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Abstract—This paper studies Lur’e type nonlinear systems
where both the vector field and its Jacobian are rational
with respect to the states and a sector bounded nonlinearities.
Conditions to assess stability and compute induced .%5-gain
bounds for such systems are cast in terms of rational inequalities.
A numerical solution for these inequalities is formulated as a
convex optimisation problem given by a sum-of-squares program.
Examples are given for nonlinear systems with the arctangent and
rational nonlinearities. The proposed method is compared to the
Popov and Circle criteria in a numerical example and is shown
to outperform both of these classical results.

I. INTRODUCTION

Absolute stability theory is used to analyse particular forms
of nonlinear systems called Lur’e systems. These systems can
be expressed as the feedback interconnection of a linear system
and a sector bounded nonlinearity [1]. The stability properties
of this system can be studied via passivity properties of each
term in the interconnection. If the interconnection is stable,
a Lyapunov function can be constructed using the storage
functions of the elements in the interconnection. The two main
approaches to study absolute stability are the Lyapunov anal-
ysis approach and the frequency domain multiplier approach.
A relation between multipliers and the Lyapunov function was
established by the celebrated KYP Lemma [1] which led to the
Popov and Circle criterions. Relatively recent developments in
this field have been concerned with expressing these frequency
domain conditions as linear matrix inequalities (LMIs) such
that they can be checked by solving a convex optimisation
problem [2].

The class of system that can be described as a Lur’e system
is fairly large, with the only assumption on the nonlinearity
being that it is sector bounded and decentralised. Another class
of nonlinear system for which Lyapunov analysis has been
succesfully applied, is the class of systems defined by rational
vector fields studied with polynomial or rational Lyapunov
functions (LF) [3]. Developments on convex optimisation have
promoted the study of this class thanks to the use of Sum-
of-Squares programming (SOSP) [4] and SOSTOOLS [5].
Stability conditions for such systems can be checked (with
some degree of conservatism [6]) using polynomial Lyapunov
functions by the sum-of-squares (SOS) decomposition. An-
other common class of systems for which improved results

exist are saturating systems. Examples of such results include
the local analysis [7], [8], taking advantage of the boundedness
of the nonlinearity [9] and using piece-wise polynomial LFs
[10].

In this paper, Lur’e nonlinear systems where both the vector
ficld and its Jacobian are rational functions of both the states
and the nonlinearity are considered. This work was motivated
by the practical application of computing lower bounds for
the resistance of an electrochemical model of a supercapaci-
tor [11]. Reducing the conservatism in these resistance bounds
will enable designers to make improved predictions about
the energy dissipation properties of the supercapacitor and
allow improved supercapacitors to be designed using fewer
experiments. The nonlinearity of this supercapacitor model is a
logarithm which (locally) satisfies the requirements of the class
of system considered.A reduced model of the supercapacitor
is a Lur’e system and so can be analysed locally using the
tools of absolute stability theory. In an extension to this
paper, the results will be developed for a local analysis such
that the supercapacitor model can be studied. The proposed
method is a development for reducing the conservatism of
the perturbation analysis by including information on the
derivative of the nonlinearity directly into the conditions for
the construction of a Lyapunov function (LF).

A relevant feature of the results presented in the paper is
the fact that we use sum-of-squares programming to study
non-polynomial systems. Generalised quadratic forms can also
be used to study trigonometric systems [12] and polynomial
approximations to the nonlinear functions were presented
in [13], [14]. The approach presented in [15] proposes to
bound the nonlinearities in a Lur’e system by polynomials, not
by linear functions. This paper develops the authors’ previous
work on the analysis of Lur’e systems [16] by considering
LFs which are polynomial, not just quadratic, with respect to
the state and the nonlinearity.

The paper is structured as follows. Section II details the
system with rational vector field and Jacobian with regards to
the states and the nonlinearities. Section III gives inequality
conditions for verifying global stability and for obtaining
minimal upper bounds for the induced %5 gain of this system.
Section IV describes the numerical implementation of these



inequality conditions using SOS programming and presents a
numerical example to evaluate the performance of the pro-
posed method against the classical Circle and Popov methods.
Finally, Section V presents some concluding remarks.
Notation A column vector of size n containing ones is
denoted 1,. y; will denote the i element of vector y and
C; will denote the i row of matrix C. Denote by %" [x,¢] the
ring of polynomials of real coefficients in variables x and ¢
on the real line and X"[x,¢] by the ring of positive sum-of-
squares polynomials of dimension n. The set of non-negative
real numbers is denoted R>g. The set of symmetric matrix with
real entries is denoted S, and its subset, of diagonal matrices
is denoted D. The sets S>¢, D>¢ respectively denote the sets
of positive semi-definite symmetric and diagonal matrices. We

use ||z = J57 /<7 (0)<(B)d6.

