-

order level of W is made of (W');<;<, and of (Whi = I(Wi, Wj))lgi%jgn, see
(4.2). To make the notations more homogeneous, we write W**(w) for W*(w).
We also consider n independent copies (Xg (), ,X{(-)) of the initial condition

I

Xo(+), the two n-tuples (Wl(), W7 () and (X§ (), , X{'(-)) being assumed
to be independent. With each (Xé(),WZ()), we associate the corresponding so-
lution Yl() to the mean field equation (0-2). Of course, the n-tuples Q 35 w —
(Xé(w)7Wi(w)’wi(w%wi,l(.’w)’y"(w)
(Wit (-, w))
let

)1 <i<n AT€ independent, where 0 3 w —

o<t<T 18 considered as a process with values in L(Q, F,P;R?). We then

. IS
,ut(w)znzltsxi(w), te[0,T], we.

1=

Observe that, for each i € {1,--- ,n} and any w € Q, we can define the integral
process

¢ :
(] ri@meawioew)

0 0<t<T
where the label 7 in the notation W% (w) is here to indicate that the integral only
involves (W*(w), (W/*(w))1<j<n)- So, the symbol W) () must be understood as
(Wi(w), (Wj’i(OJ))lgjgn). The fact that the integral may be defined with respect to
(Wi(w), (WP (w))1<j<n) follows from the fact that X7 (w), for each j € {1,---,n}
and each w € ), is controlled by the variations of the sole W7 (w).
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Step 1. The first step is to compare
t . , t . ,
| PR @) L)W @) and | B0 () aW i) ),
0 0

for ¢ € [0, T]. What makes the proof non-trivial is the fact that the rough set-ups
used in the first and the second integrals are not the same. So, in order to compare
the two of them, we need to come back to the original constructions of the two
integrals. To simplify notations, and for 0 <t < T, set

Fi(w) = F(Xy(w), £(X4))
and ' .

FM(w) o= F(Xi(w), 17 (W)
For sure, (Fi(w))o <i<r 18 w-controlled by Wz(w) and the collection indexed by
w € € is a random path controlled by Wi, see Definition |§| for a reminder. The

=14 =12

‘ Ft(w)a 6uFt(w7 '))Qgthv
Proposition Similarly, (F{"(w))o<t<r is controlled by W) () and Gubinelli
derivatives are denoted by (0, £} (w), (5“FZ’]’n(w))1<j<n)0<t<T’ see Subsection
To make it clear, set

6. F1(w) i= 0,F (Xi(w), £(X0)) F(Xy(w), £(X0)),

corresponding Gubinelli derivatives are denoted by (6;6 see

— . (4.14)
81w, ) i= DuF (Xi(w), £(X0)) (Xu()) F(X0(), £(X0)),

where X (-) is the solution to the mean field equation ({0.2)) when driven by W () =

(W(),W(-),WL(-,)). We also let
5o Fy " () 1= 0T (X (@), B (@) F (X3 (@), B (), w15)
0B (w) 1= DuF (Xp(w), 7 (w)) (X7 () F (X (w), B ().

Given these definitions, and for a subdivision A = {s =ty <) <--- < tx =t}, set

K-1
Tor @) i= 2 AT @Wi ., (@) + 5T, (@)W, g, (@)
k=0
—_— .,J_
+ [0, (w, Wi, ()]
K-1

'7 7A . '7 L '7 ]
oA w) = 3 { B @Wi gy (@) + 0 F @)W, (@)
i1 i SuFL " @WE (@)}
n M5ty listh41 :

We denote the summand in the first sum by fifk’tkﬂ}(w) and the summand in the

second sum by I@:th+l}(w). By Lemma proved in Appendix [A.3] we can find,

for any o > 8, a constant C' and an exponent ¢’ > ¢ independent of n and K such
that, when Xo(-) € LY, it holds for any k € {1,--- , K — 1},

Ea20 -2 O TR0 T80}, < Onfur Gt )

[

where

A= A\{tg}
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and

p/2
[s,t],p/2—var"

Following (4.4]), we know that the right hand side is less than
1/2
Cnn [<HW(')H[O,T],(l/p)—Hélder>pg/ + <H “ [0,T],(2/p)— Holder>

1/2
<<HWJL H [0,T],(2/p)— Holder» ] (k41 _tk)s/pv

but by assumption all the expectations are finite. Now we can choose t; such that
ltk+1 — tr| < 2|t — s|/K. We get

{zr2o -z o - {Zt0 -1 o)) < om(* )™

the constant C' being allowed to increase from line to line as long as it remains
independent of n and K. Letting t(!) = t;, and applying iteratively the above bound
to a sequence of meshes of the form A\{t(M}, A\{t(1) ¢} . . and then letting K
tend to oo, we deduce that

<£ F () dWEm () — ff’;(JdWi() {Iﬁsntf T{ft}}> (4.16)
< Cnn(t — 5)3/p'

wh (s, t,w,w') = w(s, t,w) + W (w, w)\

By a straightforward adaptation of the first two steps in the proof of Lemma we
have in a similar way

in =i,0
<Z{8 tf I{s,t} 0 < Cnp(t — 5)1/p7

from which we deduce that
t t )
([ Firoawio o~ | FLOdW0) < Cmle -9
S s o

Similarly, following again the proof of the first step in the proof of Lemma we
get
F"() = F' O], < Cmlt = )7,
and, noting that
RgFiv”dWiW (w

s,t

t . 1 &
- [ B @awio @) - T ) + S F W, (o )+ 5 L F W)

s
R (@

= [(FHW ) - Tif) + S TAWE ) + [T Wi (0],
we deduce in a similar manner, using in addition , that

Findwi(m) Fdw’
R () =B ™) < Onalt =),

So, fixing ¢ € {1,--- ,n}, choosing p large enough and applying a suitable version of
Kolmogorov’s theorem (see for instance Theorem 3.1 in [25]), we can find p’ € (p, 3)
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such that

t ¢ . ,
[ Firawi o) - [ Fidi )| < @) - 91,

[W%)—ﬁwﬂ

Fingw(m) Flaw' im :
Ry (@) = Ry ™ ()| < 0wt - )27,

< 0 (w)(t — s)V7, (4.17)

s,t

with (0°"(-)), < Cny, for a new value of the constant C.

