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Abstract. Alzheimer’s disease (AD) is a fatal incurable disease leading to progressive neuron
destruction. AD is caused in part by the accumulation in the brain of A� monomers aggre-
gating into oligomers and �brils. Oligomers are amongst the most toxic structures as they
can interact with neurons via membrane receptors, including PrPc proteins. This interaction
leads to the misconformation of PrPc into pathogenic oligomeric prions, PrPol.
In this work, we develop a model describing in vitro A� polymerization process. We include
interactions between oligomers and PrPc, causing the misconformation of PrPc into PrPol.
The model consists of nine equations, including size structured transport equations, ordinary
di�erential equations and delayed di�erential equations. We analyse the well-posedness of the
model and prove the existence and uniqueness of solutions of our model using Schauder �xed
point theorem and Cauchy-Lipschitz theorem. Numerical simulations are also provided to give
an illustration of the pro�les that can be obtained with this model.

1. Introduction.

1.1. Alzheimer’s disease and interaction with prions. According to the World Alzheimer
Report, in 2015 more than 46 million people were living with dementia worldwide [?]. With 60%
to 80% dementia cases, Alzheimer’s disease (AD) is considered as the most common dementia
subtype [?]. AD is a fatal incurable disease leading to progressive neuron destruction, with
memory impairment, issues to perform daily tasks and behavior changes as main consequences.
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1.2. Alzheimer’s disease and prions formation modeling. There exists a variety of mathe-
matical models that study mechanisms of AD, especially aggregation of A� monomers and plaque
formation (see for instance [?, ?, ?, ?, ?]). These models are usually based on Becker-D�oring
equations [?] or Smoluchowski equations [?] to describe polymer lengthening.
Several mathematical models have also been developed to study PrPc proliferation only ([?, ?,
?, ?, ?], to cite a few). In these models, PrPc monomers are supposed to aggregate and form
PrPsc. PrPol are then able to split in two, increasing their number.
However, to the best of our knowledge, only one mathematical model integrates both A�
oligomers and PrPc. This model, proposed by Helal et al. [?], describes in vivo dynamics
of A� oligomers and PrPc. Authors assumed that A� oligomers can bind to PrPc, providing a
death signal to the neuron, or polymerize into �brils, leading to plaque formation. However they
did not consider the whole process of polymerization, the di�erent types of oligomers, nor PrPol

catalysis by A�.

1.3. Objectives. Our aim herein is to introduce and study a new model describing the evolution
of A� polymers and their interactions with PrPc. We study these mechanisms at the protein
level and in a in vitro context. We describe A� polymerization process and the role of A� in the
misconformation of PrPsc. We also distinguish A�-40 from A�-42, as they oligomerize in di�erent
ways [?]. Indeed, A�-42 monomers tend to aggregate faster than A�- 40 monomers and to form
larger polymers [?]. Moreover, presence of A�-42 polymers prevails in amyloid plaques, although
A�-42 monomer concentration is around 10% of A�-40 concentration [?], and that impacts the
emergence of AD. These are the reasons why we are interested in modeling distinctly the two
dynamics, with di�erent parameter values.
This paper is organized as follows. We �rst present the mathematical model proposed to describe
in vitro dynamics of A� and prions. We then investigate its well-posedness. Finally, we present
some numerical simulations and discuss our results.

2. Mathematical modeling. We choose to build our model in an in vitro context, as, to the
best of our knowledge, only in vitro data seem to be available. And so, to obtain a consistent
qualitative behavior in a �rst step, then to quantitatively estimate parameters, we decide to
study only in vitro mechanisms. We therefore consider no source term of monomers or prions
and no degradation of any proteins involved either. We study evolution and impact of A� seeded
at time t = 0 in an environment containing PrPc.
A�-40 (respectively A�-42) monomers are able to aggregate to form small polymers [?] that
can polymerize and depolymerize into bigger structures, by attaching or loosing one monomer.
These structures as referred to as A�-40 (respectively A�-42) proto-oligomers. Once these
proto-oligomers reach a maximal size x0, they are supposed to become stable structures called
oligomers. We also consider that A�-40 (respectively A�-42) monomers can form A�-40 (respec-
tively A�-42) �brils in addition to proto-oligomers. These �brils can polymerize and depoly-
merize, and can be carried out to �-amyloid plaques ( in vivo by astrocytes). In our model, we
assume the existence of one big amyloid plaque in which �brils can still depolymerize. Therefore
monomers can be released from there. For both proto-oligomers and �brils, we assume that they
cannot be composed by a mix of A�-40 and A�-42 monomers.
Once they have reached the maximal size x0, A� oligomers are able to interact with prions PrPc,
and misfold them into PrPol . It requires a �xed duration � during which A� oligomer and PrPc

form a complex. Once the process ends, the oligomer is released and can bind to an other prion.
A� oligomers can also be carried out to �-amyloid plaque (in vivo by astrocytes). We assume
that they are gathered into the same plaque as �brils, with the di�erence that oligomers cannot
depolymerize.
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2.1. Notations. To study the evolution of di�erent concentrations, de�ned at time t > 0, let
us denote by:

- mi(t): concentration of A� monomers,
- ui(t; x): size density of A� proto-oligomers, with 0 6 x < x0,
- fi(t; x): size density of A� �brils, with x > 0,
- fa;i(t; x): size density of A� �brils inside A� plaque, with x > 0,
- u0

i (t): concentration of A� oligomers,
- ua;i(t): concentration of A� oligomers inside A� plaque,
- pc(t): concentration of PrPc,
- psc(t): concentration of PrPsc,
- Ci(t): concentration of complex A�/PrPc,

where i = 1 (respectively i = 2) stands for A�-40 (respectively A�-42). De�nitions of model
parameters (rates and growth velocities) are reported in Table 1.

Parameter/
Variable De�nition
t Time
x Size of �brils and proto-oligomers
x0 Maximal size of A� proto-oligomers
�(x) Spontaneous creation of proto-oligomers or �brils
vi(t; x) Polymerization/depolymerization rate of A� proto-oligomers
vf;i(t; x) Polymerization/depolymerization rate of A� �brils
gi(x) Rate at which A� monomers are added to proto-oligomers
gf;i(x) Rate at which A� monomers are added to �brils
bi Rate at which A� monomers are lost from proto-oligomers
bf;i Rate at which A� monomers are lost from �brils
ba;i(t) Rate of A� monomers escaping amyloid plaque

i Displacement rate of A� oligomers into the plaque

f;i Displacement rate of A� �brils into the plaque
�i Reaction rate between A� oligomers and PrPc

� Duration of PrPol catalysis, with A� oligomers
Table 1. Description of model parameters. Parameters are given for i = 1; 2, i = 1
corresponding to parameters related to A�-40.

Figure 1 displays a schematic representation of the whole model, with all interactions that are
taken into account between the di�erent structures.

2.2. Model for A�-40 and -42 polymerization. The �rst submodel describing the process
of A�-40 and A�-42 polymerization formally consists of six partial di�erential equations and
two ordinary di�erential equations (system (I)). As the equations are similar for both A�-40
and A�-42, we give the model for i = 1; 2, where i = 1 refers to the model for A�-40. Our
model is based on Lifshitz-Slyozov equations [?], describing the growth process of grains, with a
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Figure 1. Schematic representation of A� polymerization processes and interactions
with PrPc prions. All parameters, quantities and interactions are described in the
main text.

continuous size x.8
>>>>>>>>>><

>>>>>>>>>>:

@tui(t; x) + @x(vi(t; x)ui(t; x)) = �(x)mi(t); (1)
@tfi(t; x) + @x(vf;i(t; x)fi(t; x)) = �(x)mi(t)� 
f;ifi(t; x); (2)
@tfa;i(t; x)� ba;i(t)@xfa;i(t; x) = 
f;ifi(t; x); (3)

_mi(t) = �mi(t)
�Z +1

0
x�(x)dx+

Z x0

0
x�(x)dx+

Z +1

0
gf;i(x)fi(t; x)dx+

Z x0

0
gi(x)ui(t; x)dx

�

+ba;i(t)
Z +1

0
fa;i(t; x)dx+ bf;i

Z +1

0
fi(t; x)dx+ bi

Z x0

0
ui(t; x)dx; (4)

with t 2 [0;+1) and x 2 [0; x0) in equation (1) and x 2 [0;+1) in equations (2){(3).

Equations (1){(2) describe A� polymerization in proto-oligomers or �brils,
through standard size structured advection-reaction equations. As proposed in [?], the polymer-
ization rates are given by:

(
vi(t; x) = gi(x)mi(t)� bi; (t; x) 2 [0;+1)� [0;+1);
vf;i(t; x) = gf;i(x)mi(t)� bf;i; (t; x) 2 [0;+1)� [0;+1);

for i = 1; 2. We further assume that gi and gf;i are increasing functions of x. Thus, these
rates express a constant depolymerization of all polymers, while the polymerization process is
accelerated by a high concentration of monomers and facilitated for longer polymers. Further
assumptions on polymerization rates are given in Hypothesis 1.

