System Optimization: A Use Case in the Space Domain

Mihal Brumbulli*, Emmanuel Gaudin*, Alexandre Cortier**, Alain Rossignol**
*PragmaDeyv, Paris, France
** Airbus Defence & Space, Toulouse, France

Abstract—The JUpiter ICy moons Explorer mission, JUICE,
is the first large-class mission in the Cosmic Vision 2015-2025
program of the European Space Agency. Planned for launch
in 2022 and arrival at Jupiter in 2030, it will spend at least
three years making detailed observations of the biggest planet
in the Solar System and three of its largest moons, Ganymede,
Callisto and Europa. JUICE will carry a total of 11 scientific
experiments (instruments) to study the gas giant planet and its
large ocean-bearing moons. Each instrument will do a number
of readings producing streams of data, which will be stored
in the on-board mass storage and then transmitted to Earth
via a specific protocol. In this paper we present a model-
based approach for system optimization in terms of instrument
parameters, mass storage configuration, and transmission band
allocation. We use standard modeling and testing languages with
formal semantics for describing the system and the different
configuration scenarios, which are then executed in co-simulation
mode to produce (1) very precise results and (2) graphical
comparison of different configurations to help trade off.

Index Terms—System optimization, space mission, modeling
and simulation, SDL, TTCN-3

I. INTRODUCTION

The JUpiter ICy moons Explorer (JUICE) is the first large-
class mission in the Cosmic Vision 2015-2025 program of
the European Space Agency [1]. Planned for launch in 2022
and arrival at Jupiter in 2030, it will spend at least three
years making detailed observations of the giant gaseous planet
Jupiter and three of its largest moons, Ganymede, Callisto and
Europa. The JUICE mission will address two themes of ESA’s
Cosmic Vision program: What are the conditions for planet
formation and emergence of life? and How does the Solar
System work?

The JUICE spacecraft will carry the most powerful remote
sensing, geophysical, and in situ payload complement ever
flown to the outer Solar System. The payload consists of
10 state-of-the-art instruments plus one experiment that uses
the spacecraft telecommunication system with ground-based
instruments. This payload is capable of addressing all of the
mission’s science goals, from in situ measurements of Jupiter’s
atmosphere and plasma environment, to remote observations
of the surface and interior of the three icy moons.

All measurements in form of data streams coming from the
10 instruments will be stored in a Solid State Mass Memory
(SSMM), and when telecommunication is possible they will be
transmitted (downlinked) to ground. A successful and efficient
operation of the system requires careful planing involving
instrument configuration (e.g., frequency of measurements),
mass memory organization (e.g., directories, files, etc.), and

transmission band utilization. This paper presents a model-
based approach to aid architects in finding the best configura-
tion for an optimized operation of the system.

Section II defines the objectives of the use-case, while de-
tailing the organization and operation of the system and listing
the expected results. In section III we give an overview of
the relevant technologies used in this model-based approach,
and section IV describes the simulation model of JUICE.
The simulation results are presented in section V, and some
concluding remarks are given in section VII.

II. OBJECTIVES
A. Business Objectives

This use-case is part of an internal Airbus Defence & Space
project to assess how model based techniques can improve the
early maturity of the On-Board Functional Avionic require-
ments and design, in particular through the use of modeling
tools allowing rapid prototyping and simulation at Functional
Avionic Level. The objective is to make available to the
Functional Avionics (FA) architects a set of Model Based
Systems Engineering (MBSE) methods and tools which are
adapted to the different operational situations FA architects
are facing.

B. Project Objectives

The JUICE mission will carry out a total of 10 payload
instruments, some of them producing a large amount of
data. Each instrument is connected to the SSMM through
a SpaceWire router to store output data flows as shown in

figure 1.
Instr. | | Instr.
1 2

__ SpaceWire Router

. =7,
\ \ Sl
Fies Fles
File 2 [Fe2] wes File 2

file 1 [Fer ||| Fie1 | File 1
Directory 2 Directory 3 Directory 4

Retransmission
Requests

X-Band Downlink
Ka-Band Dowi\ink

Stream 1 Stream 2

Directory 1

SSMM

Fig. 1. JUICE use-case modeling overview.

