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Double diffeomorphism: combining morphometry
and structural connectivity analysis

Pietro Gori*, Olivier Colliot, Linda Marrakchi Kacem, Yulia Worbe, Alexandre Routier, Cyril Poupon,
Andreas Hartmann, Nicholas Ayache and Stanley Durrleman

Abstract—The brain is composed of several neural circuits segmented from Magnetic Resonance (MR) T1l-w images.
which may be seen as anatomical complexes composed of greyNeural projections of the white matter are instead modelled as
matter structures interconnected by white matter tracts. Grey bundles of 3D streamlines. called ber bundles. which result

and white matter components may be modelled as 3D surfaces]c tract hv algorith lied diffusion MR i
and curves respectively. Neurodevelopmental disorders involve "OM tractography aigorithms applied on diitusion Images.

morphological and organizational alterations which can not be EVery streamline is an estimate of the trajectories of large

jointly captured by usual shape analysis techniques based ongroups of neural axons. The geometrical representation of the
single diffeomorphisms. We propose a new deformation scheme, neural circuits combines thus both surface and curve meshes
called double diffeomorphism, which is a combination of two into a single multi-object complex, calleshape complex

diffeomorphisms. The rst one captures changes in structural N | circui f f th |
connectivity, whereas the second one recovers the global morpho- Neural circuits or, more often, parts of them (e.g. only

logical variations of both grey and white matter structures. This grey or white matter structures) can be analysed using either
deformation model is integrated into a Bayesian framework for images, or 3D objects or by combining them together in an
atlas construction. We evaluate it on a data-set of 3D structures iconic-geometric settind [6]-[8]. In this paper, we will focus

representing the neural circuits of patients with Gilles de la : ; :
Tourette syndrome (GTS). We show that this approach makes it on the combined analysis of 3D streamlines and 3D surfaces.

possible tolocalisg quantify and easily visualisethe pathological

anomalies altering the morphology and organization of the neural

circuits. Furthermore, results also indicate that the proposed A. Related Work

deformation model better discriminates between controls and  The statistical shape analysis of 3D meshes has been the

GTS patients than a single diffeomorphism. subject of several works. One of the most popular strategy
Index Terms—shape, morphometry , complex , multi-object , relies on the selection of consistent correspondences between

atlas , structural connectivity , Tourette , neural circuits the structures of the subjecis [9]. Correspondences can be, for
instance, manually chosen by an expert (i.e. landmarks) [10],
I. INTRODUCTION estimated using shape descriptors [11]+-{13] or found with the

HE pathophysiology of neurodegenerative and neurodégrative closest point (ICP) algorithm (or variants of|it [14]).
velopmental disorders, such as Parkinson's disease aitistructures are then aligned to a common reference frame
Gilles de la Tourette syndrome (GTS), often involves mowhere both mean and covariance matrix can be estimated.
phological alterations of the cortico-basal ganglia and corticBrincipal Component Analysis (PCA) or Principal Geodesic
thalamus circuits[[1],[[2]. These networks are composed 8halysis (PGA) [15] can be employed to analyse the main
neural projections connecting speci ¢ areas of the cortictorphological variatioff$ This strategy has been successfully
surface and sub-cortical nuclei. Abnormalities can affect: @mployed with several brain structures. However, most of the
the shape of every component of the circuits from both grépape descriptors are conceived for only a particular kind of
and white matter, ii) the relative position between grey mattgtesh, i.e. genus-zero surfaces or streamlines. Thus, they can
structures and iii) the structural connectivity, namely the areBgt be used to handle both grey and white matter structures
where white matter tracts integrate grey matter structurddto a single framework. Moreover, this approach may not
Most of the studies present in the literature focus either gieserve the anatomical organization of the neural circuits,
the rst or on the last point [2],/[3]. Few of them analyse thavhich means that separated structures may intersect when
rst two points together[[4],[5]. In this paper, we propose &omputing the average or the main morphological variations.
new method to tackle all points at the same time. Another class of statistical shape models, which naturally
Every component of the neural circuits may be segmentatiows the combination of different mesh types, is based on
as a 3D object. Grey matter structures, such as cortidhe Grenander's pattern theory [16]. Every shape complex is
surface and basal ganglia, are represented as surface mestasgielled as a deformation of a reference shape complex called
template complexDeformations put into correspondence the

P. Gori, O. Colliot, L. Marrakchi-Kacem, A. Routier and S. Durrleman ar :
with Aramis project-team, Inria, UPMC Univ Paris 06, Inserm U1127, CNRgomponemS of the template complex with the h0m0|090us

UMR 7225, ICM, Paris, France. ones of the subjects. The “amount” of deformation needed to
O. Colliot, Y. Worbe and A. Hartmann are with AP-HP, Bisalgtriere  warp the template complex to the subject complex quanti es
hospital, F-75013, Paris, France. their morphological differences. The joint estimate of template