Observe now that the empirical control associated with our empirical rough set-up
and with the exponent p’ reads

w) (s, t,w) 1= v (s, £,w) + <n>M;"(w)))q;[sm_w,

where we used the same notation as in (4.3). In fact, there is no loss of generality
in changing the definition of wl’/n into

w;’,n(s,t,w) = vp "(s,t,w) + (”)[[v;}n(w)]]q,[ g1—var T (t—s), (4.18)

which permits to replace (t — s)/7" by w "(s,t,w)?" in the inequalities
Hence,

Step 2. We now make use of Proposition [15| to compare
t

fﬂﬁmwmmmwwm»am fﬂﬁwm&mmWw%m

0 0

< 09" (w).

| Frawio) — | Frw)aw )
0 0

[0,T] ,w;’," X

where
1 n
=~ 2 Sy,
j=1

To simplify the notations, we just write X for X and W' for W) We then
apply Proposition [15] with

(X(w),Y()) = (Xi(w)vX.(w»a (X/(w)ayl()) = (Yz(w)vy.(w))v (419)
the underlying set-up being understood as the empirical rough set-up for a given
realization w. The difficulty here is that the variations of these two solutions are
controlled by two different functionals w, see (2.1)). This is the rationale for intro-
ducing @;’,n in (4.13). Obviously, @""(,-,w) (We remove ﬁhe index p’ for simplicity)
is not the natural control functional associated with W*(w), but it is greater than
wp, "(s,t,w) and it satisfies

W@ (s,8,w)), < 20" (5,1,w),

which suffices to duplicate the proof of Proposition |15 with w;’,n(s, t,w) replaced by
w""(s,t,w). The resulting semi-norm that must be used to control the difference
(X(w) = X'(w),Y(")=Y'()) = (X(w) = X '(w), X*(w) — X (w)) on a given interval
[s,t] 18 || - llfs,67,40m pr- Of course the fact that we no longer use the natural control

functional prompts us to use the local accumulation N i’”([O, T],w, a) defined in the
statement.
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By construction of the processes (X Z'(w))i:1 .., as the solution of the empirical

rough equation, the pair (X(w),Y (")) = (X'(w),X*(w)) in automatically
satisfies the first bound in with w = @»"; implicitly, this means that we per-
form the same construction as in the proof of Theorem [16|using therein the empirical
rough-set up and the control functionals ( g ”)Z:Lm’n. In particular, the sequence
of points (t) = 7(0,T,w, 1/(4L0)))e=0,-~~,N0+1 in the statement of Proposition
is understood as with respect to @“". Also, by the last part in the statement of
Proposition we know that Y'(-) = X*(w) satisfies condition with respect
to (”)[-]8 if we assume that T satisfies

o) (N([0,7),0,1/(410)) ) (<o (4.20)

for a deterministic constant ¢, independent of n, Ly and T
In fact, following (4.4) and using the additional ¢ — s in the definition (4.13), wh"

dominates (up to a multiplicative constant) the control @’ associated to W' through
(1.8). Moreover, we have

<A2n S7t7 > C(t_s)7

for a constant C' independent of i, n, s and t. Although C' > 2, this permits to use
@""(s,t,-) as control functional when working with the rough set-up W'. This is an
important point as it says that the pair (X'(w),Y’(:)) = (Yz(w),Y° (w)) in
satisfies the second bound in (3.12)) with w = @w>™. Also, invoking the first line in
for each i € {1,--- ,n}, we deduce that Y’(-) = X (w) satisfies condition
with respect to (”){-] g brovided that that holds true. Possibly, this requires
to work with a larger value of the threshold Lg in the statement of Proposition
but this is not a hindrance.

Then, by Proposition we obtain, for a given L > L,

[ i eawie) - | FCEw).m )i

[te trs1], 0570

<900, (0 = XYM

+JMHWX'—X»wwmﬂ@WWD8)
(1 = Ty gony + O =Tl gpnn ) )

where @™ (tg, ty41,w)/? = 1/(4L) as long as k < N*™([0,T],w,1/(4L)). The point
now is to insert the conclusion of the first step. We get

l(x = X") (w)

v
) |||[tk,tk.+1:|,@i’n,p/

[ ’ ]7,@i,n P

O =T e )) ) +07)
(I =T e + O (1= TV imn)) )

< A B0, b )P (Hy (X' = X))
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If v/(4L) < 1/2, we get
|H (Xl o Yl) (w) }H[tk,tkﬂ],u?i’"m’

1 ~in ! i 3
<2y <f + " (07tk7w)1/p> <H| (X" = X) @)l 10,107.00m (4.21)

+ O = XYy m)) ) + 26760

and then, allowing the value of the constant ¢ to increase from line to line, as long
as it remains independent of n, Ly and T, we get

H| (XZ B YZ) (w) ||| [0,t541],0%™,p’
<e(t+ @)X =X @)l 100m
+ e @ (11 =X @) oy, 00 ) e w),
with
C;ln(w) = 1 + w;’,n(O,T,w)l/p/.

L
So, by induction,

||| (XZ - YZ) (w) |” [0,t541], 0% p/
k

<e(Rlett+ @) (6@ O (I =Ty eny )] + 07
=0

In the end,
(X =) @)l 27,0
< cfe(1 + Cin(w)) |V O The A a2

(e (I TNy, ) 07
Hence, using the shorten notation N:"(w) for No([0,T],w, 1/(4L)), we obtain
O =X oy )
<[+ @@ O g w)) .
<O =Y g0 )

Ol + Gre]™ O e @) )

8

Step 3. The key quantity of interest in (4.23)) is the multiplicative factor in the
second line, which we denote by

() = ([ 0+ @) g wW)

8
In particular, letting

0pw) = ([ (1 + G @) e @)

8
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we deduce from (4.23) that

(n) ([ [ (x* - y.)(W)m[o,T],fLT)”hz>’D 8

(4.24)
<) D ((Jl(x - X))

[O,T],’lfl.’n,p/)] 8 + @%(W)-

Here comes the key point. The variable w being frozen, we can choose T small
enough, depending on w, and L large enough, deterministically, such that ¥7.(w) <
1/2 and (4.20)) holds true. The proof is made clear below. Take it for granted for a
while and deduce that

(n) [( Il(x* - y-)(w)\H[O,T]@.,",p,D (< dO"w),

for a new constant ¢’. The above inequality sounds really close to the desired result,
except for the fact that it is on a small interval [0, T] only. The purpose is thus to
iterate it in order to cover any given time interval.