On the downlink side, the deep space nature of the JUICE
mission imposes a low transmission data rate and a large
communication delay. To manage science data flow from

instruments production to downlink, new operational concepts
have been set-up:

« File Based Operation: Science data flows are stored as
files in an SSMM and organized in directories. Creation
of files is done according to switching criteria like max-
imum size or time.

« CCSDS File Delivery Protocol (CFDP): Automatic down-
link of files according to directory’s downlink priorities
and retransmission of segments of files on ground re-
quests in case of data corruption during downlink.

Each instrument produces data streams (up to 4 per instru-
ment), possibly in parallel and the data rate of each instrument
varies in time. Each data stream (up to 40) is connected to
a directory. In this directory the data are stored in files. File
switching (close the current file and open a new file to continue
data recording) occurs upon time (since opening) or size
criterion according to ground configuration. Files are trans-
mitted to the ground in X or Ka band, during communication
sessions (nominally 8 hours/day), with a priority management
system. File selection for downlink is automatic, based on
a priority that is a directory attribute. Data production can
possibly continue during downlink and only closed files are
downlinked.

C. Simulation Objectives

File and downlink management relies on several config-
urable parameters: the number of directories allocated to
an instrument, the file switching criteria associated to each
directory, the downlink priority allocated to a directory, etc.
Data corruption may occur either during storage or during
downlink (especially in Ka band). In this later case, the ground
asks for data segment retransmission (files are deleted on-
board only when correct/full reception is confirmed).

Due to these operational constraints (small bandwidth, error
rate, downlink autonomy, and retransmission) and the con-
figuration of the downlink management system, it is quite
complex for an operation architect to anticipate the influence
of these configuration parameters and thus to handle a concrete
downlink scenario. In this context, a model capturing the
science data flow from instrument production to downlink can
help the architect and the Principal Investigators responsible
of an instrument by providing simulation capabilities. The
simulation model presented in this paper has been developed
to help answering the following question: How to operate
the satellite to maximize the amount of transmitted data
with respect to the scientific requests? More precisely, the
objectives of the simulation were to:

o assess data latency on-board (time between file closure
and reception of this file on ground),

« assess the impact of downlink error and segment retrans-
mission,

« help Principal Investigators in understanding the system
and designing the data storage (file size, number of files,
criteria for file switching, selective downlink usage), and

e assess memory utilization.

III. TECHNOLOGY
A. SDL

The Specification and Description Language (SDL) is a
specification language defined by the International Telecom-
munication Union (ITU-T) in the Z.100 series [2]. SDL is
targeted at the unambiguous specification and description of
the behavior of reactive and distributed systems.

In SDL the overall design is called the system, and every-
thing outside of it is defined as the environment. The system
can be composed of agents and communication constructs.
There are two kinds of agents: blocks and processes. Blocks
can be composed of other agents and communication con-
structs, and they fulfill their functionality via processes. A
process provides this functionality via extended finite state
machines, and has an implicit queue for messages (or signals).
Messages go through channels and end up in the processes
queues. These concepts are illustrated in a simple example in
figure 2.

SIGNAL
ml{Int}, m2,
m3, m4{Int);

SYNTYPE Int = INTEGER
CONSTANTS 0:18
ENDSYNTYPE ;

m3]
_ -n L
c2

bl

s m21 [b1] [n2] 1
c2 c2

STTEL (03] [m3]

| ———

cl bl cl—=cl
[ma] [m1] [ma] [m1]

DCL x Int;
TIMER t:

x := (x+ 1) MOD 11

)’(RESET(Y)

Fig. 2. Excerpt of a simple SDL model.

B. TTCN-3

The Testing and Test Control Notation Version 3 (TTCN-
3) is a standardized testing technology developed and main-
tained by the European Telecommunication Standards Institute
(ETSI). The ETSI TTCN-3 [3] recommendations are standard-
ized by the ITU-T in the Z.160 series [4]. Figure 3 shows a
TTCN-3 module definition with a single test case, where the
system under test is the SDL example in figure 2.