Hypothesis 1. Polymerization rates
Rates vi and vf;i, for i = 1; 2, are required to satisfy the following conditions:
� bi > 0; bf;i > 0;
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� gi(0) = 0; gf;i(0) = 0; lim
x!+1

gi(x) = +1; lim
x!+1

gf;i(x) = +1;

� gi 2 C0([0;+1)) \ C1((0;+1)); gf;i 2 C0([0;+1)) \ C1((0;+1));
� for all "0 > 0; there is a constant Gi > 0; such as for all x > "0; 0 6 g0i(x) 6 Gi;
� for all "0 > 0; there is a constant Gf;i > 0; such as for all x > "0; 0 6 g0f;i(x) 6 Gf;i:

It is important to note that for each time t, there exists a critical size x(t) > 0, for which
polymerization rate is null, this critical size depending of the monomer concentration at time t.
Therefore, polymers of size smaller than x(t) depolymerize whereas polymers of size greater than
x(t) tend to attach more monomers. This phenomenon is referred to as Ostwald ripening [?].
Let us remark that x(t) can be greater than x0, and all proto-oligomers depolymerize in this case.

Finally, the term �(x) in equations (1){(2) represents the ability of monomers to spontaneously
aggregate in polymers smaller than x0, to start the polymerization process. In our model, this
function allows the creation of small proto-oligomers that could otherwise not exist due to the
depolymerization of small polymers.

Hypothesis 2. Function �
We assume that � is a positive function with compact support, de�ned for all x in [0;+1).
Moreover, the function � is in L1([0;+1); (1 + x)dx) \ L1([0;+1)).

Finally, equation (4), describing the evolution of A� monomers, is given by the gain and loss in
monomer from every �brils and proto-oligomers.

To complete the system, initial conditions are given by:
8
>><

>>:

ui(t = 0; x) = uini (x) > 0; x 2 [0; x0);
fi(t = 0; x) = f ini (x) > 0; x 2 [0;+1);
fa;i(t = 0; x) = f ina;i(x) > 0; x 2 [0;+1);
mi(0) = m0

i > 0:

(5)

We further assume that:

Hypothesis 3. Initial conditions
Initial condition uini is in L1([0; x0); (1 + x)dx) \ L1([0; x0)). Initial conditions f ini and f ina;i are
in L1(R+; (1 + x)dx) \ L1(R+).

We also need boundary conditions in x = x0, for proto-oligomers:

lim
x!x0

ui(t; x) = 0; if vi(t; x0) 6 0; i = 1; 2: (6)

This condition represents the fact that no oligomers of size x0 depolymerize, even if the rate
of polymerization is negative. From Hypothesis 1 let mention that no boundary condition is
required at x = 0, for the simple reason that the polymerization/depolymerization rates for
proto-oligomers and �brils are negative when x tends to 0.

2.3. Model for A�-Prion interaction. We now introduce the second submodel, describing
the interactions between A� oligomers and PrPc. Misconformation process of PrPc into PrPol

takes an incompressible duration, denoted � , during which A� oligomer and PrPc form a complex.
The oligomer is then released and can bind to another PrPc. This reaction leads to a system of
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delayed di�erential equations (system (II)):
8
>>>>>><

>>>>>>:

_u0
i (t) = Si(t)� 
iu0

i (t)� �ipc(t)u
0
i (t) + �ipc(t� �)u0

i (t� �); (7)
_ua;i(t) = 
iu0

i (t); (8)
_pc(t) = ��1pc(t)u0

1(t)� �2pc(t)u0
2(t); (9)

_psc(t) = �1pc(t� �)u0
1(t� �) + �2pc(t� �)u0

2(t� �); (10)
_Ci(t) = �ipc(t)u0

i (t)� �ipc(t� �)u0
i (t� �); (11)

for t 2 [�;+1), and i = 1; 2, i = 1 corresponding to equations for A�-40 .

Equation (7) describes the evolution of A�-40 and A�-42 oligomers, with time. The �rst term
Si(t) stands for the source term of oligomers. It represents the creation rate of A� oligomers
from proto-oligomers that reached the maximal size x0, and is the coupling with the previous
system. The last terms describe the interaction between A� oligomers and PrPc, leading to the
formation of PrPol after a duration of � units of time. Equation (8) describe the displacement of
A� oligomers into amyloid plaques. Finally, equations (9){(11) describe the evolution of prions
and complexes.

We assume that PrPc are the only prion proteins initially in the experiment, ie all initial condi-
tions at t = 0 are null, except for pc(0), which is equal to p0

c and is positive. Then, on [0; �), the
model is described using equations (7){(11), without any delayed part, as no PrPol and oligomer
are released from a complex during the �rst � units of time.

We now want to determine the expressions of S1(t) and S2(t), representing the source terms of
A�-40 and A�-42 oligomers, that is the coupling between the �rst submodel and this second
one. To do so, we use the property of mass conservation of the system. Indeed, as we are in an
in vitro context, the total mass Q(t) remains the same during the study (no source term and no
loss). We �rst compute the value of Q, denoting mp the size of a prion PrPc or PrPol :

Q(t) =
2X

i=1

�
mi(t) +

Z +1

0
xfi(t; x)dx+

Z +1

0
xfa;i(t; x)dx+

Z x0

0
xui(t; x)dx+ x0(u0

i (t) (12)

+ ua;i(t))
�

+mp(pc(t) + psc(t)) + (x0 +mp)(C1(t) + C2(t)):

We then compute _Q(t), using equations (1){(4) and (7){(11). We �nally obtain:

_Q(t) =x0

�
S1(t)� v1(t; x0) lim

x!x0
u1(t; x) + S2(t)� v2(t; x0) lim

x!x0
u2(t; x)

�
;

which must be equal to zero. This equation gives su�cient conditions on Si:

Si(t) = vi(t; x0) lim
x!x0

ui(t; x); i = 1; 2: (13)

This condition gives an expression for the source term of oligomers, which is exactly the 
ow
of proto-oligomers reaching the size x0. We can note that these source terms are non-negative,
thanks to condition (6), and continuous.

3. Main results.
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3.1. Existence of solutions for the system (I). To show the existence of solutions for the
system (I), we based our analysis on the notion of \mild" solutions by introducing the charac-
teristic curves associated to the kinetic rates at which monomers are added to or removal from
�brils or proto-oligomers. In the following de�nition we specify how \mild" solutions to equations
(1)-(3) should be understood:

De�nition 1. Mild solutions
Let L 2 (0;1]); T > 0; a; b : [0; T ] � [0; L) ! R and u0 : [0; L) ! R. We assume that a is a

continuous function and sati�es
� a is a C1 function in variable x on (0; L)
� a is a globally Lipschitz function in x uniformally in time t on ["0; L) 8 "0 2 (0; L)
� a(t; 0) < 0 8 t 2 [0; T ].

We also assume that b is a continuous function with respect to t and x.
Let consider the linear transport problem that consists to �nd a solution
U : [0; T ]� [0; L)! R such that

�
@tU + @x(aU) = b; (t; x) 2 [0; T ]� [0; L);
U(t = 0; x) = U0(x); x 2 [0; L) (14)

where in the case L <1 we add the following boundary condition:

U(t; L) = 0 if a(t; L) � 0: (15)

Let s! X(s; t; x) the characteristic curve de�ned for t 2 [0; T ] and x 2 (0; L) by
( d

ds
X(s; t; x) = a(s;X(s; t; x));

X(t; t; x) = x:
(16)

Considering a1(t; x) = @a
@x (t; x) the function de�ned in [0; T ] � (0; L), we denote by Vt;x the

largest interval of all s 2 [0; T ] such that X(s; t; x) 2 (0; L) 8 t 2 [0; T ]. We denote also
�s = �s(t; x) = inf Vt;x.
So, we call U to be a \mild" solution of (14)-(15) if for all (t; x) 2 [0; T ] � (0; L) we have that
the function s 2 Vt;x ! U(s;X(s; t; x)) satis�es the following system

8
>>><

>>>:

d
ds
U = �a(s;X(s; t; x))U + b(s;X(s; t; x)); 8 s 2 Vt;x;

U(0; X(0; t; x)) = U0(X(0; t; x)); if �s = 0;

U(�s;X(�s; t; x)) = 0; if �s > 0:

(17)

With the previous de�nition, one can remark that X(�s; t; x) is de�ned as the continuous extension
of X(s; t; x) at �s 2 V t;x. Such extension always exists.

Theorem 1. Existence of solutions for system (I)
Let Hypotheses 1, 2 and 3 hold. Then, for non-negative initial conditions, there exists T
in (0;+1) such that the system (I) has a unique non-negative \mild" solution (ui; fi; fa;i;mi)
de�ned for any t in [0; T ]. Moreover :
ui is in L1([0; T ]� [0; x0)) \ L1([0; T ];L1([0; x0); (1 + x)dx) \ C0([0; T ];L1([0; x0))),
fi and fa;i are in L1([0; T ]� R+) \ L1([0; T ];L1(R+; (1 + x)dx)) \ C0([0; T ];L1(R+))
and mi is in L1([0; T ]) \ C0([0; T ]).

Proof of existence of solutions follows an iterative process which is based on the fact that for
a given function ~mi, we can compute the mild solutions ~ui, ~fi and ~fa;i, i = 1; 2. Using these
mild solutions, we can now compute mi as the solution of equation (4). We build an application
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h that links each function ~mi to the function mi, and show that it admits a �xed point, using
Schauder �xed point theorem. This implies the existence of at least one solution of our model,
corresponding to this �xed point. The whole proof is presented in section 4.