C. Poupon is with NeuroSpin, CEA, Gif-Sur-Yvette, France.
N. Ayache is with Asclepios project-team, Inria, Sophia Antipolis, France.
* Corresponding author: pietro.gori@telecom-paristech.fr INote that in |[14] authors use a MAP approach based on EM-ICP
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complex and deformations is calledlas construction[17]— template complex is warped towards every shape complex of
[20]. They capture the common anatomical characteristics atté population using a composition of two diffeomorphisms.
the morphological variability of the population respectively. The rst diffeomorphism acts only on the white matter of
Deformations are usually de ned as single diffeomorphisntie template complex, keeping xed the grey matter. During
of the entire ambient space which are smooth invertibthis transformation, the ber bundles are repositioned with
transformations with smooth inverse. This kind of deformatiorespect to the grey matter structures, capturing the variations in
preserves the anatomical organization of the componentsstiuctural connectivity. The second diffeomorphism acts on the
the template complex, namely they can not intersect, fold whole template complex, namely on both the resulting white
shear. Moreover, deformations are de ned locally and they camatter and grey matter, bringing all structures of the template
vary across different areas of the ambient space. This makesdinplex into the subject's space. White matter tracts are re-
possible to capture the variations in relative position betwearnranged by the rst diffeomorphism so that the second one
separatestructures. However, using a single diffeomorphisntan correctly put into correspondence all the components of
one implicitly assumes that the relative position betweeghe template complex. The two diffeomorphisms are optimised
structuresin contactwith each other or, in practice, close tatogether minimising a single cost function. The data-term only
each other, does not change across subjects. This implies theggiends on the deformed template complex resulting from the
a particular ber bundle of the neural circuits should integratsecond diffeomorphism. Using again the example in[Tig.1,
the same areas of the cortical surface and basal ganglia acthss rst diffeomorphism would move the ber bundle from
the whole population. This assumption precludes the studytbk left gyrus to the right one. The second diffeomorphism
changes in structural connectivity which could be caused byuld then modify the shape of all structures producing an
an abnormal brain development. In Fig.1, we present a tagcurate matching. The rst diffeomorphism would capture
example composed of a template complex and a subject shépe changes in structural connectivity, whereas the second
complex characterized by a different structural connectivity. ne would recover the global morphological differences. Both
single diffeomorphism could not put into correspondence allffeomorphisms are parametrized using control points as
structures and capture the differences in structural connectivipyoposed in|[[24]. The number of control points is xed by
Structural connectivity analysis is usually based on the partire user and their position is automatically adjusted during
tion of the cortical surface and sub-cortical nuclei in consistetife atlas construction. To note that, we estimate two distinct
parcels across subjecis [21]. Every parcel is considered adeformation elds (no composition is performed) and that
node of a graph and the number of streamlines connectisigoothness across white and grey matter is guaranteed by
two nodes (or other quantities such as the projected Frake fact that they are jointly deformed only by the second
tional Anisotropy) represents the weighted edge. Variability idiffeomorphism.
structural connectivity across subjects can be analysed in eaclbur approach is different from other multi-diffeomorphic
parcel independently or with indexes and methods from theethods with sliding conditions such as [25]4[27]. These
complex network theory| [2]] [22]. In both cases, the analysiaethods aim to correctly register longitudinal scans or anatom-
highly depends on the chosen parcellation scheme and it diazs complexes characterized by sliding regions. Every region
not take into consideration the morphological variability ofs smoothly andindependentlydeformed. Contrary to that,
grey and white matter structures. we are interested in studying ttrelative variation of one
region, white matter, with respect to another one, grey matter.
The aforementioned sliding registrations, if applied to the
example shown in Figl1, would result into two independent
deformations, one for the white matter and one for the grey
matter. It would be thus impossible to understand whether
the deformation of the white matter is due to a difference
in grey matter or to a variation in structural connectivity.
Furthermore, the proposed method differs from multi-scale
diffeomorphisms, such as [28], [29], which combine multiple
Fig. 1. Two complexes composed of a pseudo cortex, divided into blak€rnels at different scales to create one single diffeomorphic
and green gyrus, a blue sub-cortical nucleus and a red ber bundle. A singleformation. In this case, the goal is mainly to improve the
diffeomorphism could not put into correspondence all structures and Cap?ﬁ‘é“gistration accuracy and remove the scale tuning.
the differences in structural connectivity. The points within the violet circle in : . .
the template complex would be matched either to the black gyrus of the subjectN Order to deal with the considerable amount of streamlines
complex or to the red ber bundle. A double diffeomorphism would rst moveresulting from tractography algorithms, we rely on the parsi-
the ber bundle from the left to the right gyrus and then it would change thg,onious representation, based on weighted prototypes, intro-
shape of all structures, producing an accurate matching and capturing also {he . .
dissimilarities in structural connectivity. uced in|[30]. Both prototypes and streamlines are modelled as
weighted currents [30]. This model is well suited for any kind
of ber bundle, both sheet-like [31] and tubular |12]. Further-
B. Our contribution more, we propose to model grey matter structures as varifolds
In this paper, extending [23], we propose to join togethdB2], [33], the non-oriented extension of the framework of
shapeandstructural connectivitynalysis into a uni ed frame- currents [[7], [[34], or landmarks, if correspondences across
work based on a@ouble diffeomorphiatlas construction. The subjects are available. The atlas is estimated within a Bayesian

Template complex Subject complex
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framework based on a generative model similar to the omennectivity within the population described by the ensemble
proposed in[[35]4[37] and adapted to double diffeomorphismsf rst diffeomorphismsf Vg and the global morphological
The paper is organized as follows. We rst describe theariations captured by the second diffeomorphisimg" g.
double diffeomorphic generative model and the Bayesi@oth diffeomorphisms are parametrized by a set of parameters,
framework for atlas construction. We initially model all shapesV and A respectively, specic to every subjeét We
with landmarks and then we describe how to integrate tlsume that these parameters follow a Gaussian distribution
computational models of varifolds and weighted currents. Weith zero mean and covariance matrix equal t¥ and
conclude Sef]ll showing how to compute the diffeomorphic”' respectively: ¥ N(; W) and A N(0; A').
deformations and with a description of the optimization prdvioreover, as usual in statistical learning, we assume that the
cedure. Eventually, we evaluate the discriminative power ofsiduals follow a Gaussian distribution centered at 0 and with
the proposed method to distinguish between a populatianscalar matrix as covariance matrix; (N (0; j21 )
of controls and one of GTS patients. We also compare tFer now, we model all structures with landmarks, which are
resulting classi cation scores with the ones obtained using3® points reproducible among subjects that establish a point-

single diffeomorphism. correspondence. For every subject, structures modelled
using ; landmarks. Thusl ; is the identity matrix of