1: module test {
2: // Signals
3 type record ml { integer paraml }
4: type record m4 { integer paraml }
5: // Port
6: type port cl type message {
7 out ml
8 in m4
9: }
10: // Component
11: type component sys {
12: port cl type cl
}

14: // Templates

15: template ml stimuli := { paraml := 5 }
16: template m4 result = { paraml := 6 }
17: // Test-case

18: testcase tc() runs on sys {

19: cl.send(stimuli)

20: alt {

21: [1 cl.receive(result) { setverdict(pass) }
22: [1 cl.receive { setverdict(fail) }
23: }

24: }

25:}

Fig. 3. Example of a TTCN-3 module definition with a single test case.

C. Simulation

While SDL allows to precisely define discrete event process
oriented models with deterministic behavior, TTCN-3 com-
plements these models with different scenario descriptions to
generate a complete simulation model.

PragmaDev Studio is a set of tools that helps specifiers,
developers, and testers to manage complexity in the develop-
ment of today’s systems. A key functionality of the tool-set is
provided by the PragmaDev Simulator as shown in figure 4.

SDL+TTON-3 Editor

SDL
byte code
generator

TTCN-3

generated
byte code

}—)(Executor >

gl

(" simulator ™
GUL /

. PragmaDev Studic user interface

. SDL+TTCN-3 byte code compiler / debugger

Il Source c ode

Fig. 4. Architecture of the PragmaDev Simulator.

The simulator allows execution of TTCN-3 test cases
against an SDL system. SDL and TTCN-3 descriptions are
translated into an internal representation (byte code) to be
interpreted by the executor, which in turn forwards the
scheduling of events to the scheduler.

The simulator is discrete event. It keeps a global queue for
messages and the list of active timers. When the message
queue becomes empty (i.e., all transitions triggered by the
messages have been executed), the simulator jumps to the first
timer in the list (if there is one). It then inserts a timer-expire
message in the message queue, advances the current time to
the expiration time of the timer, and removes the timer from
the list.

IV. THE JUICE MODEL

The JUICE simulation model is composed of two parts, i.e.,
the behavior and the configuration. The behavior is described
in SDL, while the configurations in TTCN-3.

A. Behavioral Model

The behavior of the system is divided in three parts, and
each of them is represented with an SDL process as shown in
figure 5.

Controller2Ground

[instrumentResults]

Controller2Ground

[configureInstrumentsAndSsmm,
configureScenarioAndMission]

Controller Controller2Ssmm ————
[fileGenerated,

0 fileDownlinked,
filelost]

[configureSsmm,
setVisibility,
stopSimulation]
Controller2stream

SSMM (@)

[writeFilel

[configureStream,
setMode,
stopSimulation]

InstrumentStream(@)

Stream25smm

[1

Fig. 5. SDL system for JUICE.

1) Controller: This process is responsible for initializing
the instrument streams and the solid state mass memory
(SSMM) based on the configuration received from the en-
vironment (i.e., the TTCN-3 test case). The configuration is
received via the configurelnstrumentsAndSsmm message as
shown in figure 5. The Controller will create 40 instances
of the IntrumentStream process (4 streams for each of the
10 instruments) and one instance of the SSMM process. It
will also set the possible data rates for each instrument
stream and the size of each directory of the SSMM. The
configureScenarioAndMission message contains the changes
in data rate for each instrument in time (called scenario), and
the mission visibility periods when transmission to Earth is
possible. The scenarios are presented in a (discrete) timetable
as shown in table I.! The information is then forwarded to
each InstrumentStream and the SSMM accordingly.

TABLE I
EXAMPLE SCENARIO FOR INSTRUMENTS

| Time [[GALA_1 | JANUS_2 | MAJIS1_3 | MAJIS2 4
0 1 1 1 1

39505 1 1 2 1

54000 2 1 2 1

!For readability the data rate is represented by a single digit integer (called
mode) specific to each instrument, e.g., for GALA_1 mode 1 means 0 kbit/sec
and mode 2 means 6.5 kbits/sec.

The same logic is applied for the mission visibility, which is
also presented in a timetable as shown in table II.