3.2. Existence of solutions for the system (II). We now focus on the system of delayed
di�erential equations. We state our main results for this submodel.

Theorem 2. System (II) admits a unique solution on [0;+1). Besides, these solutions are
non-negative for non-negative initial conditions.

We �rst prove existence and uniqueness of solutions on [0; �) with Cauchy-Lipschitz theorem,
and extend this result to well-chosen time intervals, likewise for the non-negativity. The whole
proof is given in section 5.

4. System (I)-Proof of the main results.

4.1. Mild solutions.

Lemma 1. Let mi, i = 1; 2 be a continuous function de�ned for all t in [0; T ], with T > 0. We
assume that Hypotheses 1, 2 and 3 are satis�ed. Then, there exist unique mild solutions ui,
fi and fa;i, i = 1; 2 of equations (1)-(3) and they verify, for all t in [0; T ]:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Z x0

0
ui(t; x)dx 6 jjuini jjL1 + jj�jjL1

Z t

0
mi(s)ds;

Z x0

0
gi(x)ui(t; x)dx 6 jjgiuini jjL1 + jjgi�jjL1

Z t

0
mi(s)ds;

Z +1

0
fi(t; x)dx 6 jjf ini jjL1 + jj�jjL1

Z t

0
mi(s)ds;

Z +1

0
gf;i(x)fi(t; x)dx 6 jjgf;if ini jjL1 + jjgf;i�jjL1

Z t

0
mi(s)ds;

Z +1

0
fa;i(t; x)dx 6 jjf ina;ijjL1 + 
f;i(jjf ini jjL1 + jj�jjL1

Z t

0
mi(s)ds):

(18)

Proof. Equation (1):
For i = 1; 2, we rewrite as follow the equation (1) which models the dynamics of the two family
of proto-oligomers (A�-40 and A�-42)

8
>>><

>>>:

@ui
@t

+
@(viui)
@x

= �(x)mi(t); t 2 [0; T ]; x 2 (0; x0);
ui(0; x) = uin

i (x); x 2 (0; x0);
ui(t; x0) = 0; if vi(t; x0) � 0; t 2 [0; T ];
vi(t; x) = gi(x)mi(t)� b:

Using the method of characteristics as depicted in De�nition 1 of \mild" solution, we obtain

ui(t; x) = ~uini (�s;Xu;i(�s; t; x))Ju;i(�s; t; x) +
Z t

�s
�(Xu;i(s; t; x))mi(s)Ju;i(s; t; x)ds (19)

where ~uini (�; y) =
�

0 if � > 0;
uin
i (y) if � = 0 is de�ned in the set ft = 0g [ fx = x0g of the boundary

of the domain of (t; x), Ju;i(s; t; x) = exp(�
R t
s@xvi(�;Xu;i(�; t; x))d�) is the Jacobian and Xu;i

is the characteristic curve associated vi.

For �s, on can easily check, by using the argument that characteristics not cross each other,
that:
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i) For all �xed t 2 (0; T ], the function x 2 (0; x0) ! �s(t; x) is increasing. Therefore, for all
t 2 (0; T ] the following limit exists: lim

x!x0;x<x0
�s(t; x) and we denote it by �s0(t).

ii) For all �xed t 2 (0; T ], 8x1; x2 2 (0; x0) with x1 < x2 and 8� 2 Vt;x1 \ Vt;x2 we have
X(�; t; x1) < X(�; t; x2).

Lemma 2. With the additional assumption: uin
i continuous on [0; x0], one obtains for all t 2

(0; T ] the existence of the following limit lim
x!x0;x<x0

ui(t; x) that we denote by �ui(t).

The proof of the lemma 2 stands on two cases:
case 1:
Let assume �s0(t) = 0. So, we have �s(t; x) = 0 8x < x0 and the \mild" solution take the form

ui(t; x) = uini (Xu;i(0; t; x))Ju;i(0; t; x) +
Z t

0
�(Xu;i(s; t; x))mi(s)Ju;i(s; t; x)ds:

Let denote by X0
u;i(s; t) the limit lim

x!x0;x<x0
Xu;i(s; t; x) for all s 2 (0; t]. Using the dominated

convergence theorem of Lebesgue, one has the existence of the limit

lim
x!x0;x<x0

Ju;i(s; t; x) because
@vi
@x

is bounded on [0; T ]�["0; x0) for all " > 0 and the characteristic

Xu;i(�; t; x) is far from 0. We denote by J0
u;i this limit that means lim

x!x0;x<x0
Ju;i(s; t; x) =

J0
u;i(s; t).

We apply again the dominated convergence theorem of Lebesgue and deduce from the previous
form of the \mild solution" the existence of the limit

lim
x!x0;x<x0

ui(t; x) = uini (X0
u;i(0; t))J

0
u;i(0; t) +

Z t

0
�(X0

u;i(s; t))mi(s)J0
u;i(s; t)ds:

case 2:
Let assume �s0(t) > 0. For this case there exists xt 2 (0; x0) such that �s(t; x) > 0 8x 2 (xt; x0).
So we get the following expression for the \mild" solution

ui(t; x) =
Z t

�s(t;x)
�(Xu;i(s; t; x))mi(s)Ju;i(s; t; x)ds:

Let consider the sequence (xk)k2N ! x0, with xk < x0 and let prove the following convergence

ui(t; xk) �!
k!+1

Z t

�s0(t)
�(X0

u;i(s; t))mi(s)J0
u;i(s; t)ds: (20)

To prove the relation (20) we know that �s(t; xk) < �s0(t), so one can compute

jui(t; xk)�
Z t

�s0(t)
�(X0

u;i(s; t))mi(s)J0
u;i(s; t)dsj �

j
Z t

�s0(t)
mi(s)

�
�(Xu;i(s; t; xk))Ju;i(s; t; xk)� �(X0

u;i(s; t))J
0
u;i(s; t)

�
dsj

+j
Z �s0(t)

�s(t;xk )
�(Xu;i(s; t; xk))mi(s)Ju;i(s; t; xk)ds:j

The �rst term converge to 0 thanks to the dominated convergence theorem of Lebesgue and the
second term goes to 0 thanks to the fact that �s(t; xk) ! �s0(t) and that the term under the
integral is bounded. That achieves the proof of the convergence result.
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Lemma 3. Under assumptions of lemma 2, the limit �ui(t) = lim
x!x0;x<x0

ui(t; x) is a measurable

and bounded function which means �u(t) belongs to L1(0; T ).

Proof. In this proof we drop the index i for sake of simplicity.
Let �rst prove the measurability of �u(t) thanks to the fact that the function (t; x) 2 [0; T ] �
(0; x0)! �s(t; x) is measurable (see Annexe 1 for the proof).
Step 1:
Let’s prove that the \mild" solution given by (19) is a measurable function at (t; x). Let introduce
the sets A+ = f(t; x) : �s(t; x) > 0g and A0 = f(t; x) : �s(t; x) = 0g. We split the solution as follows
u = u1 + u2 where

u1(t; x) =
�

0 if (t; x) 2 A+;
uin(Xu(0; t; x))m(s)Ju(0; t; x) if (t; x) 2 A0;

(21)

u2(t; x) =
Z t

�s(t;x)
�(Xu(s; t; x))m(s)Ju(s; t; x)ds: (22)

From the measurability of �s we deduce that A+ and A0 are measurable. Knowing that (t; x)!
uin(Xu(0; t; x))Ju(0; t; x) is a continuous function on A0, so it is also measurable on A0. That
achieves the proof of the measurability for u1.
For the measurability of u2, we put
D =

�
(t; x; y) 2 R3 : (t; x) 2 [0; T ]� (0; x0); y 2 V t;x \ [0; t[

	
and introduce the function � : D !

R such that �(t; x; y) =
R t
y �(Xu(s; t; x))m(s)Ju(s; t; x)ds. Let check the continuity of � on D.

We consider the sequence (tk; xk; yk)k2N 2 D such that (tk; xk; yk) �!
k!+1

(t; x; y). The continuity

of � requires to prove the convergence to zero when k ! +1 of
Z T

0
�(Xu(s; tk; xk))m(s)Ju(s; tk; xk)I [yk ;tk ](s)� �(Xu(s; t; x))m(s)Ju(s; t; x)I [y;t](s)ds (23)

The relation of equation (23) is based on the dominated convergence theorem of
Lebesgue. The fact that the functions under the integral are bounded, it su�ces to prove that
8s 2 [0; T ]� fy; tg one obtains
�(Xu(s; tk; xk))m(s)Ju(s; tk; xk)I [yk ;tk ](s) �!

k!+1
�(Xu(s; t; x))m(s)Ju(s; t; x)I [y;t](s):

Case 1. Let assume s =2 (y; t). In this case the result is straightforward because all terms vanish
when k is high.
Case 2. Let assume s 2 (y; t). So, one need just to show
�(Xu(s; tk; xk))Ju(s; tk; xk) �!

k!+1
�(Xu(s; t; x))Ju(s; t; x). Knowing that yk ! y

and tk ! t then for k large enougth we have s 2 (yk; tk) that implies s belongs either to Vt;x
and to Vtk ;xk . So Xu(s; tk; xk) �!

k!+1
Xu(s; t; x) thanks to the continuity of the characteristic

equation.
It remains to prove the convergence of the sequence of Jacobian functions and for that we need
to prove the following resultZ T

s

�
@v
@x

(�;Xu(�; tk; xk))I [s;tk ](�)�
@v
@x

(�;Xu(�; t; x))I [s;t](�)
�
d�(�) �!

k!+1
0:

Here also we base our reasoning on the Lebesgue’s dominated convergence theorem and achieve
the proof by showing the pointwize convergence of the function under the previous integral for
almost every � 2 (s; t).
Subcase 2.1. If � =2 [s; t) then the result is straightforward because one obtains 0! 0.
Subcase 2.2. If � 2 [s; t) then the fact that � 2 [s; tk] for large k implies that one needs just

to prove
@v
@x

(�;Xu(�; tk; xk)) �!
k!+1

@v
@x

(�;Xu(�; t; x)). The proof stands on the fact that � is
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chosen in Vt;x \ Vtk ;xk that implies Xu(�; tk; xk) �!
k!+1

Xu(�; t; x). Then from the continuity of

@v
@x

with respect to Xu we achieve the proof of the continuity of � on D.