Il. METHODS size ;. The norm of the difference between two meshes

A. Double Diffeomorphic Generative Model is the L2-norm (j jj 2, i.e. the sum of squared differences

The proposed atlas construction is based on a generati@ween corresponding landmark pairs). The likelihoods of
statistical model. We assume that the population under st residuals of whiteW) and grey G) matter structures
is composed ol subjects. Every subjedtis characterised modelled as landmarks are:
of M = M® + MW 3D discrete geometric representations N ,
(points, polylines or polygon meshes) from both gréyq) 0 1 exp L s, AW pw) jj2|
and white matter N|'W). We de ne the representation of j( 22 ﬁ( 7z | A i 2
structurej belonging to subjedt asS; . Every subject shape Gi G 1 1 o Al TG 2 (o
complex S;, de ned for the moment in a generic way as PCTT )/ i€ )2 i7? P % F)ZUS“ ! iz (@)
the ensemble of all mesheS; , is modelled as alouble

deformationof a common template compléx plus a residual - where € and ¥ refer to grey and white matter structures
noise ;. Both T and ; are also de ned as the ensemblegespectively. In the following, we refer to; when we make

of the templatesT; and residuals; . The rst deformation no distinction between grey and white matter structures. In
W acts only on the white matter structures of the templagedT-G, we will make clear how to adapt these equations

complex:T" . The grey matter of the template compleX is when modeling a structure as weighted current or varifold.

not modi ed. The second deformatior! deforms both the \whatever the model employed, the variance only depends on

resulting white matter W (T") and T®. This formulation the structure-dependent parametér Moreover, from E

derives from the forward model [35]; [B8], [39] where weand EJP, it follows that all shapeS; follow a Gaussian
assume that all elements belong to an algebraic structure Wl’@ﬁgﬁribution;sa!v N( A }’V(TJW) ( J_W)21 D Si?

(i )1

addition is de ned. It results: N( A TE ;( £)21 ). The two covariance matrices of the
Al WoeW G deformation parametersV and A", are also considered as
Si= | P (T)LTE + (1) parameters of the model. We can thus reformulate the goal of

the atlas construction as estimatilg W and A", know-

The two deformations, V' and A, are two diffeomor- | be oh . d 3 they Toll
phisms of the entire ambient space. They follow one anotH@f the shape complexdss; g and assuming they follow a

creating a cascade of diffeomorphisms. White matter strea gussian d-|str|b.ut|9n. Th's can bze a\c/:vmeved E“y maximizing the
lines of TV are re-positioned by V' within the grey matter J.O'm posterior distribution off, 7, apd ) Assumm_g .
TS, which is kept xed. This can be seen as a relative chan d\ipendenceA”betweep all randpm var_lables and considering
of coordinates with respect @€, which is considered as a' i g andf {7 g as hidden variables, it results:

xed reference frame common to all subjedts The entire

template complex, botfi € and w (TW), are then registered T - W . AL 2

. I ; ; ; { g= argmax 3)
to the subject shape complex; by A'. This is instead ToW, A 2
a global change of coordinates which brings the template% wZZ
complex to the subject space. The two deformationf$,and p(T;; w. Al jz; w. {\II 'S )d iAII d W

All " capture the differences in structural connectivity and the
global morphological changes, common to both white and grey
matter, respectively. A diagram based on the toy example ofNot using priors for W, A' and J.2 can produce degen-

i

Fig.[1 can be found in the Appendix. erate estimates with small training data-sets, as demonstrated
_ . in [35]. A possible solution is to regularize the estimates
B. Bayesian Atlas Construction using adapted versions of the inverse Wishart distributions

The goal of the atlas construction is to estimate the teras priors f W (Pw), W w o L(PWwW),
plate complexT = TYW [ T©, the variations in structural A" W 1(PA:wAl):
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shapesS, modelled as varifolds or weighted currents, to nite
v, 1w P dimensional spaces. For each structureve de ne a regular
(A (P 2 exp > —_ (4) grid composed of ; points which covers the ambient space
i and where pdf can be computed. The reader is referred o [41,
. oW 1 Chapter 4.2.3] for more detalils.
(") /5 i T exp EWWTr((PW)T( )0 Varifolds - In the space of varifoldswW , the inner-
AL~ A v 1 AT+ Al 1 Broduct between two surfaces and Y is: Wy ;Wiw =
pC )/ T Erexp SwETr((PT) () ) L P 2

" #

) - T

s heg exp AP SR injajunjz where
n; (resp.uy) is the normal oX (resp.Y) at pointp, (resp.c).

The scalarswj, P;, w" and wA' are strictly positive The only user-de ned parameter is the kernel bandwidgh.
andPY andP”! are positive symmetric matrices. They ardhe distance betweevl andVy is: jjVx Wy jig, =hvx
hyper-parameters xed by the user (see SecIl-E to get move;Vx Vyiw . Two important characteristics of this metric
insight). Since the maximization of .3 is not tractable analy#re: the absence of correspondences and the invariance to a
ically, we use the EM (Expectation Maximization) algorithnthange of orientation of some normals of the surfaces. For
where we approximate the conditional distribution of the Bore information, the user is referred fo [32].
step with a Dirac distribution at its mode. S¢e|[35],|[37] for Weighted currents The inner product between two oriented
more information about the E and M step. Assuming that tt8D polygonal curves,A and B, modelled as weighted
templateT has a non-informative prior distribution, it resultscurrents and compos§d (0] I:;;md F segments respectively,

G F

! A
. o~ _ X
is: hCa;Caiq = gy o exp 42202 0

i a a2 i b bi: 2 . )
XY 1 W, exp L1tz gyp 1T Y2 \whereQ indicates the

. .. P;
2( W2 sy M M@Y) s+ JT *  space of weighted currentsg and 4 (resp.y; and ) are
=1 1= : the centre and tangent vector of segmgittesp.f ). The two
MO W 3D vectorsf 2 and f° (resp.t® andtP) are the coordinates
1 jse Al Te 24 Piw |, (5)©f the end-points of the curva (resp.B). Two curves are
iz i1 20P)? Y considered similar if their pathways are alike, as in usual

currents [[39], but also if their endpoints are close to each
other. The inner product is parametrised by three user-de ned
bandwidths: ¢, a, b. The distance betwee@, andCg

P8 Conyrewy w20 Canrany o,

2iq 2ia is dened as:jjCa  Cgjjy =hCa Cg;Ca Cgig . As

wW Wr 1ew wAl Al s 1o Al usual currents, curves need to have a consistent orientation.

