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Abstract. We propose an equitable conceptual clustering approach based on
multi-agent optimization. In the context of conceptual clustering, each cluster
is represented by an agent having its own satisfaction and the problem consists
in finding the best cumulative satisfaction while emphasizing a fair compromise
between all individual agents. The fairness goal is achieved using an equitable
formulation of the Ordered Weighted Averages (OWA) operator. Experiments
performed on UCI datasets and on instances coming from real application ERP
show that our approach efficiently finds clusterings of consistently high quality.

1 Introduction
Structuring data in knowledge discovery appears as a fundamental task which permits
to better understand the data and to define groups with regards to an a priori similarity
measure. This is usually referred to clustering in unsupervised learning task. In prac-
tice, users often would like to perform further actions at the cluster level, such as inter-
preting the cluster semantically. Methods such as conceptual clustering address this by
attempting to find descriptions of the clusters by means of formal concepts. Numerous
approaches have been devised for conceptual clustering. Traditional approaches [13,8]
combine the formation of the clusters and of the descriptions. Other techniques [20,19]
have instead chosen to decouple finding the descriptions – either before or after the
clustering process – and the clustering step. More recently, Constraint Programming
(CP) [4] and Integer Linear Programming (ILP) [17] approaches have been proposed to
address the problem of finding optimal conceptual clusterings in a declarative frame-
work. They combine two exact techniques: in a first step, a dedicated mining tool (i.e.,
LCM [22]) is used to compute the set of all formal concepts and, in a second step, ILP
or CP is used to select the best k clusters (i.e. concepts) that optimizes some given
criterion. Most of the optimization measures used in these approaches lead to an un-
balanced clustering where one cluster is more dominant than others. Ensuring that the
clusters obtained be (roughly) balanced, i.e. of approximately the same number of data
points helps in making the resulting clusterings more useful and actionable [2,24].

This paper deals with the concept of equitably efficient solutions to conceptual clus-
tering problem in multi-agent decision making, where each agent represents a concept
and has its own utility corresponding to a specific measure (e.g. the frequency). Here,
equity refers to the idea of favoring solutions that fairly share happiness or dissatisfac-
tion among agents [9]. The equity requirement has been fully studied by the multicrite-
ria optimization community [10], and formalized through the three properties:
Symmetry meaning that all agents have the same importance. For instance, both utility
vectors (5, 3, 0) and (0, 3, 5) are considered equivalent.



Pareto-monotony which expresses that solution (x1, x2, ..., xn) is better than solution
(y1, y2, ..., yn) if and only if xi ≥ yi for all i, with at least one strict inequality.
Transfer Principle formalizes an important notion of equitable utility distribution [21].
The intuition is that any transfer between some two inequitable utilities xi and xj ,
which preserves the average of utilities, would improve the overall utility. For instance,
a more equitable vector y = (9, 10, 9, 10) can be obtained from x = (11, 10, 7, 10) by
transferring two units between the first and the third agents.

The common way to deal with the concept of equitably efficient solutions is to
define aggregation functions that fulfills the above properties. This defines a family
of the equitable aggregations which are Schur-convex [11]. In the literature there are
several functions to aggregate individual agents’ utilities by mean of collective utility
function (CUF). The most used aggregations are maxMin, minDev and maxSum. The
transfer principle is not ensured in the maxMin and minDev, on all of the utilities,
thereby leading to the drowning effect [7]. The maxSum function is fully compensatory
and thus does not capture the idea of equity.

The next section introduces the concepts used in this paper. Section 3 describes how
equitable conceptual clustering task can be expressed as ILP problems. We discuss re-
lated work in Section 4 before demonstrating our technique’s performance in Section 5.
Section 6 concludes and points towards future research directions.

2 Background
2.1 Formal Concepts and Conceptual Clustering
Formal Concepts. LetD be a set ofm transactions (numbered from 1 tom), I a set of n
items (numbered from 1 to n), and R ⊆ T ×I a binary relation that lies transactions to
items: (t, i) ∈ R if the transaction t contains the item i : i ∈ t. An itemset (or pattern)
is a non-null subset of I. For instance, Table 1a gives a transactional dataset D with
m=11 transactions t1, . . . , t11 described by n=8 items.