Step 4. In order to iterate in a proper way, we change our notation: While we
keep T for the deterministic time horizon given in the statement, we use the latter
instead of T' in the previous analysis. Put differently, will stand for the (random)
time horizon such that ¥ is small enough. More precisely, we consider a random
dissection 0 = ¢ < 1 <---< A =T of the interval [0,T] by A subintervals.

We need to go back to the proof of Proposition Assume indeed that we have an
estimate for

gi’en(w) = (1 + @i/ﬂ(O’ Taw)l/p,> H‘ (XZ B Yz) (w)‘H[O, o], Wb p"?

for some ¢ < A. Then, in order to duplicate the second step, we must consider a
new dissection ; =ty < t; < -+ < tg = y41 of the interval [ 4, ,41] with the
property that K = ]’\\f”‘([ ¢, o41],w,1/(4L)) +1 and that ©""(tg, tp11,w) = 1/(4L)
if t, < K. The key point is to apply a relevant version of , but with , instead
of 0 as initial time. This requires a modicum of care as X*(w) and X (w) do not
coincide at time ;. We let the reader adapt the proof accordingly and check that
the following holds true

| P m@)awi) - | PR e)awie)

123

[tk: 7tk+l] 7ai7n 7p/

<Y o, e+1,w)1/p/{H (X'~ Yi)(w)m[ PR

4 () ([ l(x* =X @), “1],@.,71713,]] 8}
i ~i.n / i 1
+MAw<bmmWUw_xmgWMWW
R ([[C S IO — 8}
ealEine) + e @), |
provided the analogue of holds true, namely

(80 endw /L)) <e
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Then, proceeding as in the second step,

~i

(" =X @y 11,00
< C@i’n £y £+1,W { H![ TR
+ (0

mw ))Mbwmwﬂh}
0% {5i2”(w) + (”)([5'/_;”(w)])8 + Hzn(w)}

In the end, we are in the same situation as in (4.21)), but with new (%n and NZTn
Here, we let

G (W) =B gy eg1,0),
Ny . 1
N = N — .
l (w) ([ 2 erl]ku 4L>
Following (|4.22)), we obtain

[(x-X") ()

‘H[ 2 e+.1]7@i’”,p/
c [c(l + Cé’n(w))]N"’ (w)+1
i (4.25)
A& @I =XV o)
+ 00" (w) + E5 + (”)[[5°l;”(w)])8}.
Hence,
(n) ([ m (X' _ Y‘) (W) |H[ ‘ e+1]ﬂf2"",p’D 3
< @) x O(1 =XV @, o)) |+ OF@)
with
\If?(w) — (n) ([ [02 (1 + Cz,n(w))]Nz’ (w)+1C£,n(w)D .
07 (w) = ([ (14 @) O o0 w) + e ) + OET@),) )
If we can choose 441 — ¢ such that U} (w) < 1/2, then we get
O =X, o)) <2607
Eventually, returning to and modifying the value of the constant ¢, we deduce

~i

X))

Il(x* = e, eovtaim

<ec [C(l + Cz,n(w))]N "(w)+1 (Cén( ) ( ) + 0i,n<w) + gz,en + (n)[(goén(w))]8>7
and then

£ (w) < ry"(w) <C§’"(w) O (W) + 0" (w) + 7' (w) + (”)[[53”(00)]]8),
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with (using the fact that ¢ > 1)

R (w) = @ (14 @0, T,w) ) [ (14 G (@)
This yields to the following global bound:

]]\AIZ‘"(w)+1

g (w Z/c [g,g“( YO (w )+9i’"(w)—i—(")[[é"l;”(w))]s}, (4.26)
with -
Kw) o= [ 65" W), Kij(w) =1.
j=k

Observe that

K f[ L@ (0, T ) [ (14 )]

< (éfk)+2N,;’Z( 1+ @m(o,T’w)l/p’)ffmﬁi’,?(w)

i

with the shortened notation N,i?(w) = N’"([ k, ¢],w,1/(4L)), and that

; ; _ Givn » A L+ 1—k+2N5" (w)
K (w)rb™ (W) < AEHTRTAN (@) (1 + wl’”(O,T,w)l/p) B

From (4.26)), we deduce that for any r > 8, we can find a constant ¢(r) such that
¢

P, < X {“”(UC;? " g < (1 (@010 7)) )
y (1 + ™ [[ [ (1+ g,;’"(w))]ﬁ’:’n(“)ﬂn q(r))

y ((n)([e-vn(w)ﬁq(r) - (”)[[5';;"(w))]r> }

which we rewrite in the form

¢
agy1 < 2 o(b+ ag),
with

ap = (n)([g'é”(w)]]r, G =4 X <(”)((IC,'€’? Ky an(r)>3’ b:= (”)([9”"(w)Dq(r>-

Hence,
V4 J
ap <b 2 Hgkiyki+1'

J=10<k1 <<k <k =L i=1

Now, we can find ¢’(r) > 1 such that, for 1 <i < j < ¢ < A, where A is the number
of subintervals in the dissection 0 = o< ; <---< A =T of [0,T],

e 2 D

<O (e + @, )WDAHB ;’f(f:)lkm)/(m)

x (™) ([ <62(1 + 1@"”(0,T,w)l/P')>2Tﬁ':§7ki+1/( kip1 ™ kz)D (kipr— ki)/T.

q'(r)



74

Hence, by Young’s inequality

ﬁ grosin < @[ (202 (1 + @*m0,T, w)l/p'))A“D
=1

J

6

q'(r)

F]

X

(n) ([ <c<1 + @.,n(o’m)l/p,))zﬂ,;;, o/ Chin k)D

4 ¢(r)

1

Finally,

6

ap < (n)[(eo,n (wm o

" (2A)A+1 () [( ((20)2(1 I @.,n(O’T7w)1/p’))A+1D

q(r)

A (n) ~en I/ QTN;:;TL;CZ. JChyyr— ki)
x; [( (c(1+w (O,T,w)lp)> L D

3

q(r)

Step 5. Repeating (4.11) and (4.12), we can find a real £; > 0, independent of n,
such that sup;_; ... ,, E[exp(@"™(0,T,-)**)] < C, for a constant C independent of n.