II. PROBLEM STATEMENT

Consider the dynamical system

x=flx,¢(y),w) (1a)
y=Cx (1b)
7=0Cx (1c)

with state x € R", w € R™ is a disturbance term and z € R'=
is the output, ¢ : R™ — R™, and

Fx00),w) = (D1(x,9(3) 'M(x,0(3) +Bww (2)

where Ni(x,9) € 2"[x, 9], Di(x,9) € Z[x,9].
The class of nonlinearities considered will be restricted to
those which are decentralised

00 =10101) 90) - ulm)]”, 3)
sector bounded
@ €[0,8] WyeR" )
and satisfy
LO0) _ (py(g(yi)y) N9 3) ()

dy;

where Na(9;,vi) € Z" (@i, vi], D2(9i,yi) € Z[0i,yi)-
If (4) holds, then

s109),T(x,9(y))) =

where T : R" x R"™ — D%, A= diag(gl, .. ,gm).

We propose solutions to the following problems:

Problem Statement 1 (Stability): Provide conditions to asses
the global stability of the origin of system (1).

Problem Statement 2 (£ gain): Obtain upper bounds for
the induced .% gain from w to z of (1).

(OO T(x,0() (Ay—9(y) >0
(6)

III. MAIN RESULT

In this section, conditions are outlined for solving Prob-
lems 1 and 2. The method is based upon the construction of
a Lyapunov function which takes the form

m yi(x)
Vo o0+ LA [ o(e)de. )

i=1

V(x)

Such a function generalizes the Lyapunov function studied in
[16]. Conditions for V(x) to be positive definite are set by the
following lemma

Lemma 3.1: Consider V (x) as in (7). If there exists A€ R>o
such that V(0,0) =0

L>xi=1,
Vo(x, ¢ (¥(x))) —

(8a)

ZEy,?(x) >0 YxeR" (8b)

||M§ -

then V(x) >0, Vx € R".
The proof follows the same steps as the proof of [16, Lemma
4], which is concerned with Vj being quadratic on x and ¢.

Remark 3.1: Note that positivity of the individual terms that
construct V in (7) is not required.

The following theorem provides solutions to Problems 1
and 2.

Theorem 3.2: Suppose there exists functions Vp, T : R" x
R™ — D>, and scalars A€ R>0, & €R, Y€ R>y, if and

Z% 3 % )= s1(x,9(y), T(x,9(y))) >0
=1
(9a)
V.,V | |x 7 . B .
—<[V¢V}7{¢}>—S1(x,¢()),T( 9() — Qz, )>0(9b)

hold with

a) Q=0and w=0;

b) Qz,w) = —nwiwtzlz
then

a) The origin of (1) is globally asymptotically stable.

b) The induced % gain from w to z is upper-bounded by
/7, that is, H < /1 for all solutions of (1) satistying
x(0)=0.

The proof is analogous to that of Theorem 4.1 of [16].

IV. NUMERICAL FORMULATION

In this section we present a numerical procedure, based on
convex optimisation to obtain certificates for the global stabil-
ity of (1), that takes advantage of the rational structure of (2)
and (5). For comparison purposes, we recall the Lyapunov
functions commonly used to study Lur’e type systems, that
is the quadratic Lyapunov function associated to the Circle
criterion

Vo(x) = x" Px (10)



and the Lyapunov function including an integral term, associ-
ated to the Popov criterion

mn

Vor(x) =2 Pt Y A /qu(o
=1

To enforce positivity of the above function, we require P > 0
and typically that the scalars of the integral term are set to be
non-negative A; >0 fori=1,... ,m.

) do. (11)

A. SOS formulation

We now present a SOSP that solves the inequalities condi-
tions of Theorem 3.2. We briefly recall some concepts related
to SOS optimisation, along the lines of [17]:

Definition 1: A multivariate polynomial p is said to be SOS
polynomial if there exists a finite set of polynomials h; € Z|x]
satisfying

(12)
=1

It was shown in [18] that the search for an SOS decomposition,
i.e. the search for polynomials A; satisfying (12), could be set
up as a convex Semi-Definite Program (SDP.)

Proposition 1: A polynomial p(x) € Z[x| of degree 2d is
an SOS polynomial if and only if there exists Q € S>o and a
vector of monomials Z(x) € %M [x] such that

Z(x)" 0Z(x) (13)

plx) =

then p(x) is SOS.
If the coefficients of polynomial p have an affine dependence
on a set of decision variables {n,R}, then the following
problem is a convex semi-definite problem
minimize 17 subject to p(x,n,R) €X[x].  (14)
As well as stability analysis, SOSP have been used to
study reachability sets, controller synthesis [19], and %5 gains
amongst other properties for systems described by polynomial
vector fields in the states [17]. For rational inequalities, a
polynomial inequality can be obtained by multiplying the
rational expression by its denominator. The following propo-
sition gives a SOSP relaxation of polynomial inequalities
obtained from the rational inequalities (9) thus providing a
sufficient condition to verify the inequalities of Theorem 3.2.
Proposmon 2: If there exists Vo € Z|x,¢], V(0,0) =0,
13, Zf,ifag[ 0], A, L€ R>q, satisfying N> A=
1,...,m, neRso

m

1~ —
Vo Y E)Lisiy%(x) —s1(y(x),9,T1) —ex"x € £[x, 6] (150)

i=1

_<|:va:| [Dz(qm)( 1(@(3),y(x) +D1(9,(x))By )D
VeV]' D1(9,y(x))N2(9,y(x))¥(x)

—51(0(x),,T2) +D1(9,y(x))D2(9,3(x)) (nw' w —

—ex"x € X[x, 0, W]

with Dy(¢,y(x)) =
diag(Ny1 (¢1,y1(x), - .

