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Double diffeomorphism: combining morphometry
and structural connectivity analysis

Pietro Gori*, Olivier Colliot, Linda Marrakchi Kacem, Yulia Worbe, Alexandre Routier, Cyril Poupon,
Andreas Hartmann, Nicholas Ayache and Stanley Durrleman

Abstract—The brain is composed of several neural circuits
which may be seen as anatomical complexes composed of grey
matter structures interconnected by white matter tracts. Grey
and white matter components may be modelled as 3D surfaces
and curves respectively. Neurodevelopmental disorders involve
morphological and organizational alterations which can not be
jointly captured by usual shape analysis techniques based on
single diffeomorphisms. We propose a new deformation scheme,
called double diffeomorphism, which is a combination of two
diffeomorphisms. The �rst one captures changes in structural
connectivity, whereas the second one recovers the global morpho-
logical variations of both grey and white matter structures. This
deformation model is integrated into a Bayesian framework for
atlas construction. We evaluate it on a data-set of 3D structures
representing the neural circuits of patients with Gilles de la
Tourette syndrome (GTS). We show that this approach makes it
possible tolocalise, quantify and easily visualisethe pathological
anomalies altering the morphology and organization of the neural
circuits. Furthermore, results also indicate that the proposed
deformation model better discriminates between controls and
GTS patients than a single diffeomorphism.

Index Terms—shape, morphometry , complex , multi-object ,
atlas , structural connectivity , Tourette , neural circuits

I. I NTRODUCTION

T HE pathophysiology of neurodegenerative and neurode-
velopmental disorders, such as Parkinson's disease and

Gilles de la Tourette syndrome (GTS), often involves mor-
phological alterations of the cortico-basal ganglia and cortico-
thalamus circuits [1], [2]. These networks are composed of
neural projections connecting speci�c areas of the cortical
surface and sub-cortical nuclei. Abnormalities can affect: i)
the shape of every component of the circuits from both grey
and white matter, ii) the relative position between grey matter
structures and iii) the structural connectivity, namely the areas
where white matter tracts integrate grey matter structures.
Most of the studies present in the literature focus either on
the �rst or on the last point [2], [3]. Few of them analyse the
�rst two points together [4], [5]. In this paper, we propose a
new method to tackle all points at the same time.

Every component of the neural circuits may be segmented
as a 3D object. Grey matter structures, such as cortical
surface and basal ganglia, are represented as surface meshes
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segmented from Magnetic Resonance (MR) T1-w images.
Neural projections of the white matter are instead modelled as
bundles of 3D streamlines, called �ber bundles, which result
from tractography algorithms applied on diffusion MR images.
Every streamline is an estimate of the trajectories of large
groups of neural axons. The geometrical representation of the
neural circuits combines thus both surface and curve meshes
into a single multi-object complex, calledshape complex.

Neural circuits or, more often, parts of them (e.g. only
grey or white matter structures) can be analysed using either
images, or 3D objects or by combining them together in an
iconic-geometric setting [6]–[8]. In this paper, we will focus
on the combined analysis of 3D streamlines and 3D surfaces.

A. Related Work

The statistical shape analysis of 3D meshes has been the
subject of several works. One of the most popular strategy
relies on the selection of consistent correspondences between
the structures of the subjects [9]. Correspondences can be, for
instance, manually chosen by an expert (i.e. landmarks) [10],
estimated using shape descriptors [11]–[13] or found with the
iterative closest point (ICP) algorithm (or variants of it [14]).
All structures are then aligned to a common reference frame
where both mean and covariance matrix can be estimated.
Principal Component Analysis (PCA) or Principal Geodesic
Analysis (PGA) [15] can be employed to analyse the main
morphological variations1. This strategy has been successfully
employed with several brain structures. However, most of the
shape descriptors are conceived for only a particular kind of
mesh, i.e. genus-zero surfaces or streamlines. Thus, they can
not be used to handle both grey and white matter structures
into a single framework. Moreover, this approach may not
preserve the anatomical organization of the neural circuits,
which means that separated structures may intersect when
computing the average or the main morphological variations.

Another class of statistical shape models, which naturally
allows the combination of different mesh types, is based on
the Grenander's pattern theory [16]. Every shape complex is
modelled as a deformation of a reference shape complex called
template complex. Deformations put into correspondence the
components of the template complex with the homologous
ones of the subjects. The “amount” of deformation needed to
warp the template complex to the subject complex quanti�es
their morphological differences. The joint estimate of template

1Note that in [14] authors use a MAP approach based on EM-ICP
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complex and deformations is calledatlas construction[17]–
[20]. They capture the common anatomical characteristics and
the morphological variability of the population respectively.

Deformations are usually de�ned as single diffeomorphisms
of the entire ambient space which are smooth invertible
transformations with smooth inverse. This kind of deformation
preserves the anatomical organization of the components of
the template complex, namely they can not intersect, fold or
shear. Moreover, deformations are de�ned locally and they can
vary across different areas of the ambient space. This makes it
possible to capture the variations in relative position between
separatestructures. However, using a single diffeomorphism,
one implicitly assumes that the relative position between
structuresin contactwith each other or, in practice, close to
each other, does not change across subjects. This implies that
a particular �ber bundle of the neural circuits should integrate
the same areas of the cortical surface and basal ganglia across
the whole population. This assumption precludes the study of
changes in structural connectivity which could be caused by
an abnormal brain development. In Fig.1, we present a toy
example composed of a template complex and a subject shape
complex characterized by a different structural connectivity. A
single diffeomorphism could not put into correspondence all
structures and capture the differences in structural connectivity.

Structural connectivity analysis is usually based on the parti-
tion of the cortical surface and sub-cortical nuclei in consistent
parcels across subjects [21]. Every parcel is considered as a
node of a graph and the number of streamlines connecting
two nodes (or other quantities such as the projected Frac-
tional Anisotropy) represents the weighted edge. Variability in
structural connectivity across subjects can be analysed in each
parcel independently or with indexes and methods from the
complex network theory [2], [22]. In both cases, the analysis
highly depends on the chosen parcellation scheme and it does
not take into consideration the morphological variability of
grey and white matter structures.

