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Abstract For the sparse vector model, we consider estimation of
the target vector, of its `2-norm and of the noise variance. We con-
struct adaptive estimators and establish the optimal rates of adaptive
estimation when adaptation is considered with respect to the triplet
"noise level – noise distribution – sparsity". We consider classes of
noise distributions with polynomially and exponentially decreasing
tails as well as the case of Gaussian noise. The obtained rates turn
out to be different from the minimax non-adaptive rates when the
triplet is known. A crucial issue is the ignorance of the noise vari-
ance. Moreover, knowing or not knowing the noise distribution can
also influence the rate. For example, the rates of estimation of the
noise variance can differ depending on whether the noise is Gaus-
sian or sub-Gaussian without a precise knowledge of the distribu-
tion. Estimation of noise variance in our setting can be viewed as an
adaptive variant of robust estimation of scale in the contamination
model, where instead of fixing the "nominal" distribution in advance
we assume that it belongs to some class of distributions.

1. Introduction. This paper considers estimation of the unknown sparse vector, of its
`2-norm and of the noise level in the sparse sequence model. The focus is on construction of
estimators that are optimally adaptive in a minimax sense with respect to the noise level, to
the form of the noise distribution, and to the sparsity.

We consider the model defined as follows. Let the signal θ = (θ1, . . . , θd) be observed with
noise of unknown magnitude σ > 0:

(1) Yi = θi + σξi, i = 1, . . . , d.

The noise random variables ξ1, . . . , ξd are assumed to be i.i.d. and we denote by Pξ the unknown
distribution of ξ1. We assume throughout that the noise is zero-mean, E(ξ1) = 0, and that
E(ξ2

1) = 1, since σ needs to be identifiable. We denote by Pθ,Pξ,σ the distribution of Y =
(Y1, . . . , Yd) when the signal is θ, the noise level is σ and the distribution of the noise variables
is Pξ. We also denote by Eθ,Pξ,σ the expectation with respect to Pθ,Pξ,σ.

We assume that the signal θ is s-sparse, i.e.,

‖θ‖0 =

d∑
i=1

1θi 6=0 ≤ s,

where s ∈ {1, . . . , d} is an integer. Set Θs = {θ ∈ Rd | ‖θ‖0 ≤ s}. We consider the problems of

Keywords and phrases: variance estimation, sparsity in linear regression, functional estimation, robust es-
timation, adaptive estimation, minimax rate
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2 COMMINGES, L., COLLIER, O., NDAOUD, M. AND TSYBAKOV, A.B.

estimating θ under the `2 loss, estimating the variance σ2, and estimating the `2-norm

‖θ‖2 =
( d∑
i=1

θ2
i

)1/2
.

The classical Gaussian sequence model corresponds to the case where the noise ξi is standard
Gaussian (Pξ = N (0, 1)) and the noise level σ is known. Then, the optimal rate of estimation
of θ under the `2 loss in a minimax sense on the class Θs is

√
s log(ed/s) and it is attained by

thresholding estimators [10]. Also, for the Gaussian sequence model with known σ, minimax
optimal estimator of the norm ‖θ‖2 as well as the corresponding minimax rate are available
from [8] (see Table 1).

In this paper, we study estimation of the three objects θ, ‖θ‖2, and σ2 in the following two
settings.

(a) The distribution of ξi and the noise level σ are both unknown. This is the main setting of
our interest. For the unknown distribution of ξi, we consider two types of assumptions.
Either Pξ belongs to a class Ga,τ , i.e., for some a, τ > 0,

(2) Pξ ∈ Ga,τ iff E(ξ1) = 0, E(ξ2
1) = 1 and ∀t ≥ 2, P

(
|ξ1| > t

)
≤ 2e−(t/τ)a ,

which includes for example sub-Gaussian distributions (a = 2), or to a class of distribu-
tions with polynomially decaying tails Pa,τ , i.e., for some τ > 0 and a ≥ 2,

(3) Pξ ∈ Pa,τ iff E(ξ1) = 0, E(ξ2
1) = 1 and ∀t ≥ 2, P

(
|ξ1| > t) ≤

(τ
t

)a
.