(15b)

T Dyi(9i,yi(x)) and Nao(¢,y(x)) =
< sNow (@, ym(x)) then the origin of (1) is

T( )z(x )) (4) and are plotted in Fig 1. The Jacobian of tan™

1.57

’
]
7

-0.5
—tan~!(y)
-7 —y/(L+9%)
S = o
-1.5 ‘
-5 0 5
Y
Figure 1. The shifted logarithm and arctangent functions plotted with local

sector bounds.

globally asymptotically stable for w =0 and an upper-bound
for the induced % gain of (1) is given by y = ,/n for all
solutions of (1) satisfying x(0) = 0.

To make the conditions of Proposition 2 verifiable using
convex programming, the inequalities have been relaxed to
be SOS constraints. The denominators of the rational terms
that appear in V due to the rational vector field and Jacobian
are cancelled by multiplying through its denominator, yield-
ing (15b). The sign of the expression is preserved only in case
Di(x,9)Da(x,¢) >0 V(x,¢) € R"™. We solve the following
convex optimization to obtain a solution to Problem 2

min 1 subject to (15). (16)
B. Numerical Example
Consider the following system

B1-15% R

} + m o) + m w (172)

y=[-1 0] m (17b)
z=[1 0] [2] (17¢)
o(y) = tan"'(y) (17d)

Both nonlinear terms of (20), corresponding to the arctangent
tan~! and the rational term y/(1+y?), satisfy the properties of
the sector bounded Lur’e system and of the polynomial system
(1). These nonlinearities satisfy the [0, 1] sector condition of
!'is a rational
polynomial with respect to its argument

dtan'(y) 1
dy  14y%

(18)



such a system, improving upon the results obtained with the
Popov and Circle criteria. This improved performance is due to
the fact that the proposed method includes information about
the slope of the nonlinearity directly into the construction of
a Lyapunov function by explicitly writing its Jacobian. This
improves upon the characterisation of the nonlinearity only by

Y
Linear 1.000
Vo (sector) 4.8160
Vor. (sector) 2.6069
Vo (multiply) 1.6035
Vor (multiply) | 1.3710
\% 1.0000

Table T

INDUCED % GAINS Y FOR (20) USING BOTH CASES OF THE POPOV AND
CIRCLE CRITERIONS, PROPOSITION 2 AND FOR THE LINEAR SYSTEM
WITHOUT ANY NONLINEARITIES.

which gives D>(¢(y),y) = 1+y? in (5). The rational term is

expressed as Nj(x,¢(y)) =y and D;(x.¢(y)) = 1 +y* with

Jacobian

4 /0R) (1) "
dy (1+y7)%

which gives Da(¢,y) = (1 +y%)2.

Upper bounds for y obtained with the Popov and Circle
criteria as well as the proposed method are given in Tab. 1.
The linear case in this table considers (20) without either the
arctangent or the rational term with dynamics

X 10 1 X1 0
=15 R
1 0] {xl] .
X2

In the table we have considered two approaches while using
the functions Vp and Vpr. For the case (sector), both the
rational term and the arctangent are described solely by sector
conditions while for the case (multiply), sector information is
used to characterise the arctangent but not the rational term. In
this case, the terms appearing in the denominator of V. and
Vy are canceled out by multiplying through by Di(x,9(y)).
Comparing the values of 7y given in Tab. I, the proposed
method outperforms both implementations of the Popov and
Circle criteria. Note that for this particular system the bound
given by Proposition 2 is the same as that of the linear
system, which implies that the worst case performance with
the nonlinearities is the same as the open loop system. The
characterisation of the rational terms using sector information
was more conservative than by multiplying through by the
denominator Dj(x,¢(y)). This result is due to the conservatism

of the sector conditions, whose linear approximations of the
nonlinearities are inaccurate far away form the origin.

(20a)

b4 (20b)

V. CONCLUSION

This papers has considered nonlinear systems where both
the vector field and its Jacobian are rational functions of the
states and a nonlinearity. Numerical solutions to the proposed
stability and performance assessment conditions are obtained
using sum-of-squares programming. A numerical example has
illustrated the proposed result for a system with a rational
polynomial and the arctangent function. The proposed method
was able to compute upper-bounds for the induced %, gain of

sector information.
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