Fig. 1. Two complexes composed of a pseudo cortex, divided into black
and green gyrus, a blue sub-cortical nucleus and a red �ber bundle. A single
diffeomorphism could not put into correspondence all structures and capture
the differences in structural connectivity. The points within the violet circle in
the template complex would be matched either to the black gyrus of the subject
complex or to the red �ber bundle. A double diffeomorphism would �rst move
the �ber bundle from the left to the right gyrus and then it would change the
shape of all structures, producing an accurate matching and capturing also the
dissimilarities in structural connectivity.

B. Our contribution

In this paper, extending [23], we propose to join together
shapeandstructural connectivityanalysis into a uni�ed frame-
work based on adouble diffeomorphicatlas construction. The

template complex is warped towards every shape complex of
the population using a composition of two diffeomorphisms.
The �rst diffeomorphism acts only on the white matter of
the template complex, keeping �xed the grey matter. During
this transformation, the �ber bundles are repositioned with
respect to the grey matter structures, capturing the variations in
structural connectivity. The second diffeomorphism acts on the
whole template complex, namely on both the resulting white
matter and grey matter, bringing all structures of the template
complex into the subject's space. White matter tracts are re-
arranged by the �rst diffeomorphism so that the second one
can correctly put into correspondence all the components of
the template complex. The two diffeomorphisms are optimised
together minimising a single cost function. The data-term only
depends on the deformed template complex resulting from the
second diffeomorphism. Using again the example in Fig.1,
the �rst diffeomorphism would move the �ber bundle from
the left gyrus to the right one. The second diffeomorphism
would then modify the shape of all structures producing an
accurate matching. The �rst diffeomorphism would capture
the changes in structural connectivity, whereas the second
one would recover the global morphological differences. Both
diffeomorphisms are parametrized using control points as
proposed in [24]. The number of control points is �xed by
the user and their position is automatically adjusted during
the atlas construction. To note that, we estimate two distinct
deformation �elds (no composition is performed) and that
smoothness across white and grey matter is guaranteed by
the fact that they are jointly deformed only by the second
diffeomorphism.

Our approach is different from other multi-diffeomorphic
methods with sliding conditions such as [25]–[27]. These
methods aim to correctly register longitudinal scans or anatom-
ical complexes characterized by sliding regions. Every region
is smoothly andindependentlydeformed. Contrary to that,
we are interested in studying therelative variation of one
region, white matter, with respect to another one, grey matter.
The aforementioned sliding registrations, if applied to the
example shown in Fig.1, would result into two independent
deformations, one for the white matter and one for the grey
matter. It would be thus impossible to understand whether
the deformation of the white matter is due to a difference
in grey matter or to a variation in structural connectivity.
Furthermore, the proposed method differs from multi-scale
diffeomorphisms, such as [28], [29], which combine multiple
kernels at different scales to create one single diffeomorphic
deformation. In this case, the goal is mainly to improve the
registration accuracy and remove the scale tuning.

In order to deal with the considerable amount of streamlines
resulting from tractography algorithms, we rely on the parsi-
monious representation, based on weighted prototypes, intro-
duced in [30]. Both prototypes and streamlines are modelled as
weighted currents [30]. This model is well suited for any kind
of �ber bundle, both sheet-like [31] and tubular [12]. Further-
more, we propose to model grey matter structures as varifolds
[32], [33], the non-oriented extension of the framework of
currents [7], [34], or landmarks, if correspondences across
subjects are available. The atlas is estimated within a Bayesian
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framework based on a generative model similar to the one
proposed in [35]–[37] and adapted to double diffeomorphisms.

The paper is organized as follows. We �rst describe the
double diffeomorphic generative model and the Bayesian
framework for atlas construction. We initially model all shapes
with landmarks and then we describe how to integrate the
computational models of varifolds and weighted currents. We
conclude Sec.II showing how to compute the diffeomorphic
deformations and with a description of the optimization pro-
cedure. Eventually, we evaluate the discriminative power of
the proposed method to distinguish between a population
of controls and one of GTS patients. We also compare the
resulting classi�cation scores with the ones obtained using a
single diffeomorphism.

II. M ETHODS

A. Double Diffeomorphic Generative Model

The proposed atlas construction is based on a generative
statistical model. We assume that the population under study
is composed ofN subjects. Every subjecti is characterised
of M = M G + M W 3D discrete geometric representations
(points, polylines or polygon meshes) from both grey (M G )
and white matter (M W ). We de�ne the representation of
structurej belonging to subjecti asSij . Every subject shape
complex S i , de�ned for the moment in a generic way as
the ensemble of all meshesSij , is modelled as adouble
deformationof a common template complexT plus a residual
noise � i . Both T and � i are also de�ned as the ensembles
of the templatesTj and residuals� ij . The �rst deformation
� W acts only on the white matter structures of the template
complex:T W . The grey matter of the template complexT G is
not modi�ed. The second deformation� All deforms both the
resulting white matter� W (T W ) and T G . This formulation
derives from the forward model [35], [38], [39] where we
assume that all elements belong to an algebraic structure where
addition is de�ned. It results:

S i = � All
i

�
� W

i (T W ) [ T G
�

+ � i (1)

The two deformations,� W
i and � All

i , are two diffeomor-
phisms of the entire ambient space. They follow one another
creating a cascade of diffeomorphisms. White matter stream-
lines of T W are re-positioned by� W

i within the grey matter
T G , which is kept �xed. This can be seen as a relative change
of coordinates with respect toT G , which is considered as a
�xed reference frame common to all subjectsi . The entire
template complex, bothT G and� W

i (T W ), are then registered
to the subject shape complexS i by � All

i . This is instead
a global change of coordinates which brings the template
complex to the subject space. The two deformations,� W

i and
� All

i , capture the differences in structural connectivity and the
global morphological changes, common to both white and grey
matter, respectively. A diagram based on the toy example of
Fig. 1 can be found in the Appendix.