Hence, following (3.22)) in the proof of Theorem we deduce that, for any ¢ > 0,

E[([ (c(l " @.,n(o’T’w)1/p/)>2TIV,:;,Lkp+l/( kpi1— kp)D 0 ] <C,n,

q'(r)

for some constant C,, only depending on r and g, the value of which is allowed to
increase from line to line.

e We prove below that the number A of subintervals in the dissection 0 = 75 <
71 < -+ <77 =T of [0,7] has Weibull tails with shape parameter A > 1/2, with
A independent of n and the Weibull tails uniformly controlled in n > 1. Hence,
following in the proof of Theorem we deduce that, for any ¢ > 0,

E Kﬁ: [{ (c(l +@*"(0, T,w)l/p')fmifkm/( Rip1 ™ ”D j(ﬂ) g]

i=1

1/2

<Gyl Y P(A =)

J=0

-1
JO < Cy .

Similarly,

E[(”) [[ ((20)2(1 + @"”(O,T,w)l/p,))AH)] ‘ } < Oy

q'(r)

Returning to the conclusion of the fourth step and observing that A* has finite
moments of any order since A has Weibull tails with shape parameter A > 1/2, we
deduce that, for a possibly new value of ¢(r),

(an (), < Cr {0 (),
where C) only depends on r. It remains to observe that aj(w) is equal to

an(w) = M (EF" W),

which is less than 7, by the conclusion of the first step. Inserting into (4.26[), we
easily complete the proof.
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e We now justify the fact that A has Weibull tails. We use the following bound
i) < ([ e of(@r@])

16
E ([0 a0 )

(O ) o))

For sure, this shows that we can choose dp(w) := y41(w) — ¢(w) small enough such
that
Uy (w) < 2.

Moreover, by Holder inequality, we obtain, for any a > 0

vy < ([ (1+ @0, Tow Uy WD 3

X ((”)([@"n( 0 z+1,w)1/p/D 32+(")[[U7""( I3 e+1,w)1/p/D Zz>

<act® [{ [ (1+@*™(0,T,w Y’ N " (w )/&]] Zz’f

A ) )

Call for a while A the w-dependent minimal number of steps such that ¥, (w) > 2.
By in appendix, we can prove that A has Weibull tails if the local accumulation
associated with each of the two terms above have also Weibull tails, with the same
shape parameter. As for the term on the last line, this is precisely the assumption
we have (whatever the value of a), see the beginning of this step and assume that
q = 32in . It thus remains to handle the local accumulation of the term in the
penultimate line. So, we can regard dy as if ¥y was exactly equal to the term in the
penultimate line. We then observe that, for ac* <1 and A > 0,

P (o) <P (@) MO (12 0 aon TN Tan)
—p <(n) [( [ (1+ @”"(0,T,w)l/p,)]m’n(w)/aén L (ac4)_A> '

We now introduce the function
flx) = exp(ln(m)lJrE), x> 1

it is non-decreasing on [1,00) and convex on [e, c0). By Markov inequality, for ¢ > 1,

()
< exp (_ (ln[(ac4)732A])1+eé) E[f <rlz Zn: 6[02 (1 + @0, T, ‘)1/p e "/51%)]
< exp (—(nf(act) 4] ) i e|s ( (a0 )

where 1 + &, < (1 + €2)/(1 + £2/2), where €5 is such that that N "(:)/6¢(-) has
Weibull tails with shape parameter 1/2(1 + £2), uniformly in n, ¢ > 1 and £ = &) in
the definition of f. Therefore, following (3.22) again,

P <5£ < i) < C'eXp(f(—32 ln(ac4))1+5/2A1+5'2),
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Now,

< Clexp ( —(-32 ln(ac4))1+€l2 (E/T)HE/?),
which shows that A has a Weibull tail.
In fact, A needs also to take into account the condition
[ yen 1/(4L <c
[[ ([ Iz Z+1]7w7 /( 0)) )] 8 c

Using again the lower bound ({A.1)), we can assume that A only counts the number
of ¢ for which the above inequality is actually an equality. Then, we can repeat the
same proof as above by using the fact that

=0 (2 e+$€],w, 1/(4L)) ))

and by recalling that

(n) ([ ﬁ.’n([ 05 é+§jvw> 1/(4L0)) D .

has Weibull tails with shape parameter strictly greater than 1/2, which follows from
the convexity of the function [0, +o0) 3 2 ~ exp(z'*¢), for ¢ > 0. This permits to
provide an upper bound for P(d; < 1/A). >

A — Integrability and Auxiliary Estimates

We prove in this appendix a number of auxiliary results that we left aside to
keep focused on the main problems at hand. Thus we prove in Appendix the
version of Cass, Litterer and Lyons’ integrability estimate on the accumulated local
variation of a rough path under the form needed here, Theorem [6] In Appendix[A:2]
we provide a proof of Theorem [23] showing propagation of chaos for an interacting
particle system driven by Gaussian rough paths. Appendix [A:3] is dedicated to
proving a crucial moment estimate for some quantity of interest in the proof of the
convergence rate in the propagation of chaos result, Theorem This is where the
convergence rate 7, appears.

A.1 — Proof of Theorem @

We provide here the proof of Theorem [6} this statement allows to use our well-
posedness result for the mean field rough differential equation when W is some
Gaussian or Markovian rough path. We follow the proof of Theorem 11.7 in [25].
Throughout the proof, we use the same notations as in the statement of Theorem [6]
The following statement provides the required analogue of Proposition 6.2 in [I1].

Recall that v(s,t,w) in (L.7]) consists in six different terms. It is an easy exercice
to check that it suffices to control the local accumulation associated with each of this
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six terms. To make it clear, we have the following property. If, for a given threshold
a > 0 and for any two continuous functions vy : S — Ry and vy : ST — Ry, set

Ni(@) := N, ([0,T7], @),
for 1 < i < 2; see (|1.13) for the original definition. Then
N
max(N; (2). 3o (2)) = Y, (A1)
For sure, the result is true with the first and third terms in (1.7) as this fits the
original property established in [II]. Also, it is obviously true for the second and

sixth terms since they are completely deterministic. Hence, the only difficulty is to
control the local accumulation associated with the fourth and fifth terms.

The strategy is as follows. As we work with Gaussian rough paths, the set-up,
as defined in Section [I} is strong. So, we can transfer it to any arbitrarily fixed
probability space (provided that the letter is rich enough). Hence, we can choose {2
as the canonical path space W, see the notation used in the statement of Theorem

(@}
We denote by W (w,w') the enhanced Gaussian rough path associated to
(W(w), W'(w"))

along the lines of Example [5, for P®?-almost every (w,w’) € Q2. To make it clear,
the second level of W (w,w’) reads
(. o) e W(w) I(W(w), W' (w'))
w (w7w) : ( I(W/(w’),W(w)) W(w/) s

where Z is as in Definition and where we used the same symbol W as in Section
for the enhanced path although the meaning here is not exactly the same. Here,
W (w,w') is a function of both w and w’ and takes values in R?™@®(R?*™)®2. Following
Section 3 in [I1], see also (11.5) in [25], we define, for h@® k € H @ H the translated
rough path (TherW)(w,w’). We then recall that, with probability 1 under P®?,

TharW (w,w') = W(w + h,’ + k).