TABLE 11
EXAMPLE OF MISSION VISIBILITY

| Time || Visibility

0 false
54000 true
82800 false

SDL timers are used to ensure precise timing as shown in
the tables. In a nutshell, a timer is started for the first row in
the table where its timeout value is that shown in the table.
When the timer expires the new data rates (modes) are sent
to the InstrumentStream with the setMode message, and the
change in visibility is sent to the SSMM with the setVisibility
message. This is repeated for every row in the tables as shown
in figure 6 with the timers scenarioTimer and missionTimer.

Waitd4Input

scenarioTimer missionTimer

..@.
("o)
setVisibility(mission!missionVisibility) >
4|@5
(c lengthlmisslun_lst}) (else)

missionIndex := missionIndex + 1

<gcenarioIndex>

() (w) ()

SetInstrumentsMode

il

<ScenarioIndez=

(c length(scenarm_ls‘t)) (else)

scenarioIndex := scenarioIndex + 1

0l

scenario := scemariolist{scenarioIndex},
timelUnits := scenarlo!scenarioTime * TimeUnit

mission := missionList{missionIndex),
timeUnits := mission!missionTime * TimeUnit

$Eet(startTune + timeUnits, scenarioTimer) $set(startTme + timeUnits, missionTimer)

L L

Fig. 6. Excerpt from the behavior of the Controller process.

When done (simulation is finished) the Controller will sent
the relevant results to the environment (TTCN-3 test case) with
the instrumentResults message.

2) InstrumentStream: This process is responsible for gen-
erating streams of data and sending them to the SSMM for
storage. The unit used for data is the file size in bytes. This
is done for two reasons: (1) transmission to Earth is done
when a file is ready (not just any amount of bytes), and
(2) generating bits or bytes at the given data rates means
generating a huge amount of events during simulation which
degrades performance.

The behavior of the InstrumentStream is based on the file
switching criteria given in section II. Two SDL timers are
started, one for each criteria, i.e., time and size. While for

the time criteria the value of the timer is straightforward,
the size criteria involves some calculation. In this case the
timeout value for the timer is computed using the size and
the instruments current data rate. The first timer to fire will
define the criteria to be used for setting the size of the file
and sending it to the SSMM for storage with the writeFile
message. This behavior is shown in figure 7.

The SDL go label in the figure points to the same behavior
(not shown here), i.e., starting both timers (sizeSwitch and
timeSwitch) and computing the size of the file to be sent. Size
computation is straightforward using the size criteria. With the
time criteria the size is computed using the time value and the
current data rate of the instrument.

3) SSMM: This is the most complex process of the three
in terms of behavior, because it is responsible for:

« storing files from instrument streams to their correspond-
ing directory,

« transmitting files to Earth based on directory priority,

o applying error rates to the transmission,

¢ and in case of error(s), marking the concerned file(s) for
top priority transmission in the next visibility period.

Storing a file in its corresponding directory is quite straight-
forward as shown in figure 8. When receiving a writeFile
message from an InstrumentStream, the process will first check
whether there is still free space in the directory corresponding
to the instrument. If this is the case the file will be added
to the list of files of that directory, and the fileGenerated
message will be sent to the Controller which keeps track of
the total number of generated files as a relevant output of the
simulation. If the directory is full a fileLost message is sent
to the Controller, which counts also the lost files due to not
enough memory. This is another output of simulation relevant
to architects whose objective is to reduce at minimum the
amount of lost data.

Transmission is done in two bands, and each directory has
an assigned band to it. When there is a change in visibility and
transmission is possible, the SSMM will first check whether
there are any files waiting for retransmission (due to previous
errors). If this is the case then these files are sent in the
order they appear in the retransmission queue, i.e., first-in-
first-out. When the retransmission queue is empty then the
transmission of the files in the directories can begin. For
both bands the first file in a non-empty directory with the
highest priority is selected for transmission. If there are more
directories with the same priority, transmission is done in
a round-robin fashion. The time needed for transmitting the
file is computed using the file size and the bandwidth of the
assigned band. The computed value is used in an SDL timer,
and when it expires the file is considered to be transmitted.
However, due to possible errors the file is not removed from
the directory. If errors occur during transmission then the file
is placed in the retransmission queue but is not removed from
its directory. Only on complete and successful transmission,
i.e., when the acknowledgement from Earth is received, the
file is removed and the directory size updated.