B. Bayesian Atlas Construction

The goal of the atlas construction is to estimate the tem-
plate complexT = T W [ T G , the variations in structural

connectivity within the population described by the ensemble
of �rst diffeomorphismsf � W

i g and the global morphological
variations captured by the second diffeomorphismsf � All

i g.
Both diffeomorphisms are parametrized by a set of parameters,
� W

i and � All
i respectively, speci�c to every subjecti . We

assume that these parameters follow a Gaussian distribution
with zero mean and covariance matrix equal to� W

� and
� All

� respectively:� W
i � N (0; � W

� ) and � All
i � N (0; � All

� ).
Moreover, as usual in statistical learning, we assume that the
residuals follow a Gaussian distribution centered at 0 and with
a scalar matrix as covariance matrix (� ij � N (0; � 2

j 1 � j )).
For now, we model all structures with landmarks, which are
3D points reproducible among subjects that establish a point-
correspondence. For every subject, structurej is modelled
using � j landmarks. Thus,1 � j is the identity matrix of
size � j . The norm of the difference between two meshes
is the L 2-norm (jj � jj 2, i.e. the sum of squared differences
between corresponding landmark pairs). The likelihoods of
the residuals of white (W ) and grey (G) matter structures
modelled as landmarks are:

p(� W
ij j� W

j ) / 1
j ( � W

j )2 j � j = 2 exp
h
� 1

2( � W
j )2 jjSij � � All

i

�
� W

i (TW
j )

�
jj2

2

i

p(� G
ij j� G

j ) / 1
j ( � G

j )2 j � j = 2 exp
h
� 1

2( � G
j )2 jjSij � � All

i

�
TG

j

�
jj2

2

i
(2)

where� G
j and� W

j refer to grey and white matter structures
respectively. In the following, we refer to� j when we make
no distinction between grey and white matter structures. In
Sec.II-C, we will make clear how to adapt these equations
when modeling a structure as weighted current or varifold.
Whatever the model employed, the variance only depends on
the structure-dependent parameter� 2

j . Moreover, from Eq.1
and Eq.2, it follows that all shapesSij follow a Gaussian
distribution: SW

ij � N (� All
i

�
� W

i (TW
j )

�
; (� W

j )21 � j ), SG
ij �

N (� All
i

�
TG

j

�
; (� G

j )21 � j ). The two covariance matrices of the
deformation parameters,� W

� and� All
� , are also considered as

parameters of the model. We can thus reformulate the goal of
the atlas construction as estimatingT , � W

� and � All
� , know-

ing the shape complexesf Sij g and assuming they follow a
Gaussian distribution. This can be achieved by maximizing the
joint posterior distribution ofT , � 2

j , � W
� and� All

� . Assuming
independence between all random variables and considering
f � W

i g and f � All
i g as hidden variables, it results:

f T � ; � W �
� ; � All �

� ; � 2�
j g = arg max

T ;� W
� ;� All

� ;� 2
j

(3)

NY

i

MY

j

Z Z
p(Tj ; � W

� ; � All
� ; � 2

j ; � W
i ; � All

i ; Sij )d� All
i d� W

i

Not using priors for� W
� , � All

� and � 2
j can produce degen-

erate estimates with small training data-sets, as demonstrated
in [35]. A possible solution is to regularize the estimates
using adapted versions of the inverse Wishart distributions
as priors � 2

j � W � 1(Pj ; wj ), � W
� � W � 1(PW

� ; wW
� ),

� All
� � W � 1(PAll

� ; wAll
� ):
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�

The scalarswj , Pj , wW
� and wAll

� are strictly positive
andPW

� andPAll
� are positive symmetric matrices. They are

hyper-parameters �xed by the user (see Sec.II-E to get more
insight). Since the maximization of Eq.3 is not tractable analyt-
ically, we use the EM (Expectation Maximization) algorithm
where we approximate the conditional distribution of the E
step with a Dirac distribution at its mode. See [35], [37] for
more information about the E and M step. Assuming that the
templateT has a non-informative prior distribution, it results:
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Eq. 5 represents the cost function of our algorithm. The
framed terms refer to the data-terms and to the regularity terms
of both diffeomorphisms respectively. The other terms are due
to the use of inverse Wishart prior distributions. The proposed
statistical framework is generic since it can be employed with
any shape model, provided it is possible to de�ne probability
density functions, and with any parametric deformation model.

C. Similarity metrics for shape complexes

When landmarks are not available, we propose to use two
correspondence-free shape metrics: varifolds [32], for grey
matter surfaces, and weighted currents [30], for white matter
streamlines. In both frameworks, meshes are embedded into a
in�nite-dimensional Hilbert space where the union of surfaces
or streamlines is equal to a sum of varifolds (V ) or weighted
currents (C) respectively. We de�ne Gaussian variables in
these two spaces similarly to [40] for the framework of
currents. Since they do not have probability density functions
(pdf) in in�nite dimension, we project both templatesT and

shapesS, modelled as varifolds or weighted currents, to �nite
dimensional spaces. For each structurej , we de�ne a regular
grid composed of� j points which covers the ambient space
and where pdf can be computed. The reader is referred to [41,
Chapter 4.2.3] for more details.

Varifolds - In the space of varifoldsW � , the inner-
product between two surfacesX and Y is: hVX ; VY i W � =
P L

l =1

P H
h=1 exp

�
�jj pl � qh jj 2

2
� 2

W

� �
n T

l u h

j n l j2 j u h j2

� 2
jnl j2juh j2 where

nl (resp.uh ) is the normal ofX (resp.Y ) at pointpl (resp.qh ).
The only user-de�ned parameter is the kernel bandwidth� W .
The distance betweenVX andVY is: jjVX � VY jj2

W � =hVX �
VY ; VX � VY i W � . Two important characteristics of this metric
are: the absence of correspondences and the invariance to a
change of orientation of some normals of the surfaces. For
more information, the user is referred to [32].

Weighted currents- The inner product between two oriented
3D polygonal curves,A and B , modelled as weighted
currents and composed ofG and F segments respectively,
is: hCA ; CB i Q � =

P G
g=1

P F
f =1 exp

�
�jj x g � y f jj 2

2
� 2

g

�
� T

g � f

exp
�

�jj f a � t a jj 2
2

� 2
a

�
exp

�
�jj f b � t b jj 2

2
� 2

b

�
where Q� indicates the

space of weighted currents,xg and � g (resp.yf and � f ) are
the centre and tangent vector of segmentg (resp.f ). The two
3D vectorsf a and f b (resp. ta and tb) are the coordinates
of the end-points of the curveA (resp.B ). Two curves are
considered similar if their pathways are alike, as in usual
currents [39], but also if their endpoints are close to each
other. The inner product is parametrised by three user-de�ned
bandwidths:� g, � a , � b. The distance betweenCA and CB

is de�ned as:jjCA � CB jj2
Q � =hCA � CB ; CA � CB i Q � . As

usual currents, curves need to have a consistent orientation.
This can be achieved by tracing all streamlines of a bundle
from one ROI (Region Of Interest) to another one, as it is the
case in this paper. For more details, please see [30].