Following the argument given in Proposition 6.2 in [I1], see also Theorem 11.4 in
[25], we have, for any h € H and any (s,t) € ST,

8W(OJ, w/)8€s,t],p—var S¢ (8Th@0w(w’ w/) 8fs,t],p—var +H H [s,t],0— Var)’

where we recall that 1/p + 1/0 > 1 and ¢ only depends on p and p, and where

8W(w7 W,)8[s,t],pfvar = H (VV’ W/) (wa w,) [s,t],p—var + \/Hw[z] (wv W/) H[s,t],(p/2)7varu

and similarly for 8TygoW (w,w")8[5 ¢ p—var- Taking the power ¢, allowing the con-
stant ¢ to depend on ¢ and integrating with respect to w’, we get

(W@ 1), < (T W o), 01y
and then

(W gy = (To0W M a1 )

We now recall the notation
8W(w> w,)s[s,t],(l/p)—Hélder = H (I/Va W,)(wa w/) H[s,t],(l/p)—HE)lder

+ \/||W(2) (w, W) [s,11,(2/p)— Holders
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for the standard Holder semi-norm of the rough path, see Theorem 11.9 in [25].
Then,

W w, * S —var
<|| ( )”[ 7t]7(p/2) >q

< C(<HTh@OW(w’ ')HI[)07T]7(1/p)—H61der>q(t —s)+ Hh”fs?t],g_var)-

Therefore,

<Wl(w, ‘)>p/2

g;[s,t],(p/2)—var
< c(<\|Th®0W(w, -)HfO,T],(l/p)_HélderZ(t —8) + \|h||1[957t]7g_var>‘

Observe that if the left-hand side is equal to or less than «, we can easily replace

Hh”fs,t],g—var by Hh“fs,t],g—var up to a modification of the constant c¢. Since p < p, this

is obviously the case when [[h|(s p—var < 1. When [A][s ] o—var = 1, We can easily

modify the constant ¢ in order to preserve the inequality. Define now
N([0,T],w, @) := Nx([0,T1], ),

when

p/2

4i[s.,1),(p/2) —var’

w(s,1) = <wi(w, .)>
Then,

N([0.7],w @) < (1 TiooW @ Moy ) -saser), T+ VAo 7 v

By Proposition 11.2 in [25], we get
N([0.T).w,a)er < e (I Thao W @)y 0y -sioaes ), T+ IBIET).

where || - || is the standard norm on the reproducing Hilbert space H, see again
for instance Appendix D in [27]. We then conclude by recalling that the quantity
<<HW(, -)\|][DO7T]’(1/p)_Hélder>>q is finite, by observing that the set

E = {(w,w') € 0% : ThgoW (w,0') = W(w + h,w'), he H}’

is of full P®2-probability measure, see Theorem 11.9 in [25], and then by invoking
Theorem 11.7 in [25].

As for the conclusion of the statement (the fact that the tails of w(0,T) satisfy
the required decay), it suffices to duplicate the convexity argument used in

and (.12).

A.2 — Proof of Theorem

Theorem [23] asserts that the assumptions of Theorem [22] ensuring propagation
of chaos for the interacting particle system associated with the mean field rough
differential equation are satisfied in the Gaussian framework specified in its
statement. We only prove here that we can control the empirical local accumula-
tion as the other requirements in the statement of Theorem [22] are easily checked.
Following the proof of Theorem [6] in Subsection we may focus on the local
accumulation of each of the various terms in .
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Step 1. The first step is to consider the local accumulation N° ([O, T, w, a) asso-

ciated with HWl + HWl Hp/2 namely

H [s,t],p—var [s,t],p/2—var’

N([0,T],w, @) := N ([0,T], ),

when

+ Wl

s,t],p/2—var”

= [W'(w)

[s t],p—var

We recall from Theorem |§| that each N*([0,7],w,a) has Weibull tails with 2/p as
shape parameter, uniformly in ¢, in the sense that there exists a > 0 such that

sup E[exp(a[]vi([O,T]7 -,a)]2/g)] < . (A.2)
1<i<n

Then, by thNe L*-version of the law of large numbers, which here applies because the

variables (N'([0,T7],-,a))

are independent, we get

i=1,.n
P(wen: L New(§IF(0.The ) = 1+ Elesp(§F 1071 )] )
C
e

for a constant C' independent of n. By Borel-Cantelli Lemma, we then obtain that,
with probability 1, there exists a rank ng such that, for any n > ny,

—Zexp( ([0, T],w )]2/9) < 1+E[exp(%[ﬁl([o,T],w,a)]Q/Qﬂ,

which suffices to complete the proof for the first and third terms in (4.3]).

Step 2. We now focus on the local accumulation of the fourth and fifth terms in
@3).

We use the same notation as in Subsection and proceed as in the proof of
Theorem @ Consider the Gaussian process (W!,--- W™), with abstract Wiener
space (W",H@",P®"). As before, we call, for w = (w;)i; € Q" and for h =
@ h; € HO™ set

ToW ™ (w) = Tgn pn, W™ (w)

for the translated rough path along h. Then,

i 2
HW J Hps/t 1,(p/2)—var
z 2
C(H ThW j ”p/ 1,(p/2)—var H ThW H [s,t],p—var || ThW ( ) [s,t],p—var

IR v+ IPIE )

Importantly, the constant ¢ is independent of n. Below, it is allowed to increase
from line to line as long as it remains independent of n. So,

O (W @8 e )
<c{<n>[|<Thw>“ o), O (IEI @I, )

H ThW H |,p—var HhiHI[)s,t],gfvar + & {Hh.HZ[)s,t],gfvar) q}.
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And then, proceeding as in the proof of Theorem [6] and applying Proposition 11.2
in [25] together with the fact that p > 29, we obtain

o (wizw)"”

q

<ef (1@

[O,T],(l/p)fHélder) . + HhZ”;)-L + ™ (Hh.H%] q} (t—s),

(A.3)

at least when the left-hand side is less than or equal to a. Similarly,

. /2
() [ wi-e P
[ (w)J 5,81, (p/2) —var

< (1Tl -t ), + Il } =),
when the left-hand side is less than or equal to «. Define now
Ni’”’JL([O,T],w,a) = Nw([O,T],a),

when

(n i, p/2
(S t {W q;[s,t],(p/2)—var"

Then,

Ni’”’i([O,T],%Oé)a Sc¢ { [H ThW)™( H 1,(1/p) Halder] q + h|§i®n}T‘

We then apply Theorem 11.7 in [25] but on the space W&, H®" P®"). Importantly,
we observe that

[(n [H TW)"* (W) [0,77,(1/p) Hfﬂder) q]

is bounded by a constant ¢, independent of ¢ and n, which proves that the local
accumulation N Z’"’JL([O,T ],-, @) has a Weibull distribution with shape parameter

1/o.