Ttr ™) "PH)+ ?tr (( ) P+ This can be achieved by tracing all streamlines of a bundle

w" + N) e WA+ N) Al from one ROI (Region Of Interest) to another one, as it is the

— log(j ™))+ 5 log(i ™" j)+ case in this paper. For more details, please [see [30].

W VG Weighted prototypes We approximate white matter ber
}(w‘ £ N)log(( W)?)+ }(Wj + N)log(( ©)?)bundles with a parsimonious representation of weighted

= 24 . ) i=1 2 ! streamlines prototypes. Prototypes are chosen among the

streamlines by minimizing an approximation error based on

Eq.[§ represents the cost function of our algorithm. THbe metric of weighted currents. Every prototype represents
framed terms refer to the data-terms and to the regularity terais ensemble of streamlines which share similar endpoints
of both diffeomorphisms respectively. The other terms are daed pathway. The weight of the prototype is related to the
to the use of inverse Wishart prior distributions. The proposédimber of streamlines approximated. An outlier detection and
statistical framework is generic since it can be employed witemoval step is also performed during the algorithm. This
any shape model, provided it is possible to de ne probabilitgpproximation preserves the global shape of the bundle and

density functions, and with any parametric deformation modéfs structural connectivity, which is fundamental for the scope
of this paper. For more information the user is referred to [30].

C. Similarity metrics for shape complexes

When landmarks are not available, we propose to use tho Diffeomorphic deformations
correspondence-free shape metrics: varifolds [32], for greyWe de ne here how to compute the diffeomorphic de-
matter surfaces, and weighted currents [30], for white mattermations of the template complex. Our approach relies
streamlines. In both frameworks, meshes are embedded intonathe Large Deformation Diffeomorphic Metric Mapping
in nite-dimensional Hilbert space where the union of surface DDMM) framework based on the control point formulation
or streamlines is equal to a sum of varifolds)(or weighted presented in|[24]. For every subject both W and A
currents C) respectively. We de ne Gaussian variables irare de ned as the last deformations of two ows of diffeo-
these two spaces similarly tg [40] for the framework oforphismsf ¥ gi2j0:1) andf £ giajo.y. Calling i(x;t) =
currents. Since they do not have probability density functiong (x) = x;(t) the position of a point at timé which was
(pdf) in in nite dimension, we project both templatds and located inx at timet = 0, each ow is built by integrating:
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@igt;t) = vi( i(x;0);t) = vi(xi(t);t) overt 2 [0; 1] where

Vi (Xi(t);t) is a time-varying vector eld representing the in-
stantaneous velocity of a point locatedxin(t) at timet. Both
vector eldsvA'" andvV belong to the same RKHB with
Gaussian kerneK . They are de ned by two different sets
of 3D control pointsc”' andc" , shared among all subjects,
and by two distinct sets of 3D vectors. called momentél' Fig. 2. Diagram of the template deformation based on the proposed double
and W linked to the control pOiI’ltS ,and speci ¢ to e’achdiffeomorphism. We omit the subject indéxor clarity purpose.

|
subjecti: VAT (xi(t);t) = Kp(xi(t);cA (1)) A'(t) and
Vi (xi(1) = Kp(xi(t);e" (1) (1), wherex;(0) = X g Qoptimization procedure
and K p (xj(t);c(t)) represents a block matrix of Gaussian
kernels with an equal xed bandwidth for botf andv\V . The double diffeomorphism can be integrated in the pre-
The deformation of every point in the ambient space dependiously presented Bayesian setting for atlas construction. The
on its initial position att = 0 and on the evolution of the WO sets of initial control points and momenta,” ;f i gg
systemL A (t) = fcA (t); Al (t)gif the point belongs to the @nd fcg';f {509, represent the deformation parameters
grey matter, and on both systerhg’ (t) = fcV (t); W (t)g which warp the templatel towards the subject complex

and LA' (1) if the point belongs to the white matter. AtSi- Initial control points,c" and cf’, are considered as

t = 0 the deformations ¥/ and 2! are equal to the identity Parameters of the model since they are xed effect common
transformations. For both systems, the path froffi (resp. t0 the entire population. Initial momenta/y and ¢, are

Wy to Al (resp. W), the latter being the deformationinstead the subject-specic deformation parameters and, as
of interest, is chosen as the geodesic one, which means f@viously ' and ", they follow a Gaussian distribution.

e that minimizeg the total kinetic energy along the patfssuming that all random variables are independent, the cost

oljJ'Vi/?" ii2 (resp. Oliji\{ijZD)- It has been shown i [20] function in EQ$ does not change except for the framed.terms
that the extremal paths are such that both sysﬂeﬁ’\it) and Where we exchange the L2-norm with the one of varifolds
LA (1) satisfy: and weighted currents, for grey and white matter structures

' respectively, and where we substitute with q.