The extent of a set I ⊆ I of items is the set of transactions containing all items in
I , i.e., ext(I) = {t ∈ D| ∀i ∈ I, (t, i) ∈ R}. The intent of a subset T ⊆ D is the
set of items contained by all transactions in T , i.e., int(T ) = {i ∈ I| ∀t ∈ T, (t, i) ∈
R}. These two operators induce a Galois connection between 2D and 2I , i.e. T ⊆
ext(I) ⇔ I ⊆ int(T ). A pair such that (I = int(T ), T = ext(I)) is called formal
concept. This definition defines a closure property on dataset D, closed(I)⇔ I =
int(ext(I)). An itemset I for which closed(I) = true is called closed pattern. Using
ext(I), we can define the frequency of a concept: freq(I) = |ext(I)|, and its diversity:
divers(I) =

∑
t∈ext(I) |{i ∈ I | (i /∈ I) ∧ (i ∈ t)}|. Additionally, we can refer

to its size: size(I) = |{i | i ∈ I}|. We note C the set of all formal concepts.

Conceptual Clustering. Clustering is the task of assigning the transactions in the data
to relatively homogeneous groups. Conceptual clustering aims to also provide a distinct
description for each cluster - the concept characterizing the transactions contained in it.
This problem can be formalized as: “find a set of k clusters, each described by a closed
pattern P1, P2, ..., Pk, covering all transactions without any overlap between clusters”.

An evaluation function f that optimizes a given criterion can be used to express
the goodness of the clustering. Different optimization criteria may be considered: max-



Trans. Items
t1 A B D
t2 A E F
t3 A E G
t4 A E G
t5 B E G
t6 B E G
t7 C E G
t8 C E G
t9 C E H
t10 C E H
t11 C F G H

(a) Transactional
dataset T .

Sol. P1 P2 P3

s1 {A, B, D} {C, F, G, H} {E}
s2 {B} {C} {A, E}
s3 {A} {C} {B, E, G}

(b) Three conceptual cluster-
ings for k=3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

t1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
t2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0
t3 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1
t4 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1
t5 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1
t6 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1
t7 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1
t8 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1
t9 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0
t10 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0
t11 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1

(c) (at,c) matrix associated withD.
Table 1: Running example.

imizing the sum of frequencies of the selected concepts; minimizing the sum of di-
versities of the selected concepts. For instance, for dataset D and k=3, minimizing
f(P1, ..., Pk) =

∑
1≤i≤k divers(Pi) provides one clustering s1, with optimal value 18

(see Table 1b). Solution s1 = (1, 1, 9) has one large cluster (of size 9) covering most
of the transactions, and two clusters that cover only one transaction. Such a clustering
may be less interesting than those in which the clusters are all of comparable size. A
common way to get more balanced clusterings is to consider dedicated optimization
settings. This can be formalized in two possible ways:

- maximizing the minimal frequency (maxMin). We search for solutions in which
the minimal frequency of the selected concepts is as large as possible.

- minimizing the deviation in cluster frequency (minDev). We enforce a small dif-
ference between cluster frequencies: Min max(freq(P1), . . .) - min(freq(P1), . . .).

However, as stated in the introduction, these two settings suffer from the so called
drowning effect [7]. In fact, concerning maxMin (resp. minDev), the transfer principle
is ensured only on the min (resp. min and max) utility, and thus intermediate utilities
are not necessarily equitable. To address equity requirement, we consider, in the next
section, a sophisticated operator that focuses on the whole utilities.

2.2 Equitable multiagent optimization

Let N = {1, .., n} be a set of n agents. A solution of a multiagent optimization prob-
lem is characterized by a utility vector x = (x1, ..., xn) ∈ IRn+, where xi represent the
utility (or a degree of satisfaction) of the ith agent. Utility vectors are commonly com-
pared using the Pareto dominance relation (P -dominance). The weak-P -dominance
%P between two utility vectors x, x′ is defined as: x %P x′ ⇔ [∀i ∈ N, xi ≥ x′i],
whereas the strict P -dominance �P between x and x′ is given by: x �P x′ ⇔ [x %P
x′ ∧ not(x′ %P x)]. A solution x∗ is Pareto-optimal (a.k.a efficient) if and only if
there is no solution x that dominates x∗. The P -dominance can be formulated as:
max {(x1, ..., xn) : x ∈ Q}, whereQ is the set of feasible solutions. The P -dominance
may lead to a large set of incomparable solutions. Also, the P -dominance is insensitive
to outliers. To refine the P -dominance, we should specialize a dominance relation so as
to favor equitable utility vectors. The main intuition behind the equity criterion refers
to the idea of selecting solutions that fairly share satisfaction between agents [21]. For-
mally, an equitable dominance relation %‖ should fulfill three main properties [11,9]:



Symmetry. Consider a utility vector x ∈ IRn+. For any permutation σ on N , we have
(xσ(1), ..., xσ(n)) ∼ (x1, ..., xn).
P-Monotony. For all x, y ∈ IRn+, x %P y ⇒ x %‖ y and x �P y ⇒ x �‖ y.
Transfer principle. (a.k.a Pigou-Dalton transfers in Social Choice Theory) Let x ∈
IRn+ and xi > xj for some i, j ∈ N . Let ez be a vector such that ∀i 6= z, ezi = 0

and ezz = 1. For all ε where 0 < ε ≤ xi−xj

2 , we get x − εei + εej %‖ x. Any slight
improvement of xj at the expense (reduction) of xi, which preserves the average of
utilities, would produce a better distribution of the utilities among agents and conse-
quently improve the overall utility of the solution. For example, if we consider two
utility vectors x = (11, 10, 7, 10) and y = (9, 10, 9, 10), then the transfer principle im-
plies that y %‖ x, because there is a transfer of size ε = 2 (i.e. x1−x3

2 ), which allows to
have y from x. Combining P-monotony and the Transfer principle leads to the so called
Generalized Lorenz dominance defined in [5] (for more details see [9,11]).

2.3 Equitable aggregation functions

A usual way to assess the quality of a utility vector is to aggregate the individual utili-
ties with a collective utility function (CUF) [14] G : IRn+ → IR+, which improves the
overall welfare by max{G(x) : x ∈ Q}. The G function can be a linear combination
of individual utilities (i.e. G(x) def

= sum(x)), which is not suitable to fairness context.
Another way to build G is based on the min function (i.e. G(x) def

= min(x)), but it is
sensitive to the drowning effect [7]. Other refinements of the min function exist (e.g.
augmented min, lexmin [3]), but do not really solve the problem, since all are sensi-
tive to drowning effect. In order to guarantee equitable aggregations, G should conform
to the three equity properties. The most known way is to use Schur-convex function ψ,
which are order preserving the three equity properties : x %‖ y ⇔ ψ(x) ≥ ψ(y). Pre-
cisely, when some aggregation function G is Schur-convex [11], then it is an equitable
aggregation [10]. Thus Schur-convex functions play a key role in equitable aggrega-
tions (for more details, see [11,10]). In this line of reasoning, we introduce, in the next
section, an aggregation function that ensures equity.

2.4 Ordered Weighted Averages (OWA)

This section focuses on the Ordered Weighted Averages (OWA) [23] defined as follows:

Gw(x) =

n∑
i=1

wix(i) (1)

where w = (w1, . . . , wn) ∈ [0, 1]n and x(1) ≤ x(2) ≤ · · · ≤ x(n). OWA provides
a family of compromises between the sum and min. Golden and Perny [9] propose
coefficients for the OWA aggregation method, such that it is Schur-convex:

Theorem 1 [9] Let be the following coefficients of the OWA aggregation: W (x) =∑n
k=1 sin(

(n+1−k)π
2n+1 )x(k). W is a Schur-convex function.

Theorem 1 is fundamental, since that Schur-convex functions ensure equity [10,9].



3 ILP models
This section describes different ILP models for finding an equitable conceptual cluster-
ing. Our approach follows the two steps approach of [17]: (1) a dedicated closed itemset
mining tool (i.e., LCM [22]) is used to compute the set C of all closed patterns; (2) ILP
is used to select a subset of C that is a partition of the set D of transactions and that op-
timizes some given criterion. To enforce equitable clusterings, we enhance the second
step with additional constraints enabling to ensure equitable OWA aggregation.