Step 3. The fact that Ni’”’JL([O,T]7 ',a) has Weibull tails does not suffice for
our purpose. Indeed, differently from the variables N Z""([O,T], : a), the variables
N ([0, T,-, a) are independent, which prevents us from a straightforward appli-
cation of the law of large numbers as done in the first step. In order to overcome
this difficulty, we must revisit the above argument and prove that the variables
(Nt (10,77, -, oz))l.:1 .., are in fact nearly independent, in a sense that is made
clear below. Tn order to do so, go back to and observe that, since p < 2,

n

) . 1 - 0/(29) —o/2d) .
(w8, - (5 ZWH ) PN Ry Y

j=1

The trick now is to use the additional factor n~9 (29 but to benefit in a full way of
this additional decay, we assume that h' = 0, in which case (A.3]) becomes

o (wie) "

<ef®(Jmwe)

(1w

el o2 ) . (@) var)

TRV I+ 17 TRl 0= )}
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at least in the case when the left-hand side is less than or equal to «. In fact,
the above inequality must be considered as an inequality on the smaller space
(W”_l, HOM—1) P®("_1)) containing the (n — 1)-tuple (wl, e Wi, Wi, ,wn),
which we denote by w™!, while the value of w; is frozen. In particular, since h’ = 0,
the vector h can be identified with h™% = (h1,--- ,hi_1,his1,--- , hn) and |h]yen
is then equal to |h;_1|yen. As before, take now, 7y and 7441 such that

(n)[Wi,o (O.))] p/2 = q.

Te,Te+1 q

Then, at least one of the two inequalities below holds true

AP, o), + (LTI,

+ [(TRW)( >

«
2,

H TZvTZ+1 sD— Val‘}

n~¢/C0 Hh_i”ffw(rH) (Tev1 — ) = %-

Therefore, denoting the left-hand side in the first line by gy, [, 7,,,](w), we get

wiz, @)

(29) _
Saly, . wzae/(20} TN “CDYRTIE ) (trg — o).

iTo+1] (

So, we get, with probability 1
. . .« _ .
N ([0, 7w, 0) < NO([0,T]w + b 22 )+ 0@ [0~ T, (A)
where N is the full-fledged local accumulation defined in the statement of Theorem

22

The important point here is that N i’”([O,T], af (20)) has Weibull tails with
shape parameter 2/p, uniformly in n > 1, as a consequence of the first step, the
second step and fourth step below — the fourth step is actually a duplication of the
second step. Hence, there exist a positive constant a and a non-negative constant

C such that
E [exp <a[Ni’”<[O,T], ° ;)]2“))] <C

f(w;) = inf {r > 0 : POl (w_i . NOP ([O,T], (W™ w;), %) > 7“) < ;} .

Set

In the right-hand side, we wrote w under the form (w™%, w;) to specify the fact the
random variable is seen on the smaller space W"~!. For any A > 0,

{wi D f(wy) = A}
c {wi : P®("*1)(w*i : Ni’”([O,T], (W™ wy), %) > A) > ;}

c {wi : E®(—1) [exp(a(Ni’”([O,T], (.,wi)))z/g)] > ;exp(aAz/Q)}'

So,
P(f > A) < Qexp(—aAQ/"),
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from which we deduce that f has Weibull tails with shape parameter ¢’ > 1, uni-
formly in n.

Returning to (A.4]) and subtracting f(w;) to both sides, we get
(]\/vi’n’JL ([0’ T]a W, Ol) - f(wz)) "

< (Ni’n([ovT]yw +h7, %) - f(wi))+ +n” ¢GRS o) T

Now, we can apply Theorem 11.7 in [25] with a = 0 and @ > 0 on the smaller space
wn— 1 containing w™*. We deduce that there exist a > 0 and C > 0, independent of
n, such that

E®(n—1) [exp <an1/q<[]\7i’"’l([0, ), (- wi), @) — f(wi)L)Q/g)} <cC.

Taking expectation and rewriting g(w;) in the form f(W;(w)), we get

E®n [exp(anl/q([Ni’”’J‘([O?T],-,a) _ f(Wi(.))L)Z/Q)} <C.

Therefore, by Jensen’s inequality,

EK:Lgexp<a<[N’F”vi([0,T],.,a) - f(wi(.))L)Q/Q))nl/q] <C.

Therefore, for any A > 1

P(5 e (o[t (0.1 ) = 0], )) 5 4) < ca

and by Borel-Cantelli lemma, we deduce that, with probability 1, there exists a rank
ng such that for n = ny,

% iexp (a([]\fimvl([(),T],w,a) _ f(Wi(')))]Jr)Q/g) <A

It suffices to duplicate the first step to conclude, this time with the random variables
(f (Wi))z'=1,~~ . Which have Weibull tails with shape parameter ¢ > 1, uniformly in
n. Assuming without of loss of generality that o' > o, we complete the proof by
Cauchy-Schwarz inequality together with the fact that

(Ni’"’i ([0, 7], w, a))Q/QI

o[ -] )

2/¢ 2/0

+o(fwi))

Step 4. We now turn to the local accumulation of the second and sixth terms in
(4.3). Proceeding as the second step, we get

R (CRT) -

< e (), + 7 Wl f (090

at least when the left-hand side is less than or equal to a. Importantly, the coefficient
in front of |h[3e, holds for all h. So, the context is simpler than in the two
previous steps. We then conclude as in the second step as for the tails and, using
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the additional n~¢(29) we can implement the same Borel-Cantelli argument as in
the third step.