The variablesT, f g, f Wg, c)", cf are minimised

ci(t) = Kp(ci(t);ci(t)) i(t)= FC(ci(t); (1) using a gradient descent scheme. Insted,, W andf J-Zg
)= T @r Ko (ci(t);ci(t) = F (ci(t); i(t)) have closed form solutions due to the use of conjugate priors:
st.ci(0)=c(0)=co, i(0)= o (6) P
aw_ i (O™ +ww ew)T ©
\which can be summarized as" (t) = F(LA" (1)) (resp. p (W" + N)
L; (t)= F(LY (1)). The last diffeomorphisms! and W am _ iz ( f0)( {8)7T +wA (PAT)T
are completely parametrized by the initial conditions of the b (wAl + N)
. All — Al _ . w —
syvgtems.lgvi (\(,)v) = Lip = fcg"; f§ g (resp.Li"(0) = Noio(si ATeiid + wiP
Lip = fcg'; {80). Thus, in order to put into correspondence (/\].G)2 = I
the templatel with the subject comple$;, we deform only p (wj + N )
the white r\1/1vatter of the templafé" integrating forward in R NS A Ny Stw, P,
time rst L; (t) and then also: )= (w, + N )

'I'_,W (t)= K D(Tiw(t):CiW )y W)= Z[TiW(t);L}N(t)] whereW j andQ , are the nite dimensional spaces where
stTW@O=TW =TW @ varifolds and weighted currents are projected to. For more
ot 10 details about the projection , the user is referred td [41,

Chapter 4.2.3.3].

The deformed white matter of the templatd (TW) = The two covariance matricé$¥ and “A' are equal to a
T}’X, together with the un-deformed grey matter of the tenweighted sum between the sample covariance matrix of the
plate T¢ = TS, constitute T} = TW [ TS. They initial momenta and a prior. We choo&e" =K ,*(c}/;c}/)
are deformed by the second diffeomorphisfjl computed andPA" =K ,*(c4" ;c4" ) which are block matrices of Gaus-
integrating forward in time rst_. (t) and then: sian kernels between the initial control points. Note tkas

is the kernel of the RKHS to which belong both vector
Al elds vA" and v!V. This choice is motivated by the fact
T ()= Kp(TA (t);c (1)) A (t)= Z[TA (t); LA (t)] that, whenN << w W, it results ™™ / K, (c¥;c})
LA = TAl - TW G d, consequently, the regulagty term in [Bq.5 becomes
stT{N(0)=Tip =T [ Tio (8) i%”iN:l( WYTK o () W P b2 wahich is the
sum of the lengths of the geodesic paths over all subjects. This
A diagram of the double diffeomorphism is shown in Fjg.2ind of regularity term has been often employed in previous
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atlas construction methods not based on a statistical setting (dowFY @)™ V)

[18]. The same reasoning is also valid foi' . Al ' W e
The two other parameter$,® and AV, are equal to a st. T (@)=rqmDi, ] T@= 7 (0)

weighted sum between the data-term of hé¢h structure iAII (1) =0 , iW(l) =0

and the priorP; . Each parameter balances the importance of

structurgl with respect to the other structures and with respect

to the regularity terms of both diffeomorphisms. The prior Where ZA' (t) = Z_[TiA” ;LM (0] and ZW(t) =

P, imposes a minimum value 6, which is useful to avoid Z[T{" (t);L{" (t)]. The size of /' (resp. ') and i//i:: (resp.

over tting. In fact, without a prior, the minimisation process i) are the same as the onesTo{resp.T") andL{" (resp.

might focus only on a structutie reducing its residuals almostL ;" ) respectively. We rst integrate backward in time Eq.11

to zero and ignoring the other structures. This would result #nd Ed.12 obtzii"r_l\i\?g(*” (0) and A(0) =f ./i_\” ©0); &' 0)g.

AZ1 0 and therefore also ttog("?) ! -1 . Then, we use{™™ (0), which are the initial values of All
The gradients of the cost functidh in Eq[F with respect to relative to the white matter, as nal values fof and we

TS, TW, Al W cAl oW wherek ands are the indexes integrate backward in time Eq[13 and [Eq.14 obtainitig0)

for the structure and subject respectively, are equal to: ~ and ¥ (0) = f ¥ (0); & (0)g. From this set of equations, we

can notice that the optimisation of the two diffeomorphisms is

X XN linked by the constraint (1) = AW (0). The information
r +cE = T DS r . E= == «u D given byr TAI (1) Di,whereD; = fDj gj=1;:;m , ows from
X i 2k " 0 g 20 ° the second diffeomorphismAll) to the rst one W) and
1 XM eventually it is used to update all parameters:
erwE: 72rTQNDinv I’Cng: ﬁrc\évDij
i=1 <k i=1 j=1 < | X ALG W
X oq rqekE = i (0) rewE= Y (0)
r Al E = ﬁr Al Dsj +( Al ) 1 é(lJI i=1 i=1
I=1 : All X W
X g e E= g (0 r cy E= ¢ (0)
rwE= oor wDg () g (10) =1 i=1
j=1 <] rwE= PO+ M) G
where Df = jj (Sj A Te)iid j and D}V = r wE s @O+ 7) " 5o (%)
(s & WaW))iig  refertothe data terms of grey _
and white matter structures respectively wheregsrefersto ~ where G refers to the values of™! relative to the grey
the data-term of any structure. matter structures. A diagram of the optimisation procedure is

To calculate the gradients of the data terfri3; g, we shown in Fig.B. More details about the computations can be
need the deformed template complex at the end of the secdadnd in the Appendix of{ [23].
diffeomorphism for every subject and for all structures,

namely A'(T®) and &' W(TW) . First, we integrate

forward in timeL" (t) = F(LY (1)) (Eqlg) andT" (1) =
Z[TW );LWY ()] (Eql?). Then, we integratd_ (t) =
F(LA (1)) (Eql§) and, using as initial valud A (0) =
TV [ TS, we integrate als@," (1) = Z[TA (t): LA (1)]

(Eq[§). After that, we can compute the data t and its

gradient with respect to the verticesbf! (1) = TA' . Using

the calculus of variations, this information is brought backig. 3. Diagram of the optimisation procedure. We omit the subject index
fromt =1 tot = 0 to update rstL (0) = fcA'; Al gand for clarity purpose.