3.1 OWA ILP models
This section presents our first ILP formulation, called basic OWA ILP model, for com-
puting equitable conceptual clusterings using equitable OWA operator. Then, we show
how this basic model can be improved by post-processing the OWA constraints.

LetD be a dataset withm transactions defined on a set of n items I. Let C be the set
of p closed patterns (w.r.t. the frequency measure) representing the candidate clusters.
Let at,c be an m × p binary matrix where (at,c = 1) iff c ⊆ t, i.e., the transaction t
belongs to extension of the closed pattern c. The (at,c) matrix associated with dataset
D of Table 1a is outlined in Table 1c. Let v be the list of closed pattern utilities (e.g.,
frequency, diversity, etc.). For each closed pattern (c ∈ C), a binary variable xc is
associated s.t. (xc = 1) iff the cluster c is selected.
(a) Basic OWA ILP model. Fig. 1a gives the ILP model for equitable conceptual clus-
tering. It uses two types of constraints: conceptual clustering constraints and OWA con-
straints modeling the sorting operation required in the OWA operator:

- Conceptual clustering constraints. Constraints (C1) enforce the subset of se-
lected closed patterns to define a partition ofD. Constraints (C2) specify a lower bound
kmin and/or an upper bound kmax on the number of selected closed patterns.

- OWA constraints. The objective function and constraints (O1) and (O2) implement
a known linear programming formulation [16] of the OWA operator on the conceptual
clustering, where the coefficients ω are fixed by theorem 1. As explained in section 2.4,
OWA is a weighed sum on the sorted utilities. That is why we introduced r, which is
equal to the sorted version of the utility vector v. M is a sufficiently large constant.
Let z be |C|2 boolean matrix dedicated only to formulate the sorting constraints (O1)
and (O2), which enforce that the utility vector v . x of the closed patterns are sorted in
ascending order matching the OWA coefficients ω. These sorting constraints are fully
explained in [16]. It follows that the kth smallest utility value rk will have the kth

biggest weight ωk. The objective function maximizes the weighted sum using OWA
weights ω given in theorem 1.
(b) Improved OWA ILP model. In order to find efficiently an equitable conceptual
clustering, we propose the optimize model (see Fig. 1b) as follows:
- Precisely, sorting constraints (O1) and (O2) are specifically used when the utility val-
ues are given in comprehension. Fortunately, the utility values of formal concepts are
known beforehand. Thus, sorting is performed immediately after finding closed pat-
terns. We use v↑, which is the sorted version of v in ascending order.
- We assign the weights ω of equitable OWA to the sorted utility values, so that all equal
utilities will have the same weight.

For our experiments, we used the improved OWA model. Our preliminary results
showed that basic OWA model performs very poorly compared to the improved OWA



Max
∑|C|

c=1 ωc . rc

s.t.



Clustering.

 (C1)
∑|C|

c=1 at,c . xc = 1, ∀t ∈ D

(C2) kmin ≤
∑|C|

c=1 xc ≤ kmax

OWA sorting.

 (O1) rc − (vi . xi) ≤Mzc,i, ∀ i, c = 1, ..., |C|

(O2)
∑|C|

i=1 zc,i ≤ c− 1, ∀ c = 1, ..., |C|

xc ∈ {0, 1}, rc ∈ IR+, ∀ c = 1, ..., |C|

zc,i ∈ {0, 1}, ∀ i, c = 1, ..., |C|

(a) Basic OWA ILP model.

Max
∑|C|

c=1 ωc . (v
↑
c . x

↑
c)

s.t.


(C1), (C2)

xc ∈ {0, 1},

∀ c = 1, ..., |C|

(b) Improved OWA ILP
model.

Fig. 1: OWA ILP models for equitable conceptual clustering.

model in terms of CPU-times. This meanly due from the fact that (n2) additional con-
straints and (n2) additional variables are used to encode the OWA sorting constraints.
This constitutes a strong limitation of the size of the databases that could be managed.

Proposition 1. Basic and improved OWA ILP models are equivalent.