Weighted prototypes- We approximate white matter �ber
bundles with a parsimonious representation of weighted
streamlines prototypes. Prototypes are chosen among the
streamlines by minimizing an approximation error based on
the metric of weighted currents. Every prototype represents
an ensemble of streamlines which share similar endpoints
and pathway. The weight of the prototype is related to the
number of streamlines approximated. An outlier detection and
removal step is also performed during the algorithm. This
approximation preserves the global shape of the bundle and
its structural connectivity, which is fundamental for the scope
of this paper. For more information the user is referred to [30].

D. Diffeomorphic deformations

We de�ne here how to compute the diffeomorphic de-
formations of the template complex. Our approach relies
on the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) framework based on the control point formulation
presented in [24]. For every subjecti , both � W

i and � All
i

are de�ned as the last deformations of two �ows of diffeo-
morphismsf � W

it gt 2 [0;1] and f � All
it gt 2 [0;1] . Calling � i (x ; t) =

� it (x ) = x i (t) the position of a point at timet which was
located inx at time t = 0 , each �ow is built by integrating:
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@�i (x ;t )
@t = vi (� i (x ; t); t) = vi (x i (t); t) over t 2 [0; 1] where

vi (x i (t); t) is a time-varying vector �eld representing the in-
stantaneous velocity of a point located inx i (t) at timet. Both
vector �elds vAll

i andvW
i belong to the same RKHSD with

Gaussian kernelK D . They are de�ned by two different sets
of 3D control points,cAll andcW , shared among all subjects,
and by two distinct sets of 3D vectors, called momenta,� All

i
and � W

i linked to the control points and speci�c to each
subject i : vAll

i (x i (t); t) = K D (x i (t); cAll (t)) � All
i (t) and

vW
it (x i (t)) = K D (x i (t); cW (t)) � W

i (t), where x i (0) = x
and K D (x i (t); c(t)) represents a block matrix of Gaussian
kernels with an equal �xed bandwidth for bothvAll

i andvW
i .

The deformation of every pointx in the ambient space depends
on its initial position att = 0 and on the evolution of the
systemL All

i (t) = f cAll (t); � All
i (t)g if the point belongs to the

grey matter, and on both systemsL W
i (t) = f cW (t); � W

i (t)g
and L All

i (t) if the point belongs to the white matter. At
t = 0 the deformations� W

i 0 and� All
i 0 are equal to the identity

transformations. For both systems, the path from� All
i 0 (resp.

� W
i 0 ) to � All

i 1 (resp. � W
i 1 ), the latter being the deformation

of interest, is chosen as the geodesic one, which means the
one that minimizes the total kinetic energy along the path:R1

0 jj vAll
it jj2

D (resp.
R1

0 jj vW
it jj2

D ). It has been shown in [20]
that the extremal paths are such that both systemsL W

i (t) and
L All

i (t) satisfy:

_ci (t) = K D (ci (t); ci (t)) � i (t) = F c(ci (t); � i (t))

_� i (t) = � � i (t)T � i (t)r 1K D (ci (t); ci (t)) = F � (ci (t); � i (t))

s.t. ci (0) = c(0) = c0 , � i (0) = � i 0 (6)

which can be summarized as_L
All
i (t) = F (L All

i (t)) (resp.
_L

W
i (t) = F (L W

i (t)) ). The last diffeomorphisms� All
i 1 and� W

i 1
are completely parametrized by the initial conditions of the
systems:L All

i (0) = L All
i 0 = f cAll

0 ; � All
i 0 g (resp. L W

i (0) =
L W

i 0 = f cW
0 ; � W

i 0 g). Thus, in order to put into correspondence
the templateT with the subject complexS i , we deform only
the white matter of the templateT W integrating forward in
time �rst _L

W
i (t) and then also:

_T
W
i (t) = K D (T W

i (t); cW
i (t)) � W

i (t) = Z [T W
i (t); L W

i (t)]

s.t. T W
i (0) = T W

i 0 = T W (7)

The deformed white matter of the template� W
i 1 (T W ) =

T W
i 1 , together with the un-deformed grey matter of the tem-

plate T G = T G
i 0, constitute T All

i 0 = T W
i 1 [ T G

i 0. They
are deformed by the second diffeomorphism� All

i 1 computed
integrating forward in time �rst _L

All
i (t) and then:

_T
All
i (t) = K D (T All

i (t); cAll
i (t)) � All

i (t) = Z [T All
i (t); L All

i (t)]

s.t. T All
i (0) = T All

i 0 = T W
i 1 [ T G

i 0 (8)

A diagram of the double diffeomorphism is shown in Fig.2.

Fig. 2. Diagram of the template deformation based on the proposed double
diffeomorphism. We omit the subject indexi for clarity purpose.

E. Optimization procedure

The double diffeomorphism can be integrated in the pre-
viously presented Bayesian setting for atlas construction. The
two sets of initial control points and momenta,f cAll

0 ; f � All
i 0 gg

and f cW
0 ; f � W

i 0 gg, represent the deformation parameters
which warp the templateT towards the subject complex
S i . Initial control points, cAll

0 and cW
0 , are considered as

parameters of the model since they are �xed effect common
to the entire population. Initial momenta,� All

i 0 and � W
i 0 , are

instead the subject-speci�c deformation parameters and, as
previously� All

i and� W
i , they follow a Gaussian distribution.

Assuming that all random variables are independent, the cost
function in Eq.5 does not change except for the framed terms
where we exchange the L2-norm with the one of varifolds
and weighted currents, for grey and white matter structures
respectively, and where we substitute� i with � i 0.