For the measurability of u2, one can write u2 = � �  with  : [0; T ] � (0; x0) ! R3 such that
 (t; x) = (t; x; �s(t; x)). We remark that g([0; T ]� (0; x0)) � D and is also measurable because �s
is measurable. Then from Rudin’book [Theorem I. 7, page 10] we obtain that u2 is a measurable
function. What achieves the Step 1 of the proof.
Step 2
Knowing that u(t; x) is measurable, we apply the Fubini theorem and deduce the existence
of B � (0; x0) with mes(B) = 0 (the measure of B) such that 8x 2 (0; x0) B the function
t 2 [0; T ] ! u(t; x) is measurable. So, 8k 2 N�;9 zk 2 (x0 � 1

k ; x0) such that t ! u(t; zk) is
a measurable function. We have zk ! x0 then we deduce from Lemma 2 that u(t; zk) �!

k!+1
�u(t) 8t 2 [0; T ]. Then �u(t) is measurable as limit of measurable sequence.
Now we easily see that u is bounded since we integrate bounded function on bounded intervals.
Then we have �u 2 L1(0; T ).

Using the change of variables y = Xu;i(0; t; x) in the expression (19), we deduce:
Z x0

0
ui(t; x)dx =

Z x0

0
~uini (Xu;i(0; t; x))Ju;i(0; t; x)dx

+
Z t

0

�
mi(s)

Z x0

0
�(Xu;i(s; t; x))Ju;i(s; t; x)dx

�
ds;

=
Z Xi (0;t;x0)

Xi (0;t;0)
~uini (y)dy +

Z t

0
mi(s)

Z Xi (s;t;x0)

Xi (s;t;0)
�(y)dyds;

6 jj~uini jjL1 + jj�jjL1

Z t

0
mi(s)ds:

Equation (2)
For i = 1; 2, characteristic curves associated to the growth velocity of �brils vf;i are de�ned by:

8
<

:

d
ds
Xf;i(s; t; x) = vf;i(s;Xf;i(s; t; x));

Xf;i(t; t; x) = x:
(24)

As done previously (here there is no maximal size for the �brils, L =1), we obtain the unique
mild solution:

fi(t; x) = f ini (Xf;i(0; t; x))e�
f;i tJf;i(0; t; x)

+
Z t

0
�(Xf;i(s; t; x))mi(s) e�
f;i (t�s)Jf;i(s; t; x)ds;

where Jf;i(s; t; x) = @xXf;i(s; t; x) = exp(�
R t
s @xvf;i(�;Xf;i(�; t; x))d�) is the Jacobian.

We then have:
Z +1

0
fi(t; x)dx 6

Z +1

Xf;i (0;t;0)
f ini (y)dy +

Z t

0

 

mi(s)
Z +1

Xf;i (s;t;0)
�(y)dy

!

ds:

The estimations are directly derived from this relation.

Equation (3)
For the last equations, characteristic curves are de�ned as follow, for i = 1; 2 (no maximal size:
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L = +1) 8
<

:

d
ds
Xfa ;i(s; t; x) = �ba;i(s);

Xfa ;i(t; t; x) = x:
(25)

So the unique mild solution reads

fa;i(t; x) = f ina;i(Xfa ;i(0; t; x)) + 
f;i
Z t

0
fi(s;Xfa ;i(s; t; x))ds;

which gives us the last estimation.

4.2. Proof of theorem 1. Let denote by �T the subset of C([0; T ]) such as:

�T = fmi 2 C0([0; T ]) = 0 6 mi(t) 6 MT and mi(0) = m0
i g; (26)

where T is in (0;+1) and MT is given by the subset above. We build the following mapping h:

h :

(
�T �! C0([0; T ])
~mi 7�! mi = h( ~mi);

(27)

with mi(t) the solution of the following equation:

_mi(t) = �mi(t) ~Ai(t) + ~Bi(t); i = 1; 2; (28)

where

~Ai(t) =
Z +1

0
x�(x)dx+

Z x0

0
x�(x)dx+

Z +1

0
gf;i(x) ~fi(t; x)dx+

Z x0

0
gi(x)~ui(t; x)dx; (29)

~Bi(t) = ba;i(t)
Z +1

0

~fa;i(t; x)dx+ bf;i
Z +1

0

~fi(t; x)dx+ bi
Z x0

0
~ui(t; x)dx; (30)

and functions (~ui; ~fi; ~fa;i) are solutions of the following system of PDE:
8
>><

>>:

@t~ui(t; x) + @x ((gi(x) ~mi(t)� bi)~ui(t; x)) = �(x) ~mi(t);

@t ~fi(t; x) + @x
�

(gf;i(x) ~mi(t)� bf;i) ~fi(t; x)
�

= �(x) ~mi(t)� 
f;i ~fi(t; x);

@t ~fa;i(t; x)� ba;i(t)@x ~fa;i(t; x) = 
f;i ~fi(t; x):

(31)

To prove the existence of solutions, we follow a Schauder �xed point theorem.

Lemma 4. If

0 < T <
1

q
jj�jjL1max

i
(ba;i
f;i + bf;i + bi)

; (32)

with ba;i = sup
[0;T ]

ba;i(t),

then h(�T ) is a subset of �T .

Proof. Let (~ui; ~fi; ~fa;i) be mild solutions of system (31). Then, for all t in [0; T ], ~Ai and ~Bi are
well-de�ned thanks to lemma 1. Their non-negativity is obvious as soon as initial data verify
condition (5).
Equation (28) is an ordinary di�erential equation and admits a continuous solution on [0; T ].
This implies that mi(t); i = 1; 2 is bounded by a constant MT , that can be computed.

mi(t) = mi(0) exp
�
�
Z t

0

~Ai(s)ds
�

+
Z t

0

~Bi(s) exp
�
�
Z t

s

~Ai(�)d�
�
ds:
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As function ~Ai is non-negative, we obtain

mi(t) 6 mi(0) +
Z t

0

~Bi(s)ds 6 mi(0) + T sup
[0;T ]

~Bi(t): (33)

We have to determine an upper bound for ~Bi(t), using equation (30):

~Bi(t) 6 sup
[0;T ]

�
ba;i(t)jj ~fa;i(t; :)jjL1

�
+ bf;i sup

[0;T ]
jj ~fi(t; :)jjL1 + bi sup

[0;T ]

�Z x0

0
~ui(t; x)dx

�
:

Estimations (18) provide the needed upper bounds. Moreover, ~mi is upper-bounded by MT for
all t lower than T , as it is in �T . We obtain:

mi(t) 6mi(0) + T
�
ba;ijjf ina;ijjL1 + (bf;i + ba;i
f;i)jjf ini jjL1 + bijjuini jjL1

�

+ jj�jjL1MTT 2(ba;i
f;i + bf;i + bi);

with ba;i = sup
[0;T ]

ba;i(t). This relation gives us the upper bound MT :

MT =max
i

�
mi(0) + T

�
ba;ijjf ina;ijjL1 + (bf;i + ba;i
fi )jjf

in
i jjL1 +

�
bijjuini jjL1

���

+MTT 2jj�jjL1max
i

(ba;i
f;i + bf;i + bi);

MT [1� T 2jj�jjL1max
i

(ba;i
f;i + bf;i + bi)] = max
i

�
mi(0) + Tba;ijjf ina;ijjL1

�

+ T
h
max
i

(bf;i + ba;i
f;i)jjf ini jjL1 + bijjuini jjL1

i
: (34)

Because T veri�es relation (32), we have:

1� T 2jj�jjL1max
i

(ba;i
f;i + bf;i + bi) > 0;

and the upper bound MT is well de�ned.

Lemma 5. h(�T ) is a relatively compact subspace of C0
b ([0; T ]).