A.3 — An Auxiliary Estimate

We prove in this appendix an auxiliary estimate that was used in Step 1 of the
proof of Theorem [24} this is where the convergence rate Ny for the propagation of

chaos appears Recall the definition of the terms Z©" ’} ) and T {r, S}( ), given after
equation (4 in Step 1 of the proof of Theorem [2 i

25. Lemma - Fixz o > 8. Then, there exist an exponent ¢’ and a constant ¢ such that,
if Xo(+) is o -integrable, then, for anyn >1,i€{l,--- ,n} and 0 <r<s<t<T,

n in, in, =i,0 i, P
<{Iz'r s(;( ) + Izs,t}a(‘) - Izr,t}a(‘)} - {Z{r,s}(') + I () — I{r,t}(')}>g
< CT/TL <<'LU+(T', t') Yy )>>Z{p7

where (Ny)n>1 15 as in the statement of Theorem@ and

n 2
wh(r,t,w,w’) == w(rt,w) + W (w, w)|pT/t p/2—var"
Proof — Throughout the proof, we use the following notations. Foreachi € {1, - ,n},
we call @' the control associated with W(-) through (1.8). For j € {1,---,n}, we

also let
w”(s t,w) ||W” )Hp

[s,t],p—var®

We also make an intense use of Lemma [26] below, giving the convergence rate of
the empirical measure of a sample of independent, identically distributed random
variables towards their common law. By ., we know that, under the standing
assumption, supg<,<7 |X3(-)] and || X () !H , are in L7 as soon as Xo(+) is in L.

We then compute
i,m,0 ,m,0 1,0 4,0 1,0 =i4,0
{Zi@) + 7 @) - T @)} = {3 @) + T @) - Ty @)
= (RE" (@) = RE@)) W) + (8:F0 (@) = 6., 4 (w) Wi (@)
( Z B ()WL (w) E[%Fi,sw,~>wi:%<-,w>]> ,

where

—_

7,8

RE (@) 1= Fim(w) = Fi"(w) = 6B @)W (@) = 3 8, @)W (@),
=1

3

RE () = Fy(w) = F(w) = 6T (@)W}, (w) - E[éﬁiw, ‘>Wm<‘>].

)

(A.5)
Following (4.14]) and (4.15), we define differentiable functions G, and G, of their

arguments setting
0" (W) = G (Xp(w), a7 (),

)

8:Fy(w,w') = Ga (X (w), £(Xy)),
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and

i

8 F T (w) = G (X (), 17 (W) (X7 (@),
5, Fy(w, ') =: G, (Y;(w), L(Xy)) (Xe(w)).
Finally, we can write the whole difference in the form
o - =0 =0
{T0.0@) + Ty @)~ Ty @)}~ {Thny @) + Ty @) = T{on @) |
= (RE)" (@) = RE, (@) Wi, (w)

+ [ (@), 7" (@) = Go (X' @), L) Wi () (A.6)
+ i;[% () (X)) = (X (), £00) (K@) || Wit
o Z |G (). £X)) (K ()] W) — E| 0 (w0, WL (- 0)|.
Step 1. Ob_serve that
|6 (X @7 @)]
- fo 0aGia (X0l (@) T ()) K ()N
+ iZ 01 DG (X0 @) B (@) ) (K0 () X ()

_n,(\) _ 1 = ey 1 =
o) @) 1= 3 20500y Vit (@ @ (20, @)X )
with

X0 (W) = X (w) + XX, ().

Proceeding similarly with [G, (YZ (w), L(X ))]r o we get
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where, as before, x! (2» 9 (w) = X, (w) + AX, s(w). Splitting the last two terms in the

above expansion into
i) () 2,V
fmd [J DG ( (7, s)( w), K, (,,75)( ))( )ZCD\] CFT o, 8)(w Y, 2)
i( N (A)
JRQd |:f D G 73 )( ) L<X7"§(7":5))) (y)Zd)\:| L (Xr;(r,s)’ X’"75) (y7 Z)
— D G y’i,()\) *nr()‘) d)\ d— ,()\)
0 =z r;(r,s) (w)’ Hr;(ns)( ) ( )Z ri(r,8) (OJ Y,z )

~1,(A n,
_Jde DG (X700 (@), £(X) )))(y)sz a7 (wiy, 2)

r;(r,s)

r;(r,s)

) )zar| ) (i 2)

X (Xi(w)”’[O,T],w w'(r,5,w)"P 4~ Z X" @)l

k 1

o+, wk(r s w)l/p>

+c

Sri (w, X5 w)])

)

where Sp7 (w, ]Y;s(w)]) is the n-empirical mean of n random variables that are

dominated by (|Yi sW)]) and n — 1 of which are conditionally centered and

.]:1) 5T .
conditionally independent given the realization of the path (X', W? W?). Recalling
(1.9) and allowing the value of the constant ¢ to increase from line to line, we obtain

62 (X )7 (@) = Go (X ). £00) | W)

1
e[ (2 02880, )

[ n 1/2
2
( 2 G [o,T],wk,p> ]

. 3/2
x | @ (r,t,w)*P + ( Z rth/p> ]+c

x| 1% @)l

Sk (o, [ o @) [, 1,7,

In order to conclude for the second term in the right-hand side of ({A.6]), it suffices to
recall from Rosenthal’s inequality (applied under the conditional probability given



86

the realization of the path (Yi, Wi, W) that

m —1/2 . /P
<S >3g/2 scn <|HX( Mo,r7,w.pw(r, 8, -) >3@/2

< en V2 QIX O o g s, (0l b O,

If p is large enough, we deduce from Lemma [26] that
(=X 0.m0) - 6:(X' (). £00)] W),
1
—_n,(A A
< ([ (M (i £x00)),,00) X OloynYe, (ot

+en VX O o, w0ty ) o

<em (14 s X0y, )AIXC) \H[O,T],w,pig ()

0<u<sT

Step 2. By the same argument, we have

’[Gu (Yi(w%ﬁ”(w)) (X () — Gy (Yi(w), g(X)> (Yj(w))]mwgﬁ(w)(
<c (_Ll Wi (H:“L;’((::i) (w), E(Xﬁils)))d)\) wj»i(s’ t,w)2/p

1/2
X !H w)|| [0,7]wp T |||XJ )H‘[O,T],Ej < Z H‘X I [0,7],@" p> ]

n

" 1/2
x | @ (r, s,w)YP + @ (r,5,w) P + (12 'rswg/p> ]

+c

S (. X7, (@) T (s ),
where
<S7Z;:g’n(-7 |Y;,s()’)> < cen~ V2 <H\X!H 0.1 7w7pw(7n’ s, _)1/p>3g/2

< en 21X 0.7 p030 (0 (st ).