The variablesT , f � All
i 0 g, f � W

i 0 g, cAll
0 , cW

0 are minimised
using a gradient descent scheme. Instead,� All

� , � W
� andf � 2

j g
have closed form solutions due to the use of conjugate priors:

�̂ W
� =

P N
i =1

�
(� W

i 0 )( � W
i 0 )T

�
+ wW

� (PW
� )T

(wW
� + N )

(9)

�̂ All
� =

P N
i =1

�
(� All

i 0 )( � All
i 0 )T

�
+ wAll

� (PAll
� )T

(wAll
� + N )

(�̂ G
j )2 =

P N
i =1 jj � (Sij � � All

i 1 (TG
j )) jj2

W �
� j

+ wj Pj

(wj + N � j )

(�̂ W
j )2 =

P N
i =1 jj � (Sij � � All

i 1

�
� W

i 1 (TW
j )

�
)jj2

Q �
� j

+ wj Pj

(wj + N � j )

whereW �
� j

andQ�
� j

are the �nite dimensional spaces where
varifolds and weighted currents are projected to. For more
details about the projection� , the user is referred to [41,
Chapter 4.2.3.3].

The two covariance matriceŝ� W
� and �̂ All

� are equal to a
weighted sum between the sample covariance matrix of the
initial momenta and a prior. We choosePW

� =K � 1
D (cW

0 ; cW
0 )

andPAll
� =K � 1

D (cAll
0 ; cAll

0 ) which are block matrices of Gaus-
sian kernels between the initial control points. Note thatK D

is the kernel of the RKHS to which belong both vector
�elds vAll

i and vW
i . This choice is motivated by the fact

that, whenN << w W
� , it results �̂ W

� / K � 1
D (cW

0 ; cW
0 )

and, consequently, the regularity term in Eq.5 becomesP N
i =1 (� W

i 0 )T K D (cW
0 ; cW

0 )� W
i 0 =

P N
i =1 jj vW

i 0 jj2
D which is the

sum of the lengths of the geodesic paths over all subjects. This
kind of regularity term has been often employed in previous
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atlas construction methods not based on a statistical setting
[18]. The same reasoning is also valid for�̂ All

� .
The two other parameters,̂� G

j and �̂ W
j , are equal to a

weighted sum between the data-term of thej -th structure
and the priorPj . Each parameter balances the importance of
structurej with respect to the other structures and with respect
to the regularity terms of both diffeomorphisms. The prior
Pj imposes a minimum value tô� j which is useful to avoid
over�tting. In fact, without a prior, the minimisation process
might focus only on a structurek, reducing its residuals almost
to zero and ignoring the other structures. This would result in
�̂ 2

j ! 0 and therefore also tolog(�̂ 2
j ) ! -1 .

The gradients of the cost functionE in Eq.5 with respect to
TG

k , TW
k , � All

s0 , � W
s0 , cAll

0 , cW
0 , wherek ands are the indexes

for the structure and subject respectively, are equal to:

r T G
k

E =
NX

i =1

1
2� 2

k
r T G

k
D G

ik r cAll
0

E =
NX

i =1

MX

j =1

1
2� 2

j
r cAll

0
D ij

r T W
k

E =
NX

i =1

1
2� 2

k
r T W

k
D W

ik r cW
0

E =
NX

i =1

MX

j =1

1
2� 2

j
r cW

0
D ij

r � All
s 0

E =
MX

j =1

1
2� 2

j
r � All

s 0
D sj + (� All

� ) � 1� All
s0

r � W
s 0

E =
MX

j =1

1
2� 2

j
r � W

s 0
D sj + (� W

� ) � 1� W
s0 (10)

where D G
ij = jj � (Sij � � All

i 1 (TG
j )) jj2

W �
� j

and D W
ij =

jj � (Sij � � All
i 1

�
� W

i 1 (TW
j )

�
)jj2

Q �
� j

refer to the data terms of grey
and white matter structures respectively whereasD ij refers to
the data-term of any structure.

To calculate the gradients of the data termsf D ij g, we
need the deformed template complex at the end of the second
diffeomorphism for every subjecti and for all structures,
namely � All

i 1 (T G ) and � All
i 1

�
� W

i 1 (T W )
�

. First, we integrate

forward in time _L
W
i (t) = F (L W

i (t)) (Eq.6) and _T
W
i (t) =

Z [T W
i (t); L W

i (t)] (Eq.7). Then, we integrate_L
All
i (t) =

F (L All
i (t)) (Eq.6) and, using as initial valueT All

i (0) =
T W

i 1 [ T G
i 0, we integrate also_T

All
i (t) = Z [T All

i (t); L All
i (t)]

(Eq.8). After that, we can compute the data termD ij and its
gradient with respect to the vertices ofT All

i (1) = T All
i 1 . Using

the calculus of variations, this information is brought back
from t = 1 to t = 0 to update �rstL All

i (0) = f cAll
0 ; � All

i 0 g and
T G and thenL W

i (0) = f cW
0 ; � W

i 0 g andT W . The optimisation
is based on a set of adjoint equations describing the evolution
of four auxiliary variables� All

i ; � All
i = f � All

�i ; � All
ci g; � W

i ; � W
i =

f � W
�i ; � W

ci g:

_� All
i (t) = � (@T All

i
Z All

i (t))T � All
i (t) (11)

_� All
i (t) = � (@L All

i
Z All

i (t))T � All
i (t) + (12)

(dL All
i

F All
i (t))T � All

i (t)
_� W
i (t) = � (@T W

i
Z W

i (t))T � W
i (t) (13)

_� W
i (t) = � (@L W

i
Z W

i (t))T � W
i (t) + (14)

(dL W
i

F W
i (t))T � W

i (t)

s.t. � All
i (1) = r T All

i (1) D i , � W
i (1) = � All;W

i (0)

� All
i (1) =0 , � W

i (1) = 0

where Z All
i (t) = Z [T All

i (t); L All
i (t)] and Z W

i (t) =
Z [T W

i (t); L W
i (t)]. The size of� All

i (resp.� W
i ) and� All

i (resp.
� W

i ) are the same as the ones ofT (resp.T W ) andL All
i (resp.