Proof. We know that h(�T ) is a bounded subspace of C0
b ([0; T ]). To use Ascoli theorem, we

have to show the uniform equicontinuity of h. Let ~mi and ~ni be two elements of �T , such as
mi = h( ~mi) and ni = h(~ni). We want to show that there exists a constant K > 0 such as

kmi � nikL1 ([0;T ]) 6 Kk ~mi � ~nikL1 ([0;T ]); i = 1; 2:

To lighten notations, we drop out subscript i for now. We have

_m(t) = � ~Am(t)m(t) + ~Bm(t);

_n(t) = � ~An(t)n(t) + ~Bn(t);

where ~Am; ~Bm; ~An and ~Bn are obtained from system (31). We are interested in the following
quantity:

_m� _n = � ~Amm+ ~Bm + ~Ann� ~Bn:

We can transform this equality:

( _m� _n)(m� n) = (m� n)(� ~Amm+ ~Bm + ~Ann� ~Bn);

= �(m� n)2 ~An �m(m� n)( ~Am � ~An) + (m� n)( ~Bm � ~Bn):
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We thus have:
1
2
d
dt

(m� n)2 + (m� n)2 ~An = �m(m� n)( ~Am � ~An) + (m� n)( ~Bm � ~Bn);

1
2
d
dt

(m� n)2 6 �m(m� n)( ~Am � ~An) + (m� n)( ~Bm � ~Bn);

6 (m� n)2 +
1
2
M2
T ( ~Am � ~An)2 +

1
2

( ~Bm � ~Bn)2:

According to Gr�onwall’s inequality, we obtain:

(m(t)� n(t))2 6
Z t

0

�
M2
T ( ~Am(s)� ~An(s))2 + ( ~Bm(s)� ~Bn(s))2

�
e2(t�s)ds: (35)

Then; (m(t)� n(t))2 6 CT

 

M2
T sup

[0;T ]
( ~Am(t)� ~An(t))2 + sup

[0;T ]
( ~Bm(t)� ~Bn(t))2

!

; (36)

where CT > 0.

Lemma 6. There exists � and � real positive constants, such that

sup
[0;T ]

(j ~Am(t)� ~An(t)j) 6 �sup
[0;T ]

(j ~m(t)� ~n(t)j); (37)

sup
[0;T ]

(j ~Bm(t)� ~Bn(t)j) 6 � sup
[0;T ]

(j ~m(t)� ~n(t)j): (38)

Lemma 6 and relation (36) are su�cient to prove the uniform equicontinuity of h. Then Ascoli
theorem gives that h(�T ) is a relatively compact subspace of C0

b ([0; T ]). Proof of lemma 6 is
given in Appendix B.

Lemma 7. The application h de�ned in system (27) is a continuous application.

Proof. Let ( ~mi;n)n2N a sequence of elements from �T which tends to ~mi in �T . Is the limit of
h( ~mi;n) equal to h( ~mi) when n tends to in�nity?
We de�ne sequences (~ui;n)n2N, ( ~fi;n)n2N and ( ~fa;i;n)n2N, solutions of the following system of
equations:

8
>><

>>:

@t~ui;n(t; x) + @x ((gi(x) ~mi;n(t)� bi)~ui;n(t; x)) = �(x) ~mi;n(t);

@t ~fi;n(t; x) + @x
�

(gf;i(x) ~mi;n(t)� bf;i) ~fi;n(t; x)
�

= �(x) ~mi;n(t)� 
f;i ~fi;n(t; x);

@t ~fa;i;n(t; x)� ba;i(t)@x ~fa;i;n(t; x) = 
f;i ~fi;n(t; x):

These sequences are used to compute ~Ai;n and ~Bi;n such as:

_mi;n(t) = � ~Ai;n(t)mi;n(t) + ~Bi;n(t);

where mi;n = h( ~mi;n).
Likewise, we de�ne mi = h( ~mi);

_mi(t) = � ~Ai(t)mi(t) + ~Bi(t):

We proceed in the same way as in the proof of lemma 5 to obtain the following relation:

jmi;n(t)�mi(t)j2 6 CT (M2
T sup

[0;T ]
j ~Ai;n � ~Aij2 + sup

[0;T ]
j ~Bi;n � ~Bij2):

We then apply lemma 6 and show that if ~mi;n tends to ~mi when n tends to in�nity, then it
implies that h( ~mi;n) tends to h( ~mi), which obviously is in �T .



ALZHEIMER’S DISEASE AND PRION 15

Then, according to Schauder �xed point theorem, the application h admits a �xed point m�i =
h(m�i ). This implies that system (I) admits at least one solution.
Uniqueness: to prove uniqueness of the solution let us assume that (u1; f1; fa;1;m1) and
(u2; f2; fa;2;m2) are two solutions of the system (I) with the same initial data (uin; f in; f ina ;m0)
as in equation (5).
Using the same arguments as in the proof of lemma 5 (see equation (35)) one deduces

jm1(t)�m2(t)j2 6
Z t

0

�
M2
T jA1(s)�A2(s)j2 + jB1(s)� jB2(s)j2

�
e2(t�s)ds;

so,

jm1(t)�m2(t)j2 6 e2T
Z t

0

�
M2
T jA1(s)�A2(s)j2 + jB1(s)� jB2(s)j2

�
ds:

Now, using the result of lemma 6 to estimate the right hand side of the previous inequality, we
have

jm1(t)�m2(t)j2 6 e2T
Z t

0

�
M2
T�

2 + �2� jm1(s)�m2(s)j2ds

6 e2T �M2
T�

2 + �2�
Z t

0
jm1(s)�m2(s)j2ds:

So the Gr�onwall lemma gives

jm1(t)�m2(t)j2 6 jm1(0)�m2(0)j2e
Rt

0 e2T (M2
T �

2+�2)ds;

then using the fact that we have the same initial data, means m1(0) = m2(0) = m0, we deduce
m1(t) = m2(t) so f1 � f2, u1 � u2 and fa1 � fa2. That concludes the uniqueness of the solution
of (1){(4).

The non-negativity of the unique solution of (1){(4) is obvious as soon as initial data ful�ll
relation (5). The reader can easily check this point from explicit relations of mild solutions.

5. System (II)-Proof of the main results.

5.1. Existence and uniqueness of solutions. We �rst prove the existence of initial conditions
on [0; �), de�ned by the following system, with i = 1; 2:

8
>>>>>><

>>>>>>:

_’i(t) = Si(t)� 
i’i(t)� �i’i(t)’pc (t);
_’a;i(t) = 
i’i(t);
_’pc (t) = ��1’1(t)’pc t)� �2’2(t)’pc (t);
_’Ci (t) = �i’i(t)’pc (t);

’pc (0) = p0
c > 0; ’i(0) = ’a;i(0) = ’Ci (0) = 0

(39)

with Si given by (13).
Due to the non continuity of Si we can’t directly apply the Cauchy-Lipschitz theorem. So, in
order to prove the existence result we use the following change of unknown
 i(t) = ’i(t) �

R t
0 Si(�)d� which is relevant because Si 2 L1(0; T ) thanks to Lemma 3. We



16 CIUPERCA, DUMONT, LAKMECHE ET AL.

rewrite the system (39) as follow
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

_ i(t) = �
i i(t)� �i i(t)’pc (t)� �i
�Z t

0
Si(�)d�

�
’pc (t)� 
i

Z t

0
Si(�)d�;

_’a;i(t) = 
i i(t) + 
i
Z t

0
Si(�)d�;

_’pc (t) = ��1 1(t)’pc (t)� �2 2(t)’pc (t)�
�Z t

0

�
�1S1(�) + �2S2(�)

�
d�
�
’pc (t);

_’Ci (t) = �i i(t)’pc (t) + �i
�Z t

0
Si(�)d�

�
’pc (t);

’pc (0) = p0
c > 0;  i(0) = ’a;i(0) = ’Ci (0) = 0:

(40)

For the existence let us note the vector
X(t) = t( 1(t);  2(t); ’a;1(t); ’a;2(t); ’pc (t); ’C1(t); ’C2(t)) : We have to solve the following
Cauchy problem:

( _X(t) = F (t;X(t)); 0 6 t < �;

X(0) = t(0; 0; 0; 0; p0
c ; 0; 0);

(41)

where F (t;X) is de�ned by

F (t;X) =

0

BBBBBBBBB@

�
1X1 � �1X1X5 � �1(
R t

0 S1(�)d�)X5 � 
1
R t

0 S1(�)d�
�
2X2 � �2X2X5 � �2(

R t
0 S2(�)d�)X5 � 
2

R t
0 S2(�)d�


1X1 + 
1
R t

0 S1(�)d�

2X2 + 
2

R t
0 S2(�)d�

��1X1X5 � �2X2X5 � (
R t

0 (�1S1 + �2S2)(�)d�)X5

�1X1X5 + �1(
R t

0 S1(�)d�)X5

�2X2X5 + �2(
R t

0 S2(�)d�)X5

1

CCCCCCCCCA

=

0

BBBBBBBB@

F1(t;X)
F2(t;X)
F3(t;X)
F4(t;X)
F5(t;X)
F6(t;X)
F7(t;X)

1

CCCCCCCCA

:

Function F is continuous for t and Lipschitz with respect to the second variableX. Indeed compo-
nents Fi, i = 1 to 7, are continuously di�erentiable with respect to the second variable. Cauchy-
Lipschitz theorem gives the local existence and uniqueness of solution for problem (41). Thereby
we have the local existence of solution for the system (39). The global existence of the solution of
(39) on [0; �) requires the solution X(t) = t(’1(t); ’2(t); ’a;1(t); ’a;2(t); ’pc (t); ’C1(t); ’C2(t))
to be bounded and non-negative on [0; �). To prove that, let us start with the initial conditions
de�ned in system (39). We know that:

_’pc (t) = �(�1’1(t) + �2’2(t))’pc (t): (42)

This equation can easily be written as: ’pc (t) = p0
ce(�Rt

0(�1’1(s)+�2’2(s))ds), which is positive for
all t in [0; � ], as p0

c is greater than 0. In addition it is straightforward that ’pc (t) � p0
c .
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Then, for i = 1; 2, we have

_’i(t) = Si(t)� 
i’i(t)� �i’i(t)’pc (t) > �(
i + �i’pc (t))’i(t);

’i(t) > ’i(0) exp
�
�
Z t

0

i + �i’pc (s)ds

�
:

As ’i(0) = 0, we have the non-negativity of ’i(t) for t in [0; � ], and i = 1; 2. In addition, one
can deduce that ’(t) �

R �
0 Si(�)d�.