30/2
Observing that (@’ (s,t,)2/P)3, < (w*(r,t,-, -)))gép — this is the rationale for intro-
ducing w™, and taking expectation, we get
(|enE 0.7 ) (F () = Gu(X (). L) (X)) || Wiiw))
1
_n,(A) A) 3/
<o < jo (Mo, £(x5) >3de> X Ollor1p e, (w0t (ot Nk

+en V2 X Ol g, (0 (1))

r,8
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Taking the mean over j, we obtain for upper bound for the third term in the right-
hand side of (A.6) the quantity

<i 23 (6 (K0 0) (F0) = Gu(X ), £06) <Xj<'”]rswgﬁ(“’)>
=1 |

e

<c < L 1<W1 (ﬁf;’((zl)(-), E(XTQL’S)))>3QdA> X Ol D5, (w0 (8, _)»zi)p

+en ™ 2 X O o1, (07 0t )27

By Lemma [26] we get the same bound as in the first step.

Step 3. We now turn to the last term in the right-hand side of (A.6). It reads as the
empirical mean of n random variables, n — 1 of which are conditionally centered and

conditionally independent given the realization of the paths (Yi, W W), namely
1 =i =i i =i il
=[G (X (@), £00)) (K ()], Wk ) — E[8,F o0, WL ().
j=1

Invoking Rosenthal’s inequality once again (in a conditional form), it suffices to
compute the L¢ norm of

(G (X (), £(X)) (X (@))], , W ().

Proceeding as before, it is less than ¢ (|| X ()| [0.7] wp>39 (wt(r,t,-, -)>>22p. So,

<:L 3 [T £0) ()| W) — E[8,T o, W w>]>
i=1 ’ ,

< en VX O orps, (0 0t ) )

We conclude as before, by invoking Lemma

Step 4. We now handle the remainders in (A.6)). By expanding (A.5) and by using

similar notations for the remainders in the expansion of each (Y])jzl .. o We have
R (@)
5 —n X" 1 ¢ 3 —n g
= 0P (X, (@) (@) ) BN @) + — Y DF (X (w), 27 (@)) (X7 () BY, @)

Z o [DuF (Y’:j;((i\',)s) (w)7ﬁ;;((:: i)) (Yi,((i\,)s) (w)>
— DuF(X, ), ) (X7(w) | Xo(w)

Expanding Rf;(w) in a similar way, we have to investigate four terms in order to

estimate the difference R " (w) — R,,F; (w). The first term corresponds to the first
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term in the right-hand side of
[0:F (Ko@), @) = 0.F (Ko (w), £06) ) | RE (@)
< Wi (B @), £ ) 1T O e T 7,77,

Then, we must recall that, in the first line of the right-hand side in , the
difference RF " (w)— RF s(w) is multiplied by W, (w), which is less than w (s t,w)VP.

In other words, we must multiply both sides in the above inequality by w*(r,t, w)l/ p,
By Cauchy Schwarz inequality, the L¢ norm of the resulting bound is less than

3
W) LX) g, X O 1,000 (01D

The second term that we have to handle corresponds to the second term in the
right-hand side of (A.7). With an obvious definition for RX(-), it reads

LN D (X ) 72 ) (K1) B () — { D, (X). £(X,) (XT<->)R58<‘>>‘ .
j=1

Proceeding exactly as in the first step, we get

+ 30 D (X)) (X)) — (D (Ko £(X,) (Xr<'>>35%<‘>>‘
cW1<,uT( ) ( Z|RX] )+c

where S,Z;j? (w, ]Rrys (w)|) is the n-empirical mean of n random variables that are

St (w. | R (@)])

dominated by (]RTYSJ (w)\)jzl .., and n — 1 of which are conditionally centered and

conditionally independent given the realization of the path (Yz, W W?). Hence, the
L2 norm of the right-hand side, after multiplication as before by w' (s, t,w)"/?, is less
than

e (W (). %) ), 407 QX Ollorrnms, wlrt))g,

As for the third term in the right-hand side of (A.7), it fits exactly, up to the
additional factor YZ s(w), the analysis provided in the first step. So we get as an

upper bound for its LQ norm, after multiplication by @' (s, t,w) 1p_ the quantity

(J J<Wl r(rs ',E(X )> d)\dA)<X 7p>69<wrt /p
+en X O, ,p>6g<wrt )3/p

Following Step 2, we get exactly a similar bound for the fourth term in the right-hand

side of (A.7). Applying once again Lemma [26| completes the proof. >
Lemma — There exists a real qg = 1 such that, for any q = qq4 and any probability

measure (1 on R satisfying Mq(p) == (§za 2|90 (dx))l/ < o0, it holds

2/q
E[ W2 ()| < equa My()
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for a constant ¢y 4 depending on q and d, where (n,)n=>1 s as in the statement
of Theorem and p"(-) is the empirical distribution of n independent identically
distributed random variables (X'(-), -+, X"(:))of law p, namely

n 1 =
P (w) = - Z OX(w)-
1=1

Proof — Without any loss of generality, we can assume that M,(u) = 1, see the
argument in [9, Chapter 5|. Then, by [24, Theorem 2], we obtain, for d > 3,

P(Wl (L"), 1) = Ann) < Cexp (—cm;ffAd> + Cn(nAny) —12
in which case the result easily follows. When d = 1, we have
P(Wl (M”(.), M) > Ann> < Cexp ( — cm)iA2) + Cn(nAnn)_q/Q,

and the result follows as well by our choice of 7,. Finally, when d = 2,

2A2
P(W1 (L™ ()m) = A%) < Cexp <— i

(In(2 + A=, 1))

Assuming without any loss of generality that A > 1, we have In(2 + A~ 1) <
In(2 + ;1) = In(1 + 2n,) — In(n,), which is less than —21In(1,,) for n large enough.
Given our choice of 1, we have —In(7n,) = In(n)/2—In(In(1+n)), which is less than
In(n)/2. Hence, modifying the value of the constant ¢, we get, for A > 1 and for n
large enough, independently of the value of A, we get the bound

cA?In n)?
P(Wl (1" () p) = A"n) s Coxp (_W

which suffices to complete the proof. >

—q/2
2) + Cn(nAn,)” 7=

> + C’n(nAnn)fq/z,
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