We propose estimators of θ, ‖θ‖2, and σ2 that are optimal in non-asymptotic mini-
max sense on these classes of distributions and the sparsity class Θs. We establish the
corresponding non-asymptotic minimax rates. They are given in the second and third
columns of Table 1. We also provide the minimax optimal estimators.

(b) Gaussian noise ξi and unknown σ. The results on the non-asymptotic minimax rates
are summarized in the first column of Table 1. Notice an interesting effect – the rates of
estimation of σ2 and of the norm ‖θ‖2 when the noise is Gaussian are faster than the
optimal rates when the noise is sub-Gaussian. This can be seen by comparing the first
column of Table 1 with the particular case a = 2 of the second column corresponding to
sub-Gaussian noise.

Some comments about Table 1 and additional details are in order.

• The difference between the minimax rates for estimation of θ and estimation of the
`2-norm ‖θ‖2 turns out to be specific for the pure Gaussian noise model. It disappears
for the classes Ga,τ and Pa,τ . This is somewhat unexpected since G2,τ is the class of sub-
Gaussian distributions, and it turns out that ‖θ‖2 is estimated optimally at different
rates for sub-Gaussian and pure Gaussian noise. Another conclusion is that if the noise
is not Gaussian and σ is unknown, the minimax rate for ‖θ‖2 does not have an elbow
between the "dense" (s >

√
d) and the "sparse" (s ≤

√
d) zones.

• For the problem of estimation of variance σ2 with known distribution of the noise Pξ, we
consider a more general setting than (b) mentioned above. We show that when the noise
distribution is exactly known (and satisfies a rather general assumption, not necessarily
Gaussian - can have polynomial tails), then the rate of estimation of σ2 can be as fast
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ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL 3

Gaussian noise Noise in class Ga,τ , Noise in class Pa,τ ,
model

√
s log

1
a (ed/s)

√
s(d/s)

1
a

θ
√
s log(ed/s)

known σ [10]
unknown σ [22] unknown σ unknown σ

‖θ‖2
√
s log(1 +

√
d
s
) ∧ d1/4

√
s log

1
a (ed/s) ∧ d1/4

√
s(d/s)

1
a ∧ d1/4

known σ [8] known σ known σ√
s log(1 +

√
d
s
) ∨
√

s
1+log+(s2/d)

√
s log

1
a (ed/s)

√
s(d/s)

1
a

unknown σ unknown σ unknown σ

1√
d
∨ s

d(1 + log+(s
2/d))

1√
d
∨ s

d
log

2
a

(
ed

s

)
1√
d
∨
( s
d

)1− 2
a

σ2

Table 1
Optimal rates of convergence.

as max
(

1√
d
, sd

)
, which is faster than the optimal rate max

(
1√
d
, sd log

(
ed
s

))
for the class

of sub-Gaussian noise. In other words, the phenomenon of improved rate is not due to
the Gaussian character of the noise but rather to the fact that the noise distribution is
known.
• Our findings show that there is a dramatic difference between the behavior of optimal

estimators of θ in the sparse sequence model and in the sparse linear regression model
with "well spread" regressors. It is known from [11, 2] that in sparse linear regression
with "well spread" regressors (that is, having positive variance), the rates of estimating
θ are the same for the noise with sub-Gaussian and polynomial tails. We show that the
situation is quite different in the sparse sequence model, where the optimal rates are
much slower and depend on the polynomial index of the noise.
• The rates shown in Table 1 for the classes Ga,τ and Pa,τ are achieved on estimators

that are adaptive to the sparsity index s. Thus, knowing or not knowing s does not
influence the optimal rates of estimation when the distribution of ξ and the noise level
are unknown.