As ’1(t), ’2(t) and ’pc (t) are greater or equal to 0, for all t in [0; � ], functions ’a;i and ’Ci ; i =
1; 2 are increasing. This implies the non-negativity of these functions for all t in [0; � ], as ’a;i(0)
and ’Ci ; i = 1; 2 are null. One can easily veri�es that ’a;i and ’Ci ; i = 1; 2 are bounded. We
further de�ne X(�) as X(�) = lim

t!� �
X(t).

We prove existence and uniqueness of solutions of system (II) on [�;+1) with a method of steps.
We �rst study the system (II) on [�; 2�). We have to solve the following Cauchy problem:

( _Y (t) = G(t; Y (t); Y (t� �)); � 6 t < 2�;

Y (t) = ~X(t); 0 6 t 6 �;
(43)

where Y (t) = t�u0
1(t); u0

2(t); ua;1(t); ua;2(t); pc(t); psc(t); C1(t); C2(t)
�
,

~X(t) = t(’1(t); ’2(t); ’a;1(t); ’a;2(t); ’pc (t); 0; ’C1(t); ’C2(t)), and G is de�ned by:

G(t; Y; Z) =

0

BBBBBBBBBB@

S1(t)� 
1Y1 � �1Y1Y5 + �1Z1Z5
S2(t)� 
2Y2 � �2Y2Y5 + �2Z2Z5


1Y1

2Y2

��1Y1Y5 � �2Y2Y5
�1Z1Z5 + �2Z2Z5
�1Y1Y5 � �1Z1Z5
�2Y2Y5 � �2Y2Y5

1

CCCCCCCCCCA

:

Here, we perform again a change of variable as done previously in order to overcome the non
continuity of Si; i = 1; 2. With the same strategy, we can actually re-write system (43) as follow:

8
<

:

_~Y (t) = ~G(t; ~Y (t); e~X(t� �)) = e~G(t; ~Y (t)); � 6 t < 2�;

~Y (t) = e~X(t); 0 6 t < �

where ~Y (t) and e~X are respectively the same vectors as Y (t) and ~X(t) when replacing u0
i (t) by

u0
i (t)�

R t
� Si(�)d� (respectively ’i(t) by ’i(t)�

R t
� Si(�)d�).

As we did previously, we easily show that e~G is a continuous function, and continuously di�eren-
tiable with respect to the second variable. So, Cauchy-Lipschitz theorem gives the local existence
and uniqueness of solutions on [�; 2�) for the above problem. That implies the local existence of
solution to system (43). To prove that the solution is global we investigate again the positivity
and the �nite bounds of
Y (t) = t�u0

1(t); u0
2(t); ua;1(t); ua;2(t); pc(t); psc(t); C1(t); C2(t)

�
. For that, we begin with the rela-

tion

_pc(t) = �(�1u0
1(t) + �2u0

2(t))pc(t) =) pc(t) = pc(�) exp
�
�
Z t

�
�1u0

1(s) + �2u0
2(s)ds

�
;
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which is positive or null for all t in [�; 2�), as pc(�) = ’pc (�) is greater or equal to 0. For the
non-negativity of u0

i (t), i = 1; 2 for all t in [�;+2�), we have

_u0
i (t) > �
iu0

i (t)� �iu
0
i (t)pc(t) =) u0

i (t) > u0
i (�) exp

�
�
Z t

0
[
i + �ipc(s)]ds

�

that induces u0
i (t) � 0 for all t 2 (�; 2�) because u0

i (�) � 0.

Knowing that u0
i (t) � 0 it’s straightforward that pc(t) � ’pc (�) < +1.

For the upper bound of u0
i one can remark that

_u0
i (t) � Si(t) + �ipc(t � �)u0

i (t � �). Knowing that t 2 [�; 2�) that implies t� = t � � 2 [0; � ]
so u0

i (t� ) is known and correspond to the initial function ’i which is already bounded. Then a
simple integration on [�; t] with t < 2� achieves the proof that u0

i is bounded.
Given the non-negativity of pc, u0

1 and u0
2, we have, for all t in [�; 2�):

_ua;i(t) > 0 =) ua;i(t) > ua;i(�) > 0; i = 1; 2;
_psc(t) > 0 =) psc(t) > psc(�) = 0:

In addition, it is straightforward to verify that ua;i and psc are bounded.
We �nally consider functions Ci:

_Ci(t) = �iu0
i (t)pc(t)� �iu

0
i (t� �)pc(t� �);

Ci(t) = Ci(�) + �i
Z t

�
u0
i (s)pc(s)ds� �i

Z t

�
u0
i (s� �)pc(s� �)ds;

= �i
Z �

0
u0
i (s)pc(s)ds+ �i

Z t

�
u0
i (s)pc(s)ds� �i

Z t��

0
u0
i (s)pc(s)ds;

= �i
Z t

t��
u0
i (s)pc(s)ds; � � t < 2�:

Thanks to non-negativity of u0
i and pc, this proves that Ci, i = 1; 2 is non-negative on [�; 2�)

and obviously bounded.
That achieves the global existence solution on [�; 2�). We then iterate this process on intervals
[n�; (n+ 1)�); n � 2 and n 2 N�, and obtain existence and uniqueness of solutions of system (II)
on [0; T ].

6. Numerical simulations. In this section, we give illustrations of the dynamics of our model,
through numerical simulations, using only one type of A�. The numerical scheme is based on
a �nite volumes method for the size discretization of the advection-reaction equations combined
with a second order Runge-Kutta time discretization. We use the Van Leer 
ux limiters for the
advection part which is known to be of order two. So, the numerical solutions of our model are
TVD (Total Variation Diminishing) and of order two.
We neglect any di�culties due to truncation of the computational domain and introduce the
regular mesh with constant size step �x > 0: the cells are the intervals [xk�1; xk]; k 2 N with
xk = (k + 1=2)�x and x�1 = 0. We denote by Fnk on of the numerical unknown (it can be the
�brils or the proto-oligomers or the �brils inside the plaque). In the particular case where F = f ,
fnk is intended to be an approximation of 1

�x

R xk

xk � 1
f(t(n); z)dz, where t(0) = 0 < t(1) < � � � <

t(n) < t(n+1) de�nes the time-discretization, with possibly variable step �t(n) = t(n+1) � t(n)

in order to adapt the velocity time variation. For instance the numerical scheme for �brils
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size-density (see equation (2)) is de�ned by the relation

f�k = fnk + �t(n)
�
�
fluxnk+1 � flux

n
k

�x
+ �(i)mn � 
ffnk

�
; (44)

f (n+1)
k =

1
2

(fnk + f�k ) +
�t(n)

2

�
�
flux�k+1 � flux

�
k

�x
+ �(i)m� � 
ff�k

�
: (45)

The interface 
uxes, fluxnk = (vf)nk and flux�k = (v�f�)nk are computed by using Van Leer
approximation respectively with vf evaluated at time t(n) and at intermediate time t� thanks to
the second order Runge-Kutta method. Here m(n) and m� are the numerical approximations of
the monomers concentration respectively at �rst and second stage of the Runge-Kutta method
based on the equation (4).
For the 
ux with Van Leer limiter method, we compute:

if vnk > 0

8
>><

>>:

� =
fnk�1 � f

n
k�2

�+ fnk � f
n
k�1

;

f luxnk = vnk

�
fnk�1 + (fnk � f

n
k�1)�(�)

�
;

with � = 1:0e�12

else

8
>><

>>:

� =
fnk � f

n
k�1

�+ fnk+1 � f
n
k
;

f luxnk = vnk

�
fnk � (fnk � f

n
k�1)�

� 1
� + �1

��
;

with �1 = 1:0e�10

where the limiter function � given by �(�) =
1
2

�
j�j+ �
1 + j�j

�
.

We apply this scheme for the part of the model dealing with partial di�erential equations. For
the other part of the model dealing with ordinary di�erential equation, the approximation is
done thanks to the second order Runge-Kutta method. Boundaries conditions are taken into
account thanks to �ctious mesh added at the domain.
For the parameters of the simulations we consider the followings:
gf (x) = g(x) = x1=3, bf = ba = b = 1, 
f = 
 = � = 0:1, � = 3, x0 = 5. For all the
simulations we take initial conditions for the quantities involved in the prion catalysis process
as follow u0(t = 0) = 0, pc(t = 0) = 1, psc(t = 0) = 0, C(t = 0) = 0, ua(t = 0) = 0,

�(x) =

8
>><

>>:

exp
�

1
(x� 0:9)2 � 1:2

��
1�

x
2

�10

if 0 < x < 1:9;

0 elsewhere.