L W
i ) respectively. We �rst integrate backward in time Eq.11

and Eq.12 obtaining� All
i (0) and� All

i (0) = f � All
�i (0); � All

ci (0)g.
Then, we use� All;W

i (0), which are the initial values of� All
i

relative to the white matter, as �nal values for� W
i and we

integrate backward in time Eq.13 and Eq.14 obtaining� W
i (0)

and� W
i (0) = f � W

�i (0); � W
ci (0)g. From this set of equations, we

can notice that the optimisation of the two diffeomorphisms is
linked by the constraint� W

i (1) = � All;W
i (0). The information

given byr T All
i (1) D i , whereD i = f D ij gj =1 ;:::;M , �ows from

the second diffeomorphism (All ) to the �rst one (W ) and
eventually it is used to update all parameters:

r T G E =
NX

i =1

� All;G
i (0) r T W E =

NX

i =1

� W
i (0)

r cAll
0

E =
NX

i =1

� All
ci (0) r cW

0
E =

NX

i =1

� W
ci (0)

r � All
s 0

E = � All
�s (0) + (� All

� ) � 1� All
s0

r � W
s 0

E = � W
�s (0) + (� W

� ) � 1� W
s0 (15)

where� All;G
i refers to the values of� All

i relative to the grey
matter structures. A diagram of the optimisation procedure is
shown in Fig.3. More details about the computations can be
found in the Appendix of [23].

Fig. 3. Diagram of the optimisation procedure. We omit the subject indexi
for clarity purpose.

F. Atlas Parameters Initialisation

Since we use a gradient descent scheme, we need to
initialise the atlas parameters. Control points of both diffeo-
morphisms are initialised as a regular lattice covering the
entire ambient space with an inter-points distance equal to
the bandwidth of the diffeomorphic kernelK D . Momenta are
initialised to zero. The template of surface meshes is initialised
as the average of the population when a vertex-correspondence
is available. Otherwise, we use a centred and scaled ellipsoid
as in [20]. For the template of �ber bundles, all subjects'
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bundles are �rst gathered together into a single bundle which
is then approximated as a set of weighted prototypes. The
weights of the prototypes are scaled so that the norm of the
template is equal to the average norm of the population.

III. E XPERIMENTS AND RESULTS

In this section, we �rst describe the dataset used in the
following experiments and some numerical aspects of the
proposed algorithm. Then, we use both a toy example and
real data to compare the registrations based on a single and
double diffeomorphism. After that, we present an explanatory
toy example where we show how one could use the proposed
double diffeomorphism to compare two groups of subjects.
Eventually, we assess the effectiveness of our algorithm by
showing that it better discriminates between controls and GTS
patients than a single diffeomorphism.

A. Materials

The dataset used in this paper contains 76 subjects: 27 con-
trols and 49 GTS patients divided in three sub-groups based on
their symptoms:ST=simple-tics (17 patients),CT=complex-
tics (15), OCD=complex-tics with Obsessive Compulsive
Disorders (12). Anatomical images are acquired using 3D
MR T1-w sequences with a voxel size of 1x1x1mm3. MR
diffusion weighted images are obtained with 50 gradient-
directions, a B-factor of 1000 and a voxel size of 2x2x2
mm3. Artefacts related to spike, motion, susceptibility and
eddy currents are corrected using Connectomist-2.0. Diffusion
and T1-w data are matched using a mutual information based
registration technique. In the experiments, we use the left
hemisphere of the cortical surface, left putamen and the �ber
bundles connecting them. For the selection of the tracts,
we use a speci�c technique conceived for the cortico-striatal
circuits explained in [2]. Cortical surfaces are segmented using
FreeSurfer v5.3 followed by a pipeline of BrainVisa v4.3.0
which produces a vertex-correspondence between subjects.
Putamens are segmented with FSL. Fiber bundles result from
a deterministic tractography algorithm (1 seed per voxel, SDT
model) available in Connectomist-2.0. See [2] for more details
about the data-set, pre-processing and tractography.

B. Numerical aspects

In the following experiments, cortical surfaces are mod-
elled with landmarks, putamens as varifolds with� W =3mm
and �ber bundles, approximated with weighted prototypes,
as weighted currents with� g=7mm, � a=10mm (cortex) and
� b=5mm (putamen). The bandwidths of both diffeomorphic
kernels are equal to 11mm, which produce 804 control points.
The maximum number of iterations fo the atlas construction is
120 and the computations are performed on a Intel Xeon, 32
cores, CPU E5-2650, 2.60GHz with a graphic card NVIDIA
Quadro 5000. The code is written in C++ and CUDA and it is
an extension of the freely available software suitedeformetrica
(www.deformetrica.org). The computational time for an atlas
with 10 subjects is about 37 hours. All shape complexes are
previously rigidly registered to a reference shape complex.

C. Toy example - registration

In Fig.4, we compare the registrations of a toy template
complex (blue) towards a toy subject complex (red) based
on a single (�rst row) and double diffeomorphism (second
row). Both complexes are composed of apseudocortical
surface, sub-cortical structure and �ber bundle linking them,
all modelled as varifolds. We use the same parameters for
the two deformation schemes. Grey matter components have
a similar shape but they do not share the same structural
connectivity. As it is possible to notice, a single diffeomor-
phism can not correctly put into correspondence all structures.
On the contrary, a double diffeomorphism makes �rst the
�ber bundle move, keeping �xed the grey matter structures,
and then it accurately registers all structures with the second
diffeomorphism. In this way, it is possible to disentangle
the differences in structural connectivity, captured by the
�rst diffeomorphism, from the global morphological changes,
captured by the second diffeomorphism.

Fig. 4. Registration between a toy-template complex (blue) and a toy-subject
complex (red) using either a single or a double diffeomorphism. Black arrows
indicate the areas where only the double diffeomorphism can correctly put into
correspondence all structures.

D. Real data - registration

In Fig.5, we compare the results of a single and double
diffeomorphism using real data. We match a control subject to
a Gilles de la Tourette patient. A double diffeomorphism better
aligns both white and grey matter (see Fig. 4 in the Appendix)
than a single diffeomorphism, capturing at the same time the
variations in structural connectivity (i.e.� W ).