We conclude this section by a discussion of related work. Chen, Gao and Ren [7] explore the
problem of robust estimation of variance and of covariance matrix under Hubers’s contamina-
tion model. As explained in Section 4 below, this problem has similarities with estimation of
noise level in our setting. The main difference is that instead of fixing in advance the Gaus-
sian nominal distribution of the contamination model we assume that it belongs to a class
of distributions, such as (2) or (3). Therefore, the corresponding results in Section 4 can be
viewed as results on robust estimation of scale where, in contrast to the classical setting, we
are interested in adaptation to the unknown nominal law. Another aspect of robust estimation
of scale is analyzed by Minsker and Wei [17] who consider classes of distributions similar to
Pa,τ rather than the contamination model. The main aim in [17] is to construct estimators
having sub-Gaussian deviations under weak moment assumptions. Our setting is different in
that we consider the sparsity class Θs of vectors θ and the rates that we obtain depend on s.
Estimation of variance in sparse linear model is discussed in [20] where some upper bounds
for the rates are given. We also mention the recent paper [12] that deals with estimation of
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4 COMMINGES, L., COLLIER, O., NDAOUD, M. AND TSYBAKOV, A.B.

variance in linear regression in a framework that does not involve sparsity, as well as the work
on estimation of signal-to-noise ratio functionals in settings involving sparsity [23, 13] and not
involving sparsity [16]. Papers [9, 6] discuss estimation of other functionals than the `2-norm
‖θ‖2 in the sparse vector model when the noise is Gaussian with unknown variance.

Notation. For x > 0, let bxc denote the maximal integer smaller than x. For a finite set A,
we denote by |A| its cardinality. Let inf T̂ denote the infimum over all estimators. The notation
C, C ′,c, c′ will be used for positive constants that can depend only a and τ and can vary from
line to line.

2. Estimation of sparse vector θ. In this section, we study the problem of estimating
a sparse vector θ in `2-norm when the variance of noise σ and the distribution of ξi are both
unknown. We only assume that the noise distribution belongs a given class, which can be either
a class of distributions with polynomial tails Pa,τ , or a class Ga,τ with exponential decay of
the tails.

First, we introduce a preliminary estimator σ̃2 of σ2 that will be used to define an estimator
of θ. Let γ ∈ (0, 1/2] be a constant that will be chosen small enough and depending only on
a and τ . Divide {1, . . . , d} into m = bγdc disjoint subsets B1, . . . , Bm, each of cardinality
|Bi| ≥ k := bd/mc ≥ 1/γ − 1. Consider the median-of-means estimator

(4) σ̃2 = med(σ̄2
1, . . . , σ̄

2
m), where σ̄2

i =
1

|Bi|
∑
j∈Bi

Y 2
j , i = 1, . . . ,m.

Here, med(σ̄2
1, . . . , σ̄

2
m) denotes the median of σ̄2

1, . . . , σ̄
2
m. The next proposition shows that the

estimator σ̃2 recovers σ2 to within a constant factor.

Proposition 1. Let τ > 0, a > 2. There exist constants γ ∈ (0, 1/2], c > 0 and C > 0
depending only on a and τ such that for any integers s and d satisfying 1 ≤ s < bγdc/4 we
have

inf
Pξ∈Pa,τ

inf
σ>0

inf
‖θ‖0≤s

Pθ,Pξ,σ

(
1/2 ≤ σ̃2

σ2
≤ 3/2

)
≥ 1− exp(−cd),

sup
Pξ∈Pa,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ

∣∣σ̃2 − σ2
∣∣ ≤ Cσ2,

and for a > 4,
sup

Pξ∈Pa,τ
sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ

(
σ̃2 − σ2

)2 ≤ Cσ4.