Proof. Both OWA models use weights ω given in Theorem 1, which ensure an equitable
aggregation. Improved OWA is an optimization of the basic model: (1) It uses an a priori
sorting of utilities (no need to sorting constraints); (2) The same weight is assigned
to equal utilities (the same satisfaction level), which preserves straightforwardly the
conformity with theorem 1. Thus, both OWA models are equivalent. ut
(c) ILP numerical stability. The set of extracted closed patterns is mostly huge, which
leads to a huge OWA vector ω in the basic model, and affect the numerical stability of the
ILP solver. The optimized OWA model tackles this issue, thanks to assigning the same
weight to all equal utilities. This makes it possible to solve real-world instances in our
experiments reported in Section 5.

3.2 Other ILP models
As described in section 2.1 a linear aggregation of individual utilities max{sum(x) :
x ∈ Q}, does not fit the equity requirement. This suggests resorting to non-linear ag-
gregation operators, especially the maxMin and minDev. The maxMin aggregation
max{min(x) : x ∈ Q} tackles equity by improving the worst utility. This function can
be linearized by maximizing a decision variable z ≥ 0, that is a lower bound for the
utility vector v . x (see Fig. 2a, inequality C3), where v is the clustering criterion to be
optimized (e.g. frequency). Thus, the linear formulation for the conceptual clustering is
given by the ILP model of Figure 2a.

An alternative way of ensuring equity is by achieving maximum deviation mini-
mization minDev between both the best and the worst utilities: Min {max(x)−min(x) :
x ∈ Q}. It can be linearized by introducing 2×n constraints and two decision variables
zmax ≥ 0 and zmin ≥ 0 to maintain the max and the min values of the utility vector
v . x (see Fig. 2b, inequalities C4-C5). The resulting ILP model is given in Fig. 2b.

4 Related work
Heuristic approaches Several methods have explored the idea of separating cluster-
formation from finding the conceptual descriptions. Pensa et al. [19] begin by mining



Max z
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(C1), (C2)

(C3) z ≤ vc . xc, ∀ c = 1, ..., |C|

xc ∈ {0, 1}, ∀ c = 1, ..., |C|

z ≥ 0

(a) maxMin ILP model.

Max zmax − zmin

s.t.



(C1), (C2)

(C4) zmax ≥ vc . xc, ∀ c = 1, ..., |C|

(C5) zmin ≤ vc . xc, ∀ c = 1, ..., |C|

xc ∈ {0, 1}, ∀ c = 1, ..., |C|

zmax ≥ 0, zmin ≥ 0

(b) minDev ILP model.

Fig. 2: ILP models for the conceptual clustering.

closed (or δ-closed) patterns (itemsets) and their extensions and then perform k-Means
clustering on them. Perkowitz and Etzioni [20], reverse the two phases: their cluster-
mining first uses a clustering technique to form clusters. From the resulting cluster-
ing, descriptions are learned by a rule-learning technique. All those techniques are of a
heuristic nature and produce results of varying quality. Moreover, they are heavily influ-
enced by the initialization conditions, typically requiring numerous restarts, increasing
computational costs.
Declarative approaches. Recently, [17,18] have developed declarative frameworks us-
ing ILP, which can find optimal conceptual clusterings, where clusters correspond to
concepts. Later, Chabert et al. have introduced two new CP models for computing op-
timal conceptual clusterings. The first model (denoted FullCP2) may be seen as an
improvement of [6]. The second model (denoted HybridCP) follows the two step ap-
proach of [17] : the first step is exactly the same; the second step uses CP to select
formal concepts. Our work is different in that we study the setting where each cluster-
ing must fulfills equity requirements.
Distance-based clustering aims at finding homogeneous clusters only based on a dis-
similarity measure between objects. Different declarative frameworks have been de-
veloped, which rely on CP [6] or ILP [1,15]. There are a few existing approaches for
obtaining balanced clusters. The most prominent one is the approach proposed by [2].
Our adoption of closed patterns cuts down on redundancy compared to other ways of
selecting candidate clusters. Moreover, our use of an equitable OWA gives stronger guar-
antees about the obtained clusterings in terms of balancing.