W e
reset(timeSwitch) reset(sizeSwitch)

sectors2Write := sizedFile!fileSize / sectorSize, sectors2Write := timedFile!fileSize / sectorSize,
sizedFile!fileSizeOnDirectory := sectors2Write * sectorSize timedFile!fileSizeOnDirectory := sectors2Write * sectorSize

(-: sizedFile!flleSlze) (else) (-: tjmedFi'le!fl'LeSlze) (else)

timedFile! fileSizeOnDirectory := timedFile!fileSizeOnDirectory + sectorSize

Wait4Inp

sizedFile! fileSizeOnDirectory := sizedFile!fileSizeOnDirectory + sectorSize

writeFile(directoryId, timedFile) >

writeFile(directoryId, sizedFile) >

sizedFile!fileSize := B, timedFile!fileSize := ®,
timedFile!fileSize := @ sizedFile!fileSize := @

T T
® @ ® @

Fig. 7. Excerpt from the behavior of the InstrumentStream process.

Walt4Inp Walt4Input
writeFile(directoryld, fi'le)(resumePduTimer_X pduTimer_X

directory := ssmm!directorylist(directoryId) <IEngth(pduList_Xr= pdu := tempPduList_X{length({tempPduList X)),
pdu!pduSize := pdu!file!fileSize,
tempPduList_X(length{tempPdulList_X)) := pdu

(1) (~o)
*SE’.{I‘ID"\‘. resumePduTimer_X) ‘
(-:: directury!maxsize) (else) pduList X := TB'HPPdUI)_iSt_X,

orylusedSize + file!fileSizeOnDirectury-

tempPduList_X := (.

‘ filelost(directoryId, file))

% set(now, resumeDownlinkTimer X}

— ()

pdu := pduList_X(1},

pdu!pduSize := @,

pdu!downlinkTime := now,

tempPduList_X := tempPdulList X // mkstring(pdu)

FilelList_enqueue(ssmmFilelists{directoryId), file)

directory!usedSize := directory!usedSize + file!fileSizeOnDirectory.

ssmm | directorylist{directoryId] := directory
<iEngth(pdulist_Xr=

‘ fileGenerated{directoryId, file))
(=1) (else)

(:) ‘ pduList X := substring(pduList X. 2. length(pduList X) - 1) ‘ ‘ pduList X := (..) ‘

Fig. 8. File storage in the SSMM process.

time2Downlink X := (pdu!file!fileSize / ssmm!'bandList(X Band) !dataRate} * TimeUnit

#se:(nw + time2Downlink_X, pduTimer_X) ‘

Figure 9 shows an excerpt from the SSMM behavior for

handling retransmissions. The PDU (Protocol Data Unit) (:)
encapsulates information about the file to be retransmitted,
and the retransmission queue is actually a list of PDUs. In a Fig. 9. Excerpt from the file transmission part of the SSMM process.

nutshell, the behavior shown in figure 9 consists in computing
the time needed to transmit the file in the PDU, starting the
pduTimer with the computed value, and removing the PDU
from the list when the timer expires. The resumePduTimer is Configurations are written in TTCN-3 and sent to the SDL
needed due to possible interruptions in the transmission from model. A configuration has two parts: initial and runtime. The
visibility changes. initial configuration consists of sending the available modes

B. Configurations

(data rates) to each instrument (4 streams per instrument), and
configuring the SSMM as shown in figure 10.

1: const configureInstrumentsAndSsmm configl := {
2: modelList := {

3: // Instrument 1

4: {

5: {6, 6.5, 0, 0}, // Stream 1

6: {6, 6.5, 0, 0}, // Stream 2

7: {06, 6.5, 0, 0}, // Stream 3

8: {0, 6.5, 06, 0} // Stream 4

9: i

10: // Instrument 2

11: {

12: {0, 750, 300, 547.5},

13: {0, 750, 300, 547.5},

14: {0, 750, 300, 547.5},

15: {0, 750, 300, 547.5}

16: }

17: Y7

18: },

19: ssmm := {

20: fileListCapacity := 100000,

21: segmentSize := 4.096,

22: sectorSize := 16384,

23: bandList := {

24: {21.8, 100}, // X band

25: {13, 10} // Ka band

26: },

27: directorylList := {

28: // Instrument 1

29: {1000000000, 0, 3600, X Band, 1, 0},
30: {1000000000, 0, 3600, X Band, 2, 0},
31: {1000000000, 0, 3600, X Band, 3, 0},
32: {1000000000, 0, 3600, X Band, 4, 0},
33: // Instrument 2