Note that the result of Proposition 1 also holds for the class Ga,τ for all a > 0 and τ > 0.
Indeed, Ga,τ ⊂ Pa,τ for all a > 2 and τ > 0, while for any 0 < a ≤ 2 and τ > 0, there exist
a′ > 4 and τ ′ > 0 such that Ga,τ ⊂ Pa′,τ ′ .

We further note that assuming s < cd for some 0 < c < 1 is natural in the context of
variance estimation since σ is not identifiable when s = d. In what follows, all upper bounds
on the risks of estimators will be obtained under this assumption.

Consider now an estimator θ̂ defined as follows:

(5) θ̂ ∈ arg min
θ∈Rd

( d∑
i=1

(Yi − θi)2 + σ̃‖θ‖∗
)
.
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ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL 5

Here, ‖ · ‖∗ denotes the sorted `1-norm:

(6) ‖θ‖∗ =
d∑
i=1

λi|θ|(d−i+1),

where |θ|(1) ≤ · · · ≤ |θ|(d) are the order statistics of |θ1|, . . . , |θd|, and λ1 ≥ · · · ≥ λp > 0 are
tuning parameters.

Set

(7) φ∗exp(s, d) =
√
s log1/a(ed/s), φ∗pol(s, d) =

√
s(d/s)1/a.

The next theorem shows that θ̂ estimates θ with the rates φ∗exp(s, d) and φ∗pol(s, d) when the
noise distribution belongs to the class Ga,τ and class Pa,τ , respectively.

Theorem 1. Let s and d be integers satisfying 1 ≤ s < bγdc/4 where γ ∈ (0, 1/2] is the
tuning parameter in the definition of σ̃2. Then for the estimator θ̂ defined by (5) the following
holds.

1. Let τ > 0, a > 0. There exist constants c, C > 0 and γ ∈ (0, 1/2] depending only on
(a, τ) such that if λj = c log1/a(ed/j), j = 1, . . . , d, we have

sup
Pξ∈Ga,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ

(
‖θ̂ − θ‖22

)
≤ Cσ2

(
φ∗exp(s, d)

)2
.

2. Let τ > 0, a > 2. There exist constants c, C > 0 and γ ∈ (0, 1/2] depending only on
(a, τ) such that if λj = c(d/j)1/a, j = 1, . . . , d, we have

sup
Pξ∈Pa,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ

(
‖θ̂ − θ‖22

)
≤ Cσ2

(
φ∗pol(s, d)

)2
.

Furthermore, it follows from the lower bound of Theorem 2 in Section 3 that the rates
φ∗exp(s, d) and φ∗pol(s, d) cannot be improved in a minimax sense. Thus, the estimator θ̂ defined
in (5) achieves the optimal rates in a minimax sense.

From Theorem 1, we can conclude that the optimal rate φ∗pol under polynomially decaying
noise is very different from the optimal rate φ∗exp under exponential tails, in particular, from the
rate under the sub-Gaussian noise. At first sight, this phenomenon seems to contradict some
results in the literature on sparse regression model. Indeed, Gautier and Tsybakov [11] consider
sparse linear regression with unknown noise level σ and show that the Self-Tuned Dantzig
estimator can achieve the same rate as in the case of Gaussian noise (up to a logarithmic
factor) under the assumption that the noise is symmetric and has only a bounded moment
of order a > 2. Belloni, Chernozhukov and Wang [2] show for the same model that a square-
root Lasso estimator achieves analogous behavior under the assumption that the noise has
a bounded moment of order a > 2. However, a crucial condition in [2] is that the design is
"well spread", that is all components of the design vectors are random with positive variance.
The same type of condition is needed in [11] to obtain a sub-Gaussian rate. This condition
of "well spreadness" is not satisfied in the sparse sequence model that we are considering
here. In this model viewed as a special case of linear regression, the design is deterministic,
with only one non-zero component. We see that such a degenerate design turns out to be the
least favorable from the point of view of the convergence rate, while the "well spread" design
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6 COMMINGES, L., COLLIER, O., NDAOUD, M. AND TSYBAKOV, A.B.

is the best one. An interesting general conclusion of comparing our findings to [11] and [2]
is that the optimal rate of convergence of estimators under sparsity when the noise level is
unknown depends dramatically on the properties of the design. There is a whole spectrum of
possibilities between the degenerate and "well spread" designs where a variety of new rates
can arise depending on the properties of the design. Studying them remains an open problem.