E. Toy Example - group differences

We present here an explanatory toy example of the pro-
posed atlas construction procedure based on a toy data-set
constituted of 6 pseudo shape complexes representing two
different populations (3 controls and 3 GTS patients). They
are shown in Fig.6 where it is possible to notice that the
complexes of population A have a different organization and
shape with respect to the ones of population B. The Bayesian
atlas construction results in a �nal template complex and in
the covariance matrices of the momenta of both diffeomor-
phisms. The template shows the characteristics common to
both populations. The two covariance matrices describe the
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Fig. 5. Comparison between a single and double diffeomorphic registration
using real data. Source and target bundles belong to a control and a GTS
patient respectively. Black arrows indicate the areas where a single diffeo-
morphism can not correctly match the �ber bundles.

organisationaland globalmorphologicalvariability within the
6 subjects respectively. We compute a Principal Component
Analysis (PCA) for each covariance matrix and we deform
the �nal template complex at� � (standard deviation) along
the �rst modes of both PCAs. The main variations captured
by the �rst diffeomorphismsf � W

i g, which affect only the
�ber bundles, explain the principal differences in structural
connectivity between the two populations. The positions of
the �ber bundle at� � and + � are the ones of population
A and B respectively. The �rst mode of the second PCA
describes instead the main global morphological variations. We
can notice that the grey matter structures at� � and+ � repro-
duce the morphological characteristics of population A and B
respectively. This example shows the exploratory potential of
the proposed method and it is based on a simple toy data-set
where the intra-group variations are de�nitely smaller than the
inter-group ones. This is probably exaggerated compared to a
real-data example. Nevertheless, given the important structural
changes that are likely to occur in syndromes such as GTS, we
may assume that controls and patients create distinct clusters.
In the next section, we will exploit this hypothesis by looking
for the discriminant hyperplane that separates the two groups.

F. Real data - Classi�cation

Here, we use the estimated initial momenta of the two
diffeomorphisms,� W

i 0 and � All
i 0 , as features to discriminate

between controls and patients. Then, we compare the resulting
classi�cation scores with the ones obtained using the initial
momenta of a single diffeomorphism.

First of all, we build an atlas with 10 subjects (5 controls
and 5 patients). Since we use subjects from both groups, the
�nal template should be positioned in between them in the
shape space. The estimated template is successively warped
to all the remaining J = 66 subjects by minimizing a cost
function similar to Eq.5 where we do not sum over all subjects
i and where we �x the controls points,� W

� , � All
� and� 2

j to the
values estimated during the initial atlas. The resulting initial
momenta,� All

i 0 and � W
i 0 , represent the input features of the

Fig. 6. At the top, we present two toy populations characterised by a different
cortex, sub-cortical nucleus and structural connectivity. In the middle, we show
the initial template. The �nal estimated template is presented at the bottom.
It is deformed at� � along the �rst modes of two PCA computed with� W

�
and � All

� . The endpoints of the two modes, at� � and + � , reproduce the
structural connectivity and the morphological characteristics of the two groups
respectively.

classi�er. We employ a Linear Discriminant Analysis (LDA)
with a leave-one-out cross validation strategy. We assume that
the class-conditional densities of the initial momenta are Gaus-
sian with a covariance matrix equal to the one estimated during
the initial atlas. This can be seen as a regularised LDA since
the covariance matrix is estimated as in Eq.9. We separately
test the discriminative power of the two diffeomorphisms by
using either only� All

i 0 or � W
i 0 . Moreover, we compare these

results with the ones obtained using the initial momenta of a
single diffeomorphism where we employ either only the �ber
bundles or all structures from both grey and white matter.
Resulting sensibility, sensitivity and balanced accuracy are
shown in Table I where we separately use either all patients
or each sub-group alone. We assess the statistical signi�cance
of the classi�cation scores with a randomization test (1000
permutations). It is possible to notice that the classi�cation
scores based on the �rst (white) diffeomorphism, especially
for the most severe patients (CT and OCD), are de�nitely
better than using a single diffeomorphism.

Due to the variability of the results, we also investigate the
sampling distributions of sensitivity, sensibility and balanced
accuracy within the group of patients with a bootstrap analysis.
More precisely, we perform it on the top of the previous leave-
one-out cross validation classi�cation. At each iteration, we
pick a random sample (with replacement) of the 44 patients
which is classi�ed, together with the 22 controls, using LDA.
We repeat this process 1000 times. The histograms of balanced
accuracy for the double and single diffeomorphic approach
are shown in Fig.7. The average sensitivity and speci�city is
respectively:74% and 51% for the global diffeomorphism,
73% and 64% for the white diffeomorphism,64% and 48%
for the single diffeomorphism, considering both white and grey
matter, and70%and52%for the single diffeomorphism, using
only the �ber bundles.
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TABLE I
CLASSIFICATIONS SCORES

Single Diffeomorphism - White and Grey Matter
Sensitivity % Speci�city % Balanced Accuracy %

ST 12 36 24
CT 33 64 48

OCD 58 59 59
CT+OCD 52 64 58

ST+CT+OCD 54 41 48
Single Diffeomorphism - Only White Matter

ST 53 54 54
CT 33 45 39

OCD 50 54 52
CT+OCD 59 59 59

ST+CT+OCD 66 45 56
Double Diffeomorphism - First (white) diffeomorphism

ST 47 59 53
CT 67 77 72*

OCD 50 82 66*
CT+OCD 74 64 69*

ST+CT+OCD 73 41 57
Double Diffeomorphism - Second (global) diffeomorphism
ST 29 50 40
CT 40 45 43

OCD 50 68 59
CT+OCD 52 68 60

ST+CT+OCD 70 50 60
* : p-value< 0.05

Fig. 7. Bootstrap analysis of 1000 iterations performed on the top of a LDA
with a leave-one-out cross validation. Each sample of the histogram represents
the classi�cation score obtained using 44 patients chosen randomly (with
replacement) among all sub-groups and 22 �xed controls. Red and green
lines show the average and the 95% con�dence interval respectively.