34: {1000000000, 65536, 0, Ka Band, 1, 0},
35: {1000000000, 65536, 0, Ka Band, 2, 0},
36: {1000000000, 65536, 0, Ka Band, 3, 0},
37: {1000000000, 65536, 0, Ka Band, 4, 0}
38: Y7

39: }
40: }
41: }

Fig. 10. Example of a TTCN-3 module definition with a single test case.

A runtime configuration consists of a scenario for instru-
ments and mission visibility as shown in figure 11. These are
the TTCN-3 representations of the information given in table I
and II. A scenario contains the modes of all instruments in
time. A mode is an integer from 1 to 4, i.e., the index for
the instrument streams in the modeList in figure 10, where the
values are the possible data rates for the stream.

1:
2 { o, {1,1,1,1,1,
3: {39505, {1,1,1,1,2,
4: { 54000, {1,1,1,1,2,
5: // ...

6:}

7.

8

: const MissionListType missionl := {
9: { 0, false},
10: { 54000, true},
11: { 82800, false}
12: /7 ...

Fig. 11. Example of a TTCN-3 module definition with a single test case.

The initial and runtime configuration are sent to the SDL
system with the configurelnstrumentsAndSsmm and config-
ureScenarioAndMission messages (shown in figure 5). The
SDL system will reply back to the TTCN-3 at the end of
simulation with the instrumentResults message.

V. RESULTS

The JUICE SDL model and the TTCN-3 configurations are
run in co-simulation mode in the PragmaDev Simulator. The
results of a co-simulation are test case verdicts, e.g., pass, fail,
etc. This can be useful in defining certain conditions on the
relevant outputs and ensuring they are met, e.g., if there are
more than 100 files lost then set the verdict to fail. However,
the desired result of a simulation is the outputs themselves
rather than “guards” on them. The only mechanism in TTCN-
3 to output data is the log function, which prints text to the
standard output. Although there are ways to further manipulate
this information outside TTCN-3, the objective is to present
to architects all relevant information in the most efficient way.
For this we defined and implemented PragmalLib, a TTCN-3
module integrated into the simulator. The module introduces
file manipulation and display of tables and graphs in TTCN-3
via functions, where graphical display of tabular data follows
the concepts introduced in [5]. Relevant outputs are presented
in a table and radar graph as shown in figure 12.

The advantage of this kind of presentation is that multiple
configurations (TTCN-3 test cases) can be run, and their
results displayed in the same graph. This facilitates comparison
and decision on the optimal configuration. The rows in the
tables are the instruments, while the columns are the different
configurations. The values in the table are the relevant outputs
requested by the architects:

« average file size generated by the instrument streams in
figure 12(a),

« total number of generated files by the instrument streams
in figure 12(b),

o number of successfully transmitted files for the instru-

ment in figure 12(c), and

o average time of all transmitted files for the instrument in

figure 12(d).

The second group of functions in the PragmalLib module
allows users to read and write external files, features which are
not available in standard TTCN-3. The reason for introducing
such functions is that architects usually manipulate and store
configuration parameters and simulation results in spreadsheet
applications. The file manipulation functions facilitate the
import from these application into TTCN-3 to reduce manual
coding. Also, the results displayed in figure 12 can be easily
exported to a spreadsheet application for further manipulation,
presentation, or storage.

VI. RELATED WORK

Initial requirements and design engineering of new products
are key for mastering cost, schedule, quality, and risks of
the avionics development [6]. In this context, model-based
techniques are providing viable solutions to the problems the
aerospace domain is faced with [7].