3. Estimation of the `2-norm. In this section, we consider the problem of estimation
of the `2-norm of a sparse vector when the variance of the noise and the form of its distribution
are both unknown. We show that the rates φ∗exp(s, d) and φ∗pol(s, d) are optimal in a minimax
sense on the classes Ga,τ and Pa,τ , respectively. We first provide a lower bound on the risks
of any estimators of the `2-norm when the noise level σ is unknown and the unknown noise
distribution Pξ belongs either to Ga,τ or Pa,τ . We denote by L the set of all monotone non-
decreasing functions ` : [0,∞)→ [0,∞) such that `(0) = 0 and ` 6≡ 0.

Theorem 2. Let s, d be integers satisfying 1 ≤ s ≤ d. Let `(·) be any loss function in the
class L. Then, for any a > 0, τ > 0,

(8) inf
T̂

sup
Pξ∈Ga,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ `
(
c(φ∗exp(s, d))−1

∣∣∣ T̂ − ‖θ‖2
σ

∣∣∣) ≥ c′,
and, for any a ≥ 2, τ > 0,

(9) inf
T̂

sup
Pξ∈Pa,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ `
(
c̄(φ∗pol(s, d))−1

∣∣∣ T̂ − ‖θ‖2
σ

∣∣∣) ≥ c̄′.
Here, inf T̂ denotes the infimum over all estimators, and c, c̄ > 0, c′, c̄′ > 0 are constants that
can depend only on `(·), τ and a.

The lower bound (9) implies that the rate of estimation of the `2-norm of a sparse vector
deteriorates dramatically if the bounded moment assumption is imposed on the noise instead,
for example, of the sub-Gaussian assumption.

Note also that (8) and (9) immediately imply lower bounds with the same rates φ∗exp and
φ∗pol for the estimation of the s-sparse vector θ under the `2-norm.

Given the upper bounds of Theorem 1, the lower bounds (8) and (9) are tight for the
quadratic loss, and are achieved by the following plug-in estimator independent of s or σ:

(10) N̂ = ‖θ̂‖2

where θ̂ is defined in (5).
In conclusion, when both Pξ and σ are unknown the rates φ∗exp and φ∗pol defined in (7) are

minimax optimal both for estimation of θ and of the the norm ‖θ‖2.
We now compare these results with the findings in [8] regarding the (nonadaptive) estima-

tion of ‖θ‖2 when ξi have the standard Gaussian distribution (Pξ = N (0, 1)) and σ is known.
It is shown in [8] that in this case the optimal rate of estimation of ‖θ‖2 has the form

φN (0,1)(s, d) = min

{√
s log(1 +

√
d/s), d1/4

}
.

Namely, the following proposition holds.
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ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL 7

Proposition 2 (Gaussian noise, known σ [8]). For any σ > 0 and any integers s, d
satisfying 1 ≤ s ≤ d, we have

cσ2φ2
N (0,1)(s, d) ≤ inf

T̂
sup
‖θ‖0≤s

Eθ,N (0,1),σ

(
T̂ − ‖θ‖2

)2 ≤ Cσ2φ2
N (0,1)(s, d),

where c > 0 and C > 0 are absolute constants and inf T̂ denotes the infimum over all estimators.

We have seen that, in contrast to this result, in the case of unknown Pξ and σ the optimal
rates (7) do not exhibit an elbow at s =

√
d between the "sparse" and "dense" regimes.