TS andtherLV (0) = fc}; WgandT" . The optimisation

is based on a set of adjoint equations describing the evolution

of four auxiliary variables Al ; Al = § Al . Al g W W = F Atlas Parameters Initialisation
fFYVsde Since we use a gradient descent scheme, we need to
initialise the atlas parameters. Control points of both diffeo-
A= (@wn 2N ()T A (1) (12) mo_rphisms_ are initialise_d as a regula_r Iatti<_:e covering the
Al Al T Al entire ambient space with an inter-points distance equal to
+ )= (@u Z[7 (1)) {7 ()+ (12)  the bandwidth of the diffeomorphic kerni§l . Momenta are
(d a FiA” ()" iA” (1) initialised to zero. The template of surface meshes is initialised
W s ' Woren T W as the average of the population when a vertex-correspondence
+ (0= (@.W Zim (@) (13) is available. Otherwise, we use a centred and scaled ellipsoid

Y= (@ )" M)+ (14) as in [20]. For the template of ber bundles, all subjects'
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bundles are rst gathered together into a single bundle whi€h Toy example - registration
is t'hen approximated as a set of weighted prototypes. Thg, Fig[d, we compare the registrations of a toy template
weights qf the prototypes are scaled so that the norm of tE‘SmpIex (blue) towards a toy subject complex (red) based
template is equal to the average norm of the population. ,, 5 single (rst row) and double diffeomorphism (second
row). Both complexes are composed ofpaeudo cortical
I1l. EXPERIMENTS AND RESULTS surface, sub-cortical structure and ber bundle linking them,

In this section, we rst describe the dataset used in ttdl modelled as varifolds. We use the same parameters for
following experiments and some numerical aspects of tHee two deformation schemes. Grey matter components have
proposed algorithm. Then, we use both a toy example afgsimilar shape but they do not share the same structural
real data to compare the registrations based on a single &R@nectivity. As it is possible to notice, a single diffeomor-
double diffeomorphism. After that, we present an explanato ism can not correctly put into correspondence all structures.
toy example where we show how one could use the propodefl the contrary, a double diffeomorphism makes rst the
double diffeomorphism to compare two groups of subject®€er bundle move, keeping xed the grey matter structures,
Eventually, we assess the effectiveness of our algorithm B?d then it accurately registers all structures with the second

showing that it better discriminates between controls and Gdfeomorphism. In this way, it is possible to disentangle
patients than a single diffeomorphism. the differences in structural connectivity, captured by the

rst diffeomorphism, from the global morphological changes,
i captured by the second diffeomorphism.

A. Materials

The dataset used in this paper contains 76 subjects: 27 con-
trols and 49 GTS patients divided in three sub-groups based on
their symptomsST=simple-tics (17 patients); T=complex-
tics (15), OCD=complex-tics with Obsessive Compulsive
Disorders (12). Anatomical images are acquired using 3D
MR T1-w sequences with a voxel size of 1x1rim3. MR
diffusion weighted images are obtained with 50 gradient-
directions, a B-factor of 1000 and a voxel size of 2x2x2
mm?3. Artefacts related to spike, motion, susceptibility and
eddy currents are corrected using Connectomist-2.0. Diffusion
and T1-w data are matched using a mutual information based
registration technique. In the experiments, we use the left
hemisphere of the cortical surface, left putamen and the beig. 4. Registration between a toy-template complex (blue) and a toy-subject
bundles connecting them. For the selection of the tracggmplex (red) using either a single or a double diffeomorphism. Black arrows
we use a speci ¢ technique conceived for the cortico-striat?t[jr'r%fg;;‘gearffgzwZter[]ec?u”r'gst_he double diffeomorphism can correctly putinto
circuits explained in [2]. Cortical surfaces are segmented using
FreeSurfer v5.3 followed by a pipeline of BrainVisa v4.3.0
which produces a vertex-correspondence between subjects. i i
Putamens are segmented with FSL. Fiber bundles result fréfn €@l data - registration
a deterministic tractography algorithm (1 seed per voxel, SDTIn Fig[§, we compare the results of a single and double
model) available in Connectomist-2.0. Sek [2] for more detaififfeomorphism using real data. We match a control subject to
about the data-set, pre-processing and tractography. a Gilles de la Tourette patient. A double diffeomorphism better
aligns both white and grey matter (see Fig. 4 in the Appendix)
than a single diffeomorphism, capturing at the same time the

. . . variations in structural connectivity (i.e!).
In the following experiments, cortical surfaces are mod-

elled with landmarks, putamens as varifolds witly =3mm )
and ber bundles, approximated with weighted prototype&: TOY Example - group differences
as weighted currents withg=7mm, ,=10mm (cortex) and We present here an explanatory toy example of the pro-
p=5mm (putamen). The bandwidths of both diffeomorphiposed atlas construction procedure based on a toy data-set
kernels are equal to 11mm, which produce 804 control pointonstituted of 6 pseudo shape complexes representing two
The maximum number of iterations fo the atlas construction éfferent populations (3 controls and 3 GTS patients). They
120 and the computations are performed on a Intel Xeon, 82& shown in Fi§J6 where it is possible to notice that the
cores, CPU E5-2650, 2.60GHz with a graphic card NVIDIAomplexes of population A have a different organization and
Quadro 5000. The code is written in C++ and CUDA and it ishape with respect to the ones of population B. The Bayesian
an extension of the freely available software sdiédormetrica atlas construction results in a nal template complex and in
(www.deformetrica.org). The computational time for an atlafie covariance matrices of the momenta of both diffeomor-
with 10 subjects is about 37 hours. All shape complexes grhisms. The template shows the characteristics common to
previously rigidly registered to a reference shape complex.both populations. The two covariance matrices describe the