5 Experiments and Results
The experimental evaluation is designed to address the following questions:
1. How do the ILP models compare and scale on the considered datasets?
2. How do the resulting clusters and their description compare qualitatively?
3. How (in terms of CPU-times) does our ILP model compares to the CP models of

Chabert et al. [4]?
Experimental protocol. All experiments were conducted on Linux cluster3, where each
node has a dual-CPU Xeon E5-2650 with 16 cores, 64 GB RAM, running at 2.00GHz.

3 http://www.rx-racim.cerist.dz/?page_id=26.



Dataset #D # I Density(%) # C
Soybean 630 50 32 31,759

Primary-tumor 336 31 48 87,230
Lymph 148 68 40 154,220

Vote 435 48 33 227,031
tic-tac-toe 958 27 33 42,711
Mushroom 8124 119 18 221,524

Zoo-1 101 36 44 4,567
Hepatitis 137 68 50 3,788,341
Anneal 812 93 45 1,805,193

(a) UCI datasets.

Dataset #D # I Density(%) # C
ERP-1 50 27 48 1,580
ERP-2 47 47 58 8,1337
ERP-3 75 36 51 10,835
ERP-4 84 42 45 14,305
ERP-5 94 53 51 63,633
ERP-6 95 61 48 71,918
ERP-7 160 66 45 728,537

(b) ERP datasets.
Table 2: Dataset characteristics. Each row gives the number of transactions (#D), the
number of items (#I), the density and the number of closed patterns extracted (#C).

D k OWA minDev maxMin maxSum
ICS ICD ICS ICD ICS ICD ICS ICD

So
yb

ea
n

3 0.447 0.784 0.447 0.784 1.000 0.026 1.000 0.026
4 0.331 0.865 0.331 0.865 1.000 0.026 1.000 0.026
5 0.259 0.895 0.284 0.905 1.000 0.026 1.000 0.026
6 0.231 0.940 0.231 0.940 1.000 0.026 1.000 0.026
7 0.195 0.964 0.195 0.964 0.959 0.108 0.959 0.108
8 0.186 0.987 0.186 0.987 0.671 0.474 0.959 0.108
9 0.166 1.000 0.166 1.000 0.671 0.474 0.959 0.108
10 0.136 0.999 0.142 0.999 0.670 0.474 0.959 0.108

(a) Maximizing frequency.

D k OWA minDev maxMin maxSum
ICS ICD ICS ICD ICS ICD ICS ICD

so
yb

ea
n

3 0.447 0.776 0.447 0.776 1.000 0.026 0.447 0.776
4 0.334 0.839 0.338 0.854 1.000 0.026 0.406 0.831
5 0.296 0.900 0.301 0.900 1.000 0.026 0.389 0.843
6 0.257 0.929 0.265 0.934 1.000 0.026 0.398 0.851
7 0.240 0.956 0.240 0.956 0.959 0.106 0.330 0.909
8 0.220 0.971 0.198 0.978 0.959 0.106 0.323 0.918
9 0.183 0.991 0.184 0.989 0.959 0.106 0.216 0.975
10 0.170 0.999 0.157 1.000 0.959 0.106 0.213 0.980

(b) Minimizing diversity.
Table 3: Comparing the quality of the resulting clusterings in terms of ICS and ICD.

We used LCM to extract all closed patterns and CPLEX v.12.6.1 to solve the different
ILP models. For all methods, a time limit of 24 hours has been used.
Test instances. We used classical ML datasets, coming from the UCI database. We
have also considered the same datasets (called ERP-i, with i ∈ [1, 7]) used in [4] and
coming from a real application case4, which aims at extracting setting concepts from
an Enterprise Resource Planning (ERP) software corresponding to groups of parameter
settings groups of parameter settings. Table 2 shows the characteristics of all datasets.