G. Most discriminative deformation axis

Eventually, we also compute the organizational and morpho-
logical characteristics proper to each group by deforming the
template complex along the most discriminative deformation
axis. We estimate the best linear decision boundary (i.e.
� T w � � b� ) with all the J test subjects (22 controls and

44 patients) using either� All
i 0 or � W

i 0 . The typical con�g-
urations of patients and controls are found by deforming
the template complex at� � w� and � + w� respectively,
where � = 1

2 (� c + � p) and jjw� jj = jj � c � � p jj with � c

and � p equal to the averages of initial momenta of controls
and patients respectively. In Fig. 8, we compare the typical
structural connectivity of the two groups. The main differences
are in the supplementary motor, premotor, superior frontal
areas, insula and in the dorsal and ventro-lateral part of the
putamen. These results are in line with those reported in the
literature [2]. In Fig. 9, we compare the typical grey matter
con�gurations of controls and patients. In this case, there is
mainly a compression in the premotor and frontal area of
the cortex, insula and occipital lobe. About the putamen, the
main variations are in the fronto-dorsal and posterio-ventral
areas. In Fig. 5 of the Appendix, we show for comparison
the main variations in structural connectivity and morphology
only within the population of controls.

Fig. 8. Typical structural connectivity of controls and patients obtained
by deforming the �ber bundle of the template complex along the most
discriminative deformation axis in the space of the initial momenta of the �rst
diffeomorphism� W

i 0 . Grey matter structures are kept �xed. Colours refer to
the density of the extremities of the �ber bundle onto the grey matter.

IV. D ISCUSSION ANDCONCLUSIONS

We presented a double-diffeomorphic mesh-based atlas con-
struction method. In contrast to standard single-diffeomorphic
registrations, the cascade of two diffeomorphisms can put
into correspondence anatomical complexes characterised by a
different structural connectivity. We showed that this approach
makes it possible tocharacterise, localise and quantify both
organisational and morphological pathological anomalies al-
tering grey and white matter structures.
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Fig. 9. Typical grey matter con�gurations for controls and patients. They
are obtained by deforming the grey matter structures of the template complex
along the most discriminative deformation axis in the space of the initial mo-
menta of the second diffeomorphism� All

i 0 . Colours refer to the displacement
of the con�guration of patients from the one of controls.

It is important to notice that it is fundamental to�rst
deform the white matter of the template complex andthen
the grey matter in order to retrieve the main variations in
structural connectivity. In fact, the �rst diffeomorphismsf � W

i g
are comparable across subjects since they are all computed
with respect to the same reference frame, namely the�xed
grey matter of the template complex. If one changed the
order, deforming �rst the grey matter and then the white
matter, it would not be possible to compare the variations
in structural connectivity since the reference frame, given by
the grey matter, would be different across subjects. A diagram
describing these two approaches can be found in the Appendix.

White matter �ber bundles are not constrained to always
stay in contact with the grey matter during the deformation. We
only enforce, by modelling streamlines as weighted currents,
that they will be close to the grey matterat the end of
the second diffeomorphism (See Eq.5). To note that, the
two diffeomorphisms are not explicitly weighted during the
optimization procedure in Eq.11 - 14. However, they both
depend on the gradients of the data-terms, and therefore on the
parameters of their corresponding computational models. Fur-
thermore, the precision and �exibility of each diffeomorphism
depend on its kernel bandwidth. In this work, since we aim
to correctly match both white and grey matter structures, we
implicitly gave the same weight to� W and� All by choosing
the same kernel bandwidth (i.e.K D ).

A question that naturally arises using the proposed method
is about the uniqueness of the decomposition into two diffeo-
morphisms in regions containing only white matter structures.
In these areas, �ber bundles could be deformed into two
different but equivalent ways. Using a kernel bandwidth of

11mm for the second diffeomorphism, the deformation of the
white matter is correlated to the one of the grey matter. This
makes the model identi�able with a unique decomposition of
the two diffeomorphisms all over the ambient space.

Both diffeomorphisms are parametrised with control points
which de�ne the dimension of the initial momenta. These
can be used as input features in a classi�cation task, as in
Sec.III-F. In [20], the authors used a single-diffeomorphic
atlas construction method similar to the one proposed here.
They demonstrated that the statistical performance of a linear
classi�er augments by decreasing the number of control points
until a certain threshold. It seems therefore reasonable to
expect the same behaviour for the proposed method. This
brings to another question which is how to choose the position
and number of the control points. A possible solution was
presented in [42]. The authors proposed to integrate in the
optimization the selection of the best control points using a
penalty similar to Group-Lasso. They started from a regular
grid which was trimmed by keeping only the control points
that participate to the deformations of all subjects. It would be
of interest to integrate this approach to the proposed model.

Another interesting extension might be the use of sparse
multi-scale diffeomorphisms such as in [28], [29]. This would
probably complicate the statistical analysis but it might also
reduce the computational time, using for instance a coarse-to-
�ne approach as in [29], remove the need for scale tuning of
K D , produce compact representations of deformation param-
eters at different scale and increase registration accuracy.

All experiments shown in this paper were based on a single
�ber bundle. However, the neural circuits of the brain are
composed of several �ber bundles which could be affected by
different pathological alterations. This means that every �ber
bundle should be deformed in an independent way with respect
to the others. The proposed approach would not be appropriate
since the �rst (white) diffeomorphism would act simultane-
ously on all �ber bundles. A possible solution would be to
substitute the �rst diffeomorphism withN diffeomorphisms,
where N would be equal to the number of �ber bundles.
Every bundle would be then independently deformed by a
diffeomorphism. In this way, we could capture the variations
in structural connectivity proper to each bundle and the global
morphological changes associated to the entire neural circuit.

In the proposed method, we assumed that the initial mo-
menta of the two diffeomorphisms are independent, that is to
say thatp(� All

i ; � W
i ) = p(� All

i )p(� W
i ), even if the update

rule for � All
i and � W

i are related as explained in Sec.II-E.
It would seem more reasonable to take that into account
by modelling directlyp(� All

i ; � W
i ) without the assumption

of independence. We could model, for instance, their joint
distribution as a single Gaussian distribution. However, the
statistical relationship between� All

i and � W
i is highly com-

plex since they are related by the linearised ODEs shown in
Sec.II-E and we have not found yet a satisfactory solution to
model their joint distribution. This is left as future work.

Nevertheless, we demonstrated that the proposed double
diffeomorphic approach captures useful and relevant informa-
tion since it better discriminates between controls and patients
than a single diffeomorphism. In particular, we observed that
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the information about structural connectivity might play an
important role in the characterisation of the pathophysiological
mechanisms underlying GTS.
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