B. Numerical aspects
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Fig. 5. Comparison between a single and double diffeomorphic registratibi§- 6- At the top, we present two toy populations characterised by a different
using real data. Source and target bundles belong to a control and a GPgeX, sub-cortical nucleus and structural connectivity. In the middle, we show

patient respectively. Black arrows indicate the areas where a single diffége initial template. The nal estimated template is presented at the bottom.
morphism can not correctly match the ber bundles. It is deformed at  along the rst modes of two PCA computed with"

and A | The endpoints of the two modes, at and+ , reproduce the
structural connectivity and the morphological characteristics of the two groups
. . o . respectively.
organisationaland globalmorphologicalvariability within the

6 subjects respectively. We compute a Principal Component
Analysis (PCA) for each covariance matrix and we deform
the nal template complex at (standard deviation) along
the rst modes of both PCAs. The main variations captureclassi er. We employ a Linear Discriminant Analysis (LDA)
by the rst diffeomorphismsf Vg, which affect only the with a leave-one-out cross validation strategy. We assume that
ber bundles, explain the principal differences in structurahe class-conditional densities of the initial momenta are Gaus-
connectivity between the two populations. The positions &fan with a covariance matrix equal to the one estimated during
the ber bundle at and + are the ones of populationthe initial atlas. This can be seen as a regularised LDA since
A and B respectively. The rst mode of the second PCAhe covariance matrix is estimated as in[fq.9. We separately
describes instead the main global morphological variations. Wést the discriminative power of the two diffeomorphisms by
can notice that the grey matter structures atand+ repro- using either only 7 or ¥. Moreover, we compare these
duce the morphological characteristics of population A and @sults with the ones obtained using the initial momenta of a
respectively. This example shows the exploratory potential sihgle diffeomorphism where we employ either only the ber
the proposed method and it is based on a simple toy dataisetdles or all structures from both grey and white matter.
where the intra-group variations are de nitely smaller than thResulting sensibility, sensitivity and balanced accuracy are
inter-group ones. This is probably exaggerated compared tghown in Tabld]l where we separately use either all patients
real-data example. Nevertheless, given the important structualeach sub-group alone. We assess the statistical signi cance
changes that are likely to occur in syndromes such as GTS, wfethe classi cation scores with a randomization test (1000
may assume that controls and patients create distinct clustpermutations). It is possible to notice that the classi cation
In the next section, we will exploit this hypothesis by lookingcores based on the rst (white) diffeomorphism, especially
for the discriminant hyperplane that separates the two groufs. the most severe patient€T and OCD), are de nitely
better than using a single diffeomorphism.

F. Real data - Classi cation Due to the variability of the results, we also investigate the

Here, we use the estimated initial momenta of the twsampling distributions of sensitivity, sensibility and balanced
diffeomorphisms, ¥ and £, as features to discriminateaccuracy within the group of patients with a bootstrap analysis.
between controls and patients. Then, we compare the resultvigre precisely, we perform it on the top of the previous leave-
classi cation scores with the ones obtained using the initi@mne-out cross validation classi cation. At each iteration, we
momenta of a single diffeomorphism. pick a random sample (with replacement) of the 44 patients

First of all, we build an atlas with 10 subjects (5 controlsvhich is classi ed, together with the 22 controls, using LDA.
and 5 patients). Since we use subjects from both groups, iNe repeat this process 1000 times. The histograms of balanced
nal template should be positioned in between them in thaccuracy for the double and single diffeomorphic approach
shape space. The estimated template is successively warpedshown in Fi§]7. The average sensitivity and speci city is
to all the remainingJ = 66 subjects by minimizing a cost respectively:74% and 51% for the global diffeomorphism,
function similar to Eq.p where we do not sum over all subjec®% and 64% for the white diffeomorphism64% and 48%

i and where we x the controls pointsV, A' and ]2 to the for the single diffeomorphism, considering both white and grey
values estimated during the initial atlas. The resulting initighatter, and?0%and52%for the single diffeomorphism, using
momenta, £l and ¥, represent the input features of theonly the ber bundles.
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TABLE | 44 patients) using either & or . The typical con g-
CLASSIFICATIONS SCORES urations of patients and controls are found by deforming
Single Diffeomorphism - White and Grey Matter the template complex at W _gnd __+ w re__Spe_Ctlvely’
Sensitivity % | Speci city % | Balanced Accuracy %| Where = 3( ¢+ p) andjiw jj = jj ¢ pjj with
ST 12 36 24 and , equal to the averages of initial momenta of controls
cT 33 64 48 and patients respectively. In Fig] 8, we compare the typical
OCD 58 59 59 structural connectivity of the two groups. The main differences
CT+OCD 52 64 58 are in the supplementary motor, premotor, superior frontal
ST+CT+OCD 54 41 48 areas, insula and in the dorsal and ventro-lateral part of the
Single Diffeomorphism - Only White Matter putamen. These results are in line with those reported in the
ST 53 54 54 literature [2]. In Fig[®, we compare the typical grey matter
cT 33 45 39 con gurations of controls and patients. In this case, there is
OCD 50 54 52 mainly a compression in the premotor and frontal area of
cT+och %9 %9 59 the cortex, insula and occipital lobe. About the putamen, the
ST+CT+OCD 66 45 56 . S . :
. . . — 1 : main variations are in the fronto-dorsal and posterio-ventral
Double Diffeomorphism - First (white) diffeomorphism . . .
ST a7 9 53 areas. In Fig. 5 of the Appendix, we show for comparison
cT 67 77 7o% the main variations in structural connectivity and morphology
och 50 82 66 only within the population of controls.
CT+OCD 74 64 69*
ST+CT+OCD 73 41 57
Double Diffeomorphism - Second (global) diffeomorphism
ST 29 50 40
CT 40 45 43
OCD 50 68 59
CT+OCD 52 68 60
ST+CT+OCD 70 50 60

" p-value< 0.05

Fig. 8. Typical structural connectivity of controls and patients obtained
by deforming the ber bundle of the template complex along the most
discriminative deformation axis in the space of the initial momenta of the rst
ppiiffeomorphism }’g . Grey matter structures are kept xed. Colours refer to