A model based development approach and tooling focusing
on data is presented in [8]. The approach is based on SysML
and SCADE system (a domain-agnostic system modeling
language), and has been applied to an avionics system case

PragmaDev Studio

Average filesize Number of generated files Number of downlinked files Average downlink time

Branch

GALA 1
JANUS 2
MAlISt 3
MAIIS2 4
PEPS
SWi6
RPWLT
RIME 8
wss
IMAG_10
L

12

[RE!

config 2
23400
61702
59533
6506
281
1800
1921
62910
126993
4500

0

0

0

config_1

23400
61702
50533
64506
281
1800
1921
62910
a40428
4500

0

0

0

— config 2
config_1

JANUS 2
70000

MAlS1 3
60000

MAIIS2 4
70000

PEPS
3000

W6
2000

GALA
30000

L1z
10

7 maG 10
5000

w9
900000

RIME S
70000

PragmaDev Studio

e Number of generated files Number of downlinked files Avera

config 2

config_1

— config2
config_1

JANUS 2
300

MAIs1 3
200

MAJIS2.4
600

PEPS
2000

SWi6
40

RPWL7
1000

GALA1
50

13

0

L2
10

IMAG_10
500

ws9
40

RIMES
)

(a) Average file size

PragmaDev Studio

(b) Number of generated files

PragmaDev Studio

Average filesize Number of generated files Number of downlinked files Average downlink time

Branch
GALA1
JANUS_2
MAlIS! 3
MAIIS2 4
PEPS
SWi6
RPWLT

config 2

config 1

B

JANUS 2
50

MAlIS1_3
10

GALA
20

L2
10

Average il

Number of generated files Number of downlinked files Average downlink time

Branch
GALA
JANUS 2
Mais1 3
MANIs2_ 4
PEPS
Swi6
RPWLT

config 2

config_1

config 2
config_1

GALA
50

JANUS_2 [RE!

300 70

MAJISI 3 L2
200 0

RIMES 3
wse 2
IMAG_10 9 n
L 0 0
L2 0 0
[RE! 0 0

1
n
0
n
1
2
1
3
0

MAJIS2 4, K]l
50 0

PEPS IMAG_10
300 100

swis wss
2 30

RPWL7 RIME S
200 40

(c) Number of downlinked files

RIMES Ed Ed
wse 356 2

IMAG_10 456 456
K1l 0 0
L2 0 0
[RE 0 0

MAJIS2_4 m
600 10

PEPS IMAG_10
2000 500

Swi6 w9
40 40

RPWL7 RIMES
1000)

(d) Average downlink time

Fig. 12. Graphical presentation of simulation results with the PragmaDev Simulator.

study. The authors argue for the benefits of the model based
approach by demonstrating a complete flow from functional
architecture capture down to platform deployment.

In the the ESA e.Deorbit study, a model-based process
for system modelling and simulation has been developed
for supporting the iterative generation and maturation of the
system requirements, architectures and system budgets [9].
The approach links SysML, CDP, Matlab, and ModelCenter in
one process for implementing the design-analysis-verification
workflow [6].

The approach presented in this paper demonstrates that SDL
and TTCN-3 do provide efficient means for modelling and
simulation of aerospace systems for optimization purposes.
Efficiency comes from the event based nature of the system,
modeling languages, and simulation engine, while the solu-
tions mentioned above use cycle based simulation. Further-
more, TTCN-3 being a testing language, enables automatic
checking of simulation results, which is an added value that
facilitates decision making.

VII. CONCLUSION

The JUICE use case presented in this paper is a typical
process based event driven system, and as such the use of

SDL and TTCN-3 is a sound choice. However, modeling is
not free of challenges.

Although an event driven simulation model per se performs
very well in terms of execution time, there are some tradeoffs
and pitfalls to look out for. Care should be taken in the number
of events generated, because there is a risk for the model to
become more time driven rather than event driven. We were
faced with this issue when modeling the instrument streams.
Modeling the data rate of the instrument in the given unit
(i.e., kbits/sec) generated a huge amount of events to the
point where execution times were not acceptable. However, as
instrument readings were stored in files (and transmission was
also based on files), it made sense to build the model around
the file as a unit for defining events. This reduced execution
time significantly without losing precision in the results, but
required additional changes to the model. As an example, the
case of a mode (data rate) change while writing into the file
had to be handled explicitly.