To evaluate the quality of a clustering, we test the coherence of a clustering, mea-
sured by the intra-cluster similarity (ICS) and the inter-clusters dissimilarity (ICD),
both of which should be as large as possible. Given a similarity measure s between two
transactions t and t′, where s : D × D 7→ [0, 1], s(t, t′) = |t∩t′|

|t∪t′| , ICS(P1, ..., Pk) =
1
2

∑
1≤i≤k(

∑
t,t′∈Pi

s(t, t′)) and ICD(P1, ..., Pk) =
∑

1≤i<j≤k(
∑

t∈Pi,t′∈Pj
(1− s(t, t′)))

To evaluate how well equitable the clusters are w.r.t frequency, we used three measures:
(1) the ratio between the frequency of the smallest cluster to the average cluster fre-
quency (i.e. Min/Avg). For m transactions put into k clusters, Avg is just (m/k); (2)
the Standard Deviation in cluster frequencies (i.e. StdDev); (3) the deviation between
the smallest and the largest description of selected concepts (i.e. devSize).
(a) Qualitative analysis of clusterings. Fig. 3a compares qualitatively the resulting
clusterings of the different ILP models for various values of k on UCI datasets accord-
ing to the Min/Avg measure. maxMin and maxSum performs very poorly in terms

4 These datasets are available on http://liris.cnrs.fr/csolnon/ERP.html.
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(a) Evaluating (Min/Avg) on UCI datasets.
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(b) Evaluating (Min/Avg) on ERP datasets.
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(c) Evaluating StdDev on UCI datasets.
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(d) Evaluating StdDev on ERP datasets.

Fig. 3: Quality of balancing of the resulting clusterings of the different ILP models.

of balancing compared to OWA and minDev (maxMin and maxSum always achieve
lower Min/Avg values). Interestingly, both OWA and minDev almost achieve simi-
lar performance on datasets with number of closed patterns comprise between 103 and
105. However, for the three most difficult datasets − Mushroom, Hepatitis and Anneal
− the disparity between both models become more pronounced: OWA always obtains
more equitable clusterings (Min/Avg values close to 1). On these datasets, minDev
fails to find a solution even for small values of k. The same behavior is observed on
ERP datasets (see Fig. 3b). On ERP-7, minDev was not able to find a solution. This
is in part explained by the number of closed patterns (106) in comparison to the other
ERP instances (from 103 to 105). When considering stdDev measure (see Figs. 3c and
3d), OWA and minDev achieve the lowest StdDev on all datasets, but OWA performs
marginally better than minDev. When examining the description sizes (see Supp. ma-
terial [12]), we can see that maxMin and maxSum lead to higher devSize values. This
is indicative of one (or few) clusters of large frequencies and small description sizes,
or clusters of large description sizes and small frequencies. These results are consistent
with our previous conclusions. However, for minDev and OWA, the optimal solutions
found by both models tend to offer a better compromises between the two criteria.
Finally, Tab. 3 compares the four models according to ICS and ICD (see Supp. mate-
rial [12]). We can see that minDev and OWA sacrify ICS to achieve higher ICD values.
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(a) UCI datasets: maximizing frequency.
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(b) ERP datasets: maximizing frequency.

Instance

OWA with k not fixed
k ∈ [3, 10]

OWA with k
fixed

OWA with k not
fixed

k ∈ [3, |D| − 1]

best k
Time (s.)

best k
Time (s.)

best k
Time (s.)

(2) (2) (2)
Soybean 10 27.09 10 14.82 501 15.76
Primary-tumor 10 26.81 10 33.34 215 14.52
Lymph 10 77.97 10 173.00 147 20.61
Vote 10 89.8 10 879.22 342 42.3
tic-tac-toe 9 2,104.07 9 9.95 956 11.07
Mushroom 10 377.21 10 442.34 8,123 982.95
Zoo-1 10 5.47 10 1.37 59 0.8
Hepatitis 10 8,462.45 10 35,498.2 136 607.51
Anneal 10 3,674.89 10 3,666.82 459 1,453.04

(c) Maximizing frequency.

Instance

OWA with k not fixed
k ∈ [3, 10]

OWA with k
fixed

OWA with k not fixed
k ∈ [3, |D| − 1]

best k
Time (s.)

best k
Time (s.)

best k
Time (s.)

(2) (2) (2)
Soybean 10 13.7 10 165.42 501 9.61
Primary-tumor 10 46.19 10 210.01 215 18.5
Lymph 10 123.84 10 569.63 145 22.05
Vote 10 146.72 10 786.84 342 45.7
tic-tac-toe 9 37,882.31 9 293.82 956 7.21
Mushroom 10 274.62 10 667.99 8,123 1,086.13
Zoo-1 10 0.89 10 1.82 59 0.8
Hepatitis 10 37,915.3 8 6,275.23 136 630.91
Anneal 10 6,839.68 10 25,760.25 459 2,311.01

(d) Minimizing diversity.