Fig. 7. Bootstrap analysis of 1000 iterations performed on the top of a L
g P 4 P P ensity of the extremities of the ber bundle onto the grey matter.

with a leave-one-out cross validation. Each sample of the histogram represélﬂ?sd
the classi cation score obtained using 44 patients chosen randomly (with
replacement) among all sub-groups and 22 xed controls. Red and green
lines show the average and the 95% con dence interval respectively. IV. DiscussiON ANDCONCLUSIONS

We presented a double-diffeomorphic mesh-based atlas con-
struction method. In contrast to standard single-diffeomorphic
registrations, the cascade of two diffeomorphisms can put

Eventually, we also compute the organizational and morphisto correspondence anatomical complexes characterised by a
logical characteristics proper to each group by deforming tliéfferent structural connectivity. We showed that this approach
template complex along the most discriminative deformatianakes it possible teharacterise localise and quantify both
axis. We estimate the best linear decision boundary (i@rganisational and morphological pathological anomalies al-

Tw b ) with all the J test subjects (22 controls andtering grey and white matter structures.

G. Most discriminative deformation axis
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11mm for the second diffeomorphism, the deformation of the
white matter is correlated to the one of the grey matter. This
makes the model identi able with a unique decomposition of
the two diffeomorphisms all over the ambient space.

Both diffeomorphisms are parametrised with control points
which de ne the dimension of the initial momenta. These
can be used as input features in a classi cation task, as in
Sed.l-R. In [20], the authors used a single-diffeomorphic
atlas construction method similar to the one proposed here.
They demonstrated that the statistical performance of a linear
classi er augments by decreasing the number of control points
until a certain threshold. It seems therefore reasonable to
expect the same behaviour for the proposed method. This
brings to another question which is how to choose the position
and number of the control points. A possible solution was
presented in[[42]. The authors proposed to integrate in the
optimization the selection of the best control points using a
penalty similar to Group-Lasso. They started from a regular
grid which was trimmed by keeping only the control points
that participate to the deformations of all subjects. It would be
of interest to integrate this approach to the proposed model.

Fig. 9. Typical grey matter con gurations for controls and patients. They Another interesting extension might be the use of sparse
are obtained by deforming the grey matter structures of the template complex

along the most discriminative deformation axis in the space of the initial m&‘“'ti'sca'e diffeomorphisms such as in [28], [29]. This would
menta of the second diffeomorphisnfy . Colours refer to the displacement probably complicate the statistical analysis but it might also
of the con guration of patients from the one of controls. reduce the computational time, using for instance a coarse-to-
ne approach as in[[29], remove the need for scale tuning of
K b, produce compact representations of deformation param-
It is important to notice that it is fundamental tost eters at different scale and increase registration accuracy.
deform the white matter of the template complex @hdn Al experiments shown in this paper were based on a single
the grey matter in order to retrieve the main variations ifer pundle. However, the neural circuits of the brain are
structural connectivity. In fact, the rst diffeomorphists’ g composed of several ber bundles which could be affected by
are comparable across subjects since they are all compudfitbrent pathological alterations. This means that every ber
with respect to the same reference frame, namely Xee  pyndie should be deformed in an independent way with respect
grey matter of the template complex. If one changed thg the others. The proposed approach would not be appropriate
order, deforming rst the grey matter and then the whitgince the rst (white) diffeomorphism would act simultane-
matter, it would not be possible to compare the variatioRgysly on all ber bundles. A possible solution would be to
in structural connectivity since the reference frame, given Rypstitute the rst diffeomorphism wittN diffeomorphisms,
the grey matter, would be different across subjects. A diagraghere N would be equal to the number of ber bundles.
describing these two approaches can be found in the AppendiXery bundle would be then independently deformed by a
White matter ber bundles are not constrained to alwaygiffeomorphism. In this way, we could capture the variations
stay in contact with the grey matter during the deformation. We structural connectivity proper to each bundle and the global
only enforce, by modelling streamlines as weighted curreniaorphological changes associated to the entire neural circuit.
that they will be close to the grey mattet the endof In the proposed method, we assumed that the initial mo-
the second diffeomorphism (See [Hq.5). To note that, theenta of the two diffeomorphisms are independent, that is to
two diffeomorphisms are not explicitly weighted during theay thatp( &'; W) = p( #")p( V), even if the update
optimization procedure in Eq.[l1[- [14. However, they bothule for A" and ¥ are related as explained in Sec.|I-E.
depend on the gradients of the data-terms, and therefore onjth@ould seem more reasonable to take that into account
parameters of their corresponding computational models. Fgtr modelling directlyp( A"; W) without the assumption
thermore, the precision and exibility of each diffeomorphisnbf independence. We could model, for instance, their joint
depend on its kernel bandwidth. In this work, since we aiiiistribution as a single Gaussian distribution. However, the
to correctly match both white and grey matter structures, weatistical relationship between®' and W is highly com-
implicitly gave the same weight to¥ and “' by choosing plex since they are related by the linearised ODEs shown in
the same kernel bandwidth (i.K.p ). Sed.II-§ and we have not found yet a satisfactory solution to
A question that naturally arises using the proposed methotbdel their joint distribution. This is left as future work.
is about the uniqueness of the decomposition into two diffeo- Nevertheless, we demonstrated that the proposed double
morphisms in regions containing only white matter structuregiffeomorphic approach captures useful and relevant informa-
In these areas, ber bundles could be deformed into tw@n since it better discriminates between controls and patients
different but equivalent ways. Using a kernel bandwidth dghan a single diffeomorphism. In particular, we observed that
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the information about structural connectivity might play afeo] S. Durrleman, M. Prastawa, N. Charon, J. R. Korenberg, S. Joshi,
important role in the characterisation of the pathophysiological
mechanisms underlying GTS.
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