Another challenge we were faced with was the interfacing
with the potential users of our solution. We noticed that
users experienced with spreadsheet applications for decision
making would have to acquire coding skills for inputting
configurations and especially for retrieving and presenting

simulation results. To aid them in this regard we introduced
file manipulation and graphical display of data to our existing
technologies.

The JUICE use-case using the PragmaDev tool suite com-
forts Airbus Defence & Space on the capability to use model
based formal techniques to validate new and complex opera-
tional strategies. The objective is not to model all the system
for each program but rather to address specific problems
early in the design phase. (1) Rapid-prototyping capability,
(2) good performance and scalability of tools as well as, (3)
mature results visualization for analysis are three main drivers
to ensure industrial appropriation of such techniques. Airbus
Defence & Space will continue exploration of the model based
approach.

REFERENCES

[1] European Space Agency, “ESA Science & Technology: JUICE,” http:
//sci.esa.int/juice, 2016.

[2] ITU-T, “Specification and Description Language — Overview of SDL-
2010,” International Telecommunication Union — Telecommunication
Standardization Sector, ITU-T Recommendation Z.100, 2016, http://
handle.itu.int/11.1002/1000/12846.

(3]

[4]

(5]

(6]

(71

(8]

[9]

ETSI, “Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language,”
European Telecommunications Standards Institute, ETSI Standard ES 201
873-1, 2014, http://www.ttcn-3.org/index.php/downloads/standards.
ITU-T, “Testing and Test Control Notation version 3: TTCN-3 core
language,” International Telecommunication Union — Telecommunica-
tion Standardization Sector, ITU-T Recommendation Z.160, 2014, http:
//handle.itu.int/11.1002/1000/12346.

M. Brumbulli and E. Gaudin, Optimizing Performance of SDL Systems.
Springer International Publishing, 2016, pp. 100-115.

A. Rossignol, S. Estables, A. Cortier, and D. Thomas, “Model based
Avionics roadmap and case studies,” https://indico.esa.int/indico/event/
148/session/S/contribution/4 1/material/slides/0.pdf, 2016.

European Space Agency, “Applying MBSE to a space mission,” http:
//blogs.esa.int/cleanspace/2017/08/28/applying-mbse-to-a-space-mission,
2017.

T. Le Sergent, F.-X. Dormoy, and A. Le Guennec, “Benefits of Model
Based System Engineering for Avionics Systems,” in 8th European
Congress on Embedded Real Time Software and Systems (ERTS 2016),
2016.

S. Estable, T. Granger, T. Zoebelein, N. Brauer, T. Lochow,
I. Tolchinsky, and S. Genere, “Systems Modelling and Simulation
of the ESA eDeorbit Space Debris Removal Mission,”
https://www.phoenix-int.com/tech_papers/systems-modelling-
simulation-esa-e-deorbit-space-debris-removal-mission, 2017.

http://sci.esa.int/juice
http://sci.esa.int/juice
http://handle.itu.int/11.1002/1000/12846
http://handle.itu.int/11.1002/1000/12846
http://www.ttcn-3.org/index.php/downloads/standards
http://handle.itu.int/11.1002/1000/12346
http://handle.itu.int/11.1002/1000/12346
https://indico.esa.int/indico/event/148/session/5/contribution/41/material/slides/0.pdf
https://indico.esa.int/indico/event/148/session/5/contribution/41/material/slides/0.pdf
http://blogs.esa.int/cleanspace/2017/08/28/applying-mbse-to-a-space-mission
http://blogs.esa.int/cleanspace/2017/08/28/applying-mbse-to-a-space-mission
https://www.phoenix-int.com/tech_papers/systems-modelling-simulation-esa-e-deorbit-space-debris-removal-mission
https://www.phoenix-int.com/tech_papers/systems-modelling-simulation-esa-e-deorbit-space-debris-removal-mission

	Introduction
	Objectives
	Business Objectives
	Project Objectives
	Simulation Objectives

	Technology
	SDL
	TTCN-3
	Simulation

	The JUICE Model
	Behavioral Model
	Controller
	InstrumentStream
	SSMM

	Configurations

	Results
	Related Work
	Conclusion
	References