6.1. Results with free initial size-density repartition for �brils, proto-oligomers and
plaque. We �rst consider the case where there are only
A� monomers and prions PrPc initially, which corresponds to what can be done experimentally.
In terms of initial conditions, we therefore have: f in(x) = 0, f ina (x) = 0 and uin(x) = 0. Figure 2
displays the evolution in time of the size density repartition of �brils, proto-oligomers and �brils
in plaque, as well as the evolution of the total mass, which remains constant as expected. One
can observe the creation of �brils and proto-oligomers is only due to function �, which allows to
create small polymers. In this case, there are very few polymers with a large size. Evolutions of
concentration of A� monomers, oligomers, oligomers in plaque, PrPc, PrPol and complexes are
presented in Figure 3. One can note that, because there is no polymer initially, few oligomers
are created and thus, the emergence of PrPol prions remains quite slow.
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Figure 2. Evolution of size density repartition of �brils f(t; x), proto-oligomers u(t; x)
and �brils in plaque fa (t; x) for di�erent times (t = 10; 20; 30; 40). The last �gure
displays the evolution of the total mass.

6.2. Results with gaussian initial distribution for �brils,
proto-oligomers and plaque. We now assume that proto-oligomers and �brils are present
initially with monomers and PrPc. Initial conditions are given by:

f in(x) =

(
exp(� 5(x�1:5)2

2 )
p

0:4�
; uin(x) =

8
>><

>>:

exp(� 5(x�1)2

2 )
p

0:4�
if 1 � x � x0;

0 elsewhere;

f ina (x) =

(
exp(� 5(x�1:75)2

2 )
p

0:4�
:

Figure 4 displays the evolutions of monomer concentration, oligomers, oligomers in plaque, prions
PrPc and PrPol and complexes. As expected, the total mass remains constant.



ALZHEIMER’S DISEASE AND PRION 21

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

0 5 10 15 20 25 30 35 40
t

monomersm(t)

0

5e-05

0.0001

0.00015

0.0002

0.00025

0 5 10 15 20 25 30 35 40
t

oligomersu0(t)

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 5 10 15 20 25 30 35 40
t

oligomers-plaqueua(t)

0.9996

0.99965

0.9997

0.99975

0.9998

0.99985

0.9999

0.99995

1

0 5 10 15 20 25 30 35 40
t

PrPc prion pc(t)

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0 5 10 15 20 25 30 35 40
t

PrPol prion pol(t)

0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

0 5 10 15 20 25 30 35 40
t

A� /PrP c C(t)

Figure 3. Evolution with time of A� monomers, A� oligomers , oligomers in plaque,
prions PrPc, prions PrPscand complexes, with only monomers and PrPc initially.

In a �rst time we observe an increase in monomers, meaning that proto-oligomers and �brils
initially depolymerize. Then monomer concentration decreases, which corresponds to the forma-
tion of larger polymers. Oligomers appear after a certain time, and their concentration decreases
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Figure 4. Time evolution of the concentrations of A� monomers, oligomers, oligomers
in plaque, PrPc and PrPsc, A�/ PrPc complexes and total mass.

after a while, meaning that proto-oligomers do not reach the size x0. With the increase of A�
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oligomers, we notice the emergence of A�/ PrPc complexes and of PrPsc.

Figures 5 and 6 display the evolution of size density repartition of �brils f(t; x), proto-oligomers
u(t; x) and �brils in plaque fa(t; x) for given times. One observes that �brils become larger with
time, but after a certain time there are more small �brils due to the spontaneous term � than
large ones. Likewise, because �brils in plaque only depolymerize, we notice a larger concentration
of small ones. For proto-oligomers, we observe the impact of � function as small proto-oligomers
rapidly appear. Some proto-oligomers �nally reach the maximal size x0 and become oligomers.

7. Discussion. The role of A� oligomers and PrPc prions in Alzheimer’s disease remains to
be fully understood. Recent evidence suggests that A� oligomers can interact with PrPc to
induce cytotoxic damages to neurons, increasing their apoptosis. Moreover, this interaction could
misfold PrPc into pathogenic prions PrPsc, potentially leading to the emergence of prion diseases
such as Creutzfeldt-Jakob disease. Mathematical modeling can help to qualitatively explain
polymerization kinetics and evolution of polymer length that are involved in the emergence of
AD.
In this work, we propose a mathematical model to describe the polymerization of A� monomers,
and the interactions between A� oligomers and PrPsc. Polymerization process is modeled with
partial di�erential equations, based on Lifshitz-Slyozov equations [?]. One can note that in our
model, we study the evolution of three di�erent species (proto-oligomers, �brils and �brils in
plaque) through advection-reaction equations, making the analysis more complex. PrPol cataly-
sis, through interactions with A� oligomers, is described using ordinary and delayed di�erential
equations. These two submodels are linked through the source term of oligomers coming from
proto-oligomers, and can be studied one at a time. For the �rst one, we use Schauder �xed point
theorem to prove existence and uniqueness of mild solutions, even in the case of singular poly-
merization rates. Existence and uniqueness of solutions for the second submodel are obtained
with Cauchy-Lipschitz theorem. Numerical simulations with di�erent initial conditions are given
to illustrate the di�erent pro�les that can be obtained with this model. Because we have no
experimental data available, we only provide simulations with one type of A�.
To the best of our knowledge, this is the �rst model describing both A� polymerization process
and interactions with PrPc. However, because it is developed in an in vitro context, some in
vivo processes are not included in the model. For instance, one could add the production of
A� monomers on diseased neuronal membranes, as proposed in [?, ?]. Neurons could also be
damaged due to the binding of A� oligomers to PrPc , as done in [?]. Nevertheless, we believe
that our model gives insights on A� polymerization and on the interactions between A� and
PrPc. It remains to compare our numerical simulations to experimental data and to �nd optimal
parameter estimates. This can help to highlight di�erences between A�-40 and A�-42 and to
identify new possible therapeutic targets to slow down or even avoid the emergence of Alzheimer’s
disease or prion diseases.

Appendix A. Measurability of �s(t; x). In this appendix, we aim to show the measurability of
the function �s(t; x) introduced in the proof of lemma 1. Let us consider the set Q = [0; T ]�(0; x0).
For all (t; x) in Q let �s(t; x) be de�ned as:

�s(t; x) = supfs 2 [0; t]; X(s; t; x) = x0g; (46)

where we understand that �s(t; x) = 0 if X(s; t; x) < x0 for any s in [0; t].
For � in R, we consider the following set:

A� = f(t; x) 2 Q; �s(t; x) > �g: (47)
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We want to show that A� is measurable. Let us note that if � is lower or equal to 0, then A� is
exactly Q and if � is greater or equal to T , A� is the empty set. We then assume that � is in
(0; T ).

Proposition 1. With these notations, we have A� = B�, where

B� = f(t;X(t; s; x0)); (t; s) 2 F�g \Q;

with
F� = f(t; s) 2 R2; 0 6 s 6 t 6 Tg:

Proof.
1. A� � B�
Let us take (t; x) in A�. We have (t; x) in Q and X(�s(t; x); t; x) = x0, which is equivalent to
x = X(t; �s(t; x); x0). We also have � 6 �s(t; x) 6 t 6 T , whence (t; �s(t; x)) is in F�. Therefore
(t; x), which is equal to (t;X(t; �s(t; x); x0)), is in B�.

2. B� � A�
Let us consider (t; x) = (t;X(t; s1; x0)) in B�. Then we have 0 < x = X(t; s1; x0) < x0 and
� 6 s1 6 t 6 T . Then necessarily �s(t; x) > s1, so �s(t; x) > �, that is (t; x) is in A�.

We can note that the set f(t;X(t; s; x0)); (t; s) 2 F�g is the image of the compact set F� by a
continuous function, so it is a compact set. It follows that it is a closed set, and then a measurable
set. Q is also measurable, and therefore so is B�. As B� is exactly A� by proposition 1, A� is
measurable. Finally, the function �s from Q to R is measurable.

Appendix B. Proof of lemma 6. We provide here the proof of lemma 6 introduced in section
4.2, to prove that h(�T ) is a relatively compact subspace of C0

b ([0; T ]).