Fig. 4: CPU-times analysis.

This is indicative of more balanced clusters: the ICS is necessarily limited by the num-
ber of instances per cluster but the ICD increases if there are more instances in other
clusters to compare against. maxMin and maxSum show the opposite behavior, which
is indicative of one (or a few) large clusters, and numerous smaller ones.
(b) Scale-up property analysis. Figs.4a and 4b compare the CPU-times for computing
optimal clusterings for various values of k on UCI and ERP datasets when maximizing
the sum of frequencies of the selected concepts. The CPU-times include the time spent
by LCM to extract all closed patterns. On UCI datasets, minDev performs very poorly
compared to the other ILP models. Although the qualitative results of minDev are satis-
factory, this model remains hampered by long solving times: it goes beyond the timeout
on 32 instances (out of 72), particularly on the three most difficult datasets Mushroom,
Hepatitis and Anneal (see Fig. 4a). This probably stems from the fact that (2 × n) ad-
ditional constraints are used to capture the minimal deviation. However, OWA yields
quite competitive results, while achieving optimal equitable clusterings (see the quali-
tative analysis). It is able to solve all instances and comes in second position. Overall,
maxMin gets the best performances. However, as noticed above, the optimal solutions
found are far to be equitable ones; they correspond to extreme solutions (worst cases).
This probably explains in part the good behaviour of maxMin model. The same be-
havior is observed for minDev on ERP datasets. Finally, the three ILP models − OWA,
maxMin and maxSum − perform very similarly on all instances. We conclude that
OWA model offers a good compromise between solution quality and computing time.
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(a) UCI datasets: maximizing frequency.
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(b) ERP datasets: maximizing frequency.

Fig. 5: Comparing CPU-times of maxMin ILP model with the two CP models.

(c) ILP models vs. CP based models. Figs. 5a and 5b compare the performance of
maxMin ILP model with the two CP models (FullCP2 and HybridCP) maximiz-
ing the minimal frequency of a cluster on UCI and ERP datasets. The CPU-times of
HybridCP include those for the preprocessing step. maxMin ILP model outperforms
FullCP2 and HybridCP by several orders of magnitude on all datasets. None of the
two CP models scales well for this objective: they fail to find a solution within the time
limit for (k ≥ 4), except for 4 datasets. Moreover, OWA ILP model clearly beats the two
CP models. Finally, notice that FullCP2 performs marginally better than HybridCP.
(d) OWA model with k not fixed. Our third set of experiments aims at evaluating OWA
model capability for finding the optimal solution when k is not fixed. For this aims,
we selected two settings: k ∈ [3, 10] (OWA-1) and k ∈ [3, |D| − 1] (OWA-2). Fig. 4c
and 4d compare the CPU-times when k is not fixed (Columns 3 and 7), and when
k is fixed (Col. 5) on UCI datasets. Col. 4 reports the best values found for k (3 ≤
k ≤ 10) that optimize both objectives. For all datasets but two, OWA-1 and OWA-2 are
the best performing approaches. OWA-1 is able to solve 5 (resp. 7) instances quicker
when maximising the frequency (resp. diversity). Interestingly, OWA-1 and OWA (with
k fixed) always agree on the best value for k. Compared to OWA-1, OWA-2 scales well,
particularly on the two most difficult datasets Anneal and Hepatitis (speed-up of up to
60.09). Indeed, larger values of k enable to find balanced clustering more quickly than
for smaller values of k: there |D| − 1 clusters for 3 datasets, whereas for the remaining
datasets the value of k is rather high.

6 Conclusion
We have proposed an efficient approach for equitable conceptual clustering that uses
closed itemset mining to discover candidates for descriptions, and ILP implementing
an equitable aggregate function based on OWA to select the best clusters of balanced
frequencies. Contrary to maxMin and minDev operators, our approach offers a good
compromise between solution quality and computing time. We plan to investigate multi-
criteria conceptual clustering, where the utilities are not comparable. Exploiting eq-
uity constraints within approximate approaches could become interesting to tackle very
large datasets.
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