Proof. According to equation (29), we have:

jAm(t)�An(t)j 6 j
Z +1

0
gf (x)(fm(t; x)� fn(t; x))dxj

| {z }
IA 1

(48)

+ j
Z x0

0
g(x)(um(t; x)� un(t; x))dxj

| {z }
IA 2

:

Let us focus on IA1. We know that:

fm(t; x) = f in(Xm(0; t; x))e�
f tJm(0; t; x)

+
Z t

0
�(Xm(s; t; x)) ~m(s) e�
f (t�s)Jm(s; t; x)ds;

and the same holds for fn(t; x).
Therefore, we have

IA1 6 e�
f t j
Z +1

0
gf (x)

�
f in(Xm(0; t; x))Jm(0; t; x)� f in(Xn(0; t; x))Jn(0; t; x)

�
dxj

| {z }
K1

+j
Z +1

0

Z t

0
gf (x)e�
f (t�s)�(Xm(s; t; x)) ~m(s)Jm(s; t; x)� �(Xn(s; t; x))~n(s)Jn(s; t; x)dsdxj

| {z }
K2

: (49)
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We compute term K1 with integration by substitution, with y = Xp(0; t; x), p = m;n. First, let
us note that:

lim
x!+1

X(s; t; x) = +1; 0 6 s 6 t;

and:
if x < +1, then X(s; t; x) <1; for all s, 0 6 s 6 t:

We therefore have:

K1 = j
Z +1

Xm (0;t;0)
gf (Xm(t; 0; y))f in(y)dy �

Z +1

Xn (0;t;0)
gf (Xn(t; 0; y))f in(y)dyj;

= j
Z Xn (0;t;0)

Xm (0;t;0)
gf (Xm(t; 0; y))f in(y)dy +

Z +1

Xn (0;t;0)
f in(y)

�
gf (Xm(t; 0; y))

� gf (Xm(t; 0; y))
�
dyj;

6 sup
[Xm (0;t;0);Xn (0;t;0)]

(gf (Xm(t; 0; y))f in(y))jXn(0; t; 0)�Xm(0; t; 0)j

+
Z +1

Xn (0;t;0)
Gf jXm(t; 0; y)�Xn(t; 0; y)jf in(y)dy; (50)

where Gf is the upper bound for the derivative of gf , as stated in Hypothesis 1.

Let us now compute jXm(s; t; x)�Xn(s; t; x)j.

Lemma 8. For all s; t such as 0 6 s; t 6 T , there exists a constant C so that:

jXm(s; t; x)�Xn(s; t; x)j 6 C sup
[0;T ]
j ~m� ~nj:

According to lemma 8, we obtain the existence of C1 and C2 such as:

K1 6 sup
[0;T ]
j ~m� ~nj

 

sup
[Xm (0;t;0);Xn (0;t;0)]

(gf (Xm(t; 0; y))f in(y))C1 +GfC2jjf injjL1

!

: (51)

Let us now study term K2 in equation (49):

K2 = j
Z t

0
e�
f (t�s)( ~m(s)

Z +1

0
gf (x)�(Xm(s; t; x))Jm(s; t; x)dx

� ~n(s)
Z +1

0
gf (x)�(Xn(s; t; x))Jn(s; t; x)dx)dsj

Integrating by substitution with y = X(s; t; x) gives us:

K2 =j
Z t

0
e�
f (t�s)

 

~m(s)
Z +1

Xm (s;t;0)
gf (Xm(t; s; y))�(y)dy � ~n(s)

Z +1

Xn (s;t;0)
gf (Xn(t; s; y))�(y)dy

!

dsj;

K2 =j
Z t

0
e�
f (t�s) ~m(s)

Z Xn (s;t;0)

Xm (s;t;0)
gf (Xm(t; s; y))�(y)dyds

+
Z t

0
e�
f (t�s) ~m(s)

Z +1

Xn (s;t;0)
�(y)(gf (Xm(t; s; y))� gf (Xn(t; s; y)))dyds

+
Z t

0
e�
f (t�s)( ~m(s)� ~n(s))

Z +1

Xn (s;t;0)
gf (Xn(t; s; y))�(y)dydsj;
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and �nally

K2 6
Z t

0
MT sup
[Xm (s;t;0);Xn (s;t;0)]

(gf (Xm(t; s; y))�(y))jXn(s; t; 0)�Xm(s; t; 0)jds

+
Z t

0
MT

Z +1

Xn (s;t;0)
Gf�(y)jXm(t; s; y)�Xn(t; s; y)jdyds

+
Z t

0
j ~m(s)� ~n(s)jjjg�jjL1ds:

Lemma 8 provides the existence of constants C1 and C2 such as:

K2 6 sup
[0;T ]
j ~m� ~nj (52)

 

MTC1T sup
[0;T ]

�
sup(gf (Xm(t; s; y))�(y))

�
+MTGfC2T jj�jjL1 + T jjg�jjL1

!

:

Combining relations (51) and (52) gives us the existence of a constant �1 such as:

IA1 6 �1 sup
[0;T ]
j ~m� ~nj: (53)

We perform the same analysis for IA2, the second term in equation (48) and �nd the existence
of a constant �2 such as:

IA2 6 �2 sup
[0;T ]
j ~m� ~nj: (54)

Relations (53) and (54) implies the existence of a constant � such as:

sup
[0;T ]
jAm(t)�An(t)j 6 �sup

[0;T ]
j ~m(t)� ~n(t)j: (55)

We now focus on Bm(t)�Bn(t). According to equation (30), we have:

jBm(t)�Bn(t)j 6b(t) j
Z +1

0
fa;m(t; x)� fa;n(t; x)dxj

| {z }
IB 1

+bf j
Z +1

0
fm(t; x)� fn(t; x)dxj

| {z }
IB 2

+ b j
Z x0

0
um(t; x)� un(t; x)dxj

| {z }
IB 3

: (56)

We upper-bound IB2 and IB3 as we did previously for IA1 and IA2, and �nally �nd that there
exist �2 and �3 such as:

IB2 6 �2 sup
[0;T ]
j ~m(t)� ~n(t)j; (57)

IB3 6 �3 sup
[0;T ]
j ~m(t)� ~n(t)j: (58)
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We now have to study IB1, the �rst term in equation (56):

IB1 =
Z +1

0
jfa;m(t; x)� fa;n(t; x)jdx;

=
Z +1

0
jf ina (X(0; t; x) + 
f

Z t

0
fm(s;X(s; t; x))ds

�
�
f ina (X(0; t; x) + 
f

Z t

0
fn(s;X(s; t; x)ds

�
jdx;

= 
f
Z t

0

Z +1

0
jfm(s;X(s; t; x)� fn(s;X(s; t; x))jdx

| {z }
I11

ds:

In I11, we make the following substitution: y = X(s; t; x) which can be written as x = X(t; s; y).
We then have:

I11 =
Z +1

X(s;t;0)
jfm(s; y)� fn(s; y)jJ(t; s; y)dy;

=
Z +1

X(s;t;0)
jfm(s; y)� fn(s; y)j exp(

Z t

s

@v
@x

(�;X(�; s; y))d�)dy;

=
Z +1

X(s;t;0)
jfm(s; y)� fn(s; y)j exp(

Z t

s
m(�)g0(X(�; s; y))d�)dy;

6
Z +1

X(s;t;0)
jfm(s; y)� fn(s; y)j exp(MTG(t� s))dy;

6 eTGMT

Z +1

0
jfm(s; y)� fn(s; y)jdy:

According to (57), there exists �2 such as:

I11 6 eTGMT �2 sup
[0;T ]
j ~m(t)� ~n(t)j:

We now go back to IB1, and �nd that:

IB1 6 
f
Z t

0
eTGMT �2 sup

[0;T ]
j ~m(t)� ~n(t)j;

6 
fT eTGMT �2 sup
[0;T ]
j ~m(t)� ~n(t)j:

Therefore, there exists a constant �1 such as:

IB1 6 �1 sup
[0;T ]
j ~m(t)� ~n(t)j: (59)

Combining relations (57)-(59) proves the existence of a constant � such as:

sup
[0;T ]
jBm(t)�Bn(t)j 6 � sup

[0;T ]
j ~m(t)� ~n(t)j:
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Proof. Proof of lemma 8
Let s; t such as 0 6 s 6 t 6 T .

jXm(s; t; x)�Xn(s; t; x)j = j
Z t

s
(g(Xm(�; t; x)) ~m(�)� b) d�

�
Z t

s
(g(Xn(�; t; x))~n(�)� b) d�j;

6
Z t

s
~m(�)jg(Xm(�; t; x))� g(Xn(�; t; x))jd�

+
Z s

t
g(Xn(�; t; x))j ~m(�)� ~n(�)jd�;

6 GMT

Z t

s
~m(�)jXm(�; t; x)�Xn(�; t; x)jd�

+
�Z t

s
(g(Xn(�; t; x)))2d�

�1=2�Z t

s
( ~m(�)� ~n(�))2d�

�1=2

(60)

Because g(0) = 0 and g0(x) 6 G for all x in [0;+1), we have:

jg(Xn(s; t; x))j 6 GXn(s; t; x);

and

jXn(s; t; x)j = jx+
Z s

t
(g(Xn(�; t; x))~n(�)� b) d�j;

6 x+
Z t

s
b+GMT jXn(�; t; x)jd�:

Gr�onwall’s inequality �nally gives us the existence of a constant LT such as

jXn(s; t; x)j 6 LT (2bT + x):

Let us now go back to relation (60):

jXm(s; t; x)�Xn(s; t; x)j 6 GMT

Z t

s
jXm(�; t; x)�Xn(�; t; x)jd�

+GLT (x+ 2bT )T 1=2
�Z t

s
( ~m(�)� ~n(�))2d�

�1=2

We use Gr�onwall’s inequality to obtain the following relation:

jXm(s; t; x)�Xn(s; t; x)j 6 K(2bT + x)T sup
[0;T ]

( ~m(t)� ~n(t)): (61)
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Figure 5. Evolution of size density repartition of �brils f(t; x), proto-oligomers u(t; x)
and �brils in plaque fa (t; x) for di�erent times (t = 0; 10; 20)
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Figure 6. Evolution of size density repartition of �brils f(t; x), proto-oligomers u(t; x)
and �brils in plaque fa (t; x) for di�erent times (t = 20; 30; 40).
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