Another conclusion is that, in the "dense" zone s >
√
d, adaptation to Pξ and σ is only

possible with a significant deterioration of the rate. On the other hand, for the sub-Gaussian

class G2,τ , in the "sparse" zone s ≤
√
d the non-adaptive rate

√
s log(1 +

√
d/s) differs only

slightly from the adaptive sub-Gaussian rate
√
s log(ed/s); in fact, this difference in the rate

appears only in a vicinity of s =
√
d.

A natural question is whether such a deterioration of the rate is caused by the ignorance
of σ or by the ignorance of the distribution of ξi within the sub-Gaussian class G2,τ . The
answer is that both are responsible. It turns out that if only one of the two ingredients (σ
or the noise distribution) is unknown, then a rate faster than the adaptive sub-Gaussian rate
φ∗exp(s, d) =

√
s log(ed/s) can be achieved. This is detailed in the next two propositions.

Consider first the case of Gaussian noise and unknown σ. Set

φ∗N (0,1)(s, d) = max

{√
s log(1 +

√
d/s),

√
s

1 + log+(s2/d)

}
,

where log+(x) = max(0, log(x)) for any x > 0. We divide the set {1, . . . , d} into two disjoint
subsets I1 and I2 with min (|I1|, |I2|) ≥ bd/2c. Let σ̂2 be the variance estimator defined by
(15), cf. Section 4.1 below, and let σ̂2

med,1, σ̂
2
med,2 be the median estimators (12) corresponding

to the samples (Yi)i∈I1 and (Yi)i∈I2 , respectively. Consider the estimator

(11) N̂∗ =


√∣∣∣∑d

j=1(Y 2
j 1{|Yj |>ρj})− dασ̂2

∣∣∣ if s ≤
√
d,√∣∣∣∑d

j=1 Y
2
j − dσ̂2

∣∣∣ if s >
√
d,

where ρj = 2σ̂med,1

√
2 log(1 + d/s2) if j ∈ I2, ρj = 2σ̂med,2

√
2 log(1 + d/s2) if j ∈ I1 and

α = E
(
ξ2

1 1{|ξ1|>2
√

2 log(1+d/s2)}

)
. Note that Yj is independent of ρj for every j. Note also

that the estimator N̂∗ depends on the preliminary estimator σ̃2 since σ̂ > 0 defined in (15)
depends on it.

Proposition 3 (Gaussian noise, unknown σ). The following two properties hold.

(i) Let s and d be integers satisfying 1 ≤ s < bγdc/4, where γ ∈ (0, 1/2] is the tuning
parameter in the definition of σ̃2. There exist absolute constants C > 0 and γ ∈ (0, 1/2]
such that

sup
σ>0

sup
‖θ‖0≤s

Eθ,N (0,1),σ

(
N̂∗ − ‖θ‖2

)2
≤ Cσ2

(
φ∗N (0,1)(s, d)

)2
.
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8 COMMINGES, L., COLLIER, O., NDAOUD, M. AND TSYBAKOV, A.B.

(ii) Let s and d be integers satisfying 1 ≤ s ≤ d and let `(·) be any loss function in the class
L. Then,

inf
T̂

sup
σ>0

sup
‖θ‖0≤s

Eθ,N (0,1),σ `

(
c(φ∗N (0,1)(s, d))−1

∣∣∣∣ T̂ − ‖θ‖2σ

∣∣∣∣) ≥ c′,
where inf T̂ denotes the infimum over all estimators, and c > 0, c′ > 0 are constants that
can depend only on `(·).

The proof of item (ii) of Proposition 3 (the lower bound) is given in the Supplementary
material.

Proposition 3 establishes the minimax optimality of the rate φ∗N (0,1)(s, d). It also shows
that if σ is unknown, the knowledge of the Gaussian character of the noise leads to an im-
provement of the rate compared to the adaptive sub-Gaussian rate

√
s log(ed/s). However,

the improvement is only in a logarithmic factor.
Consider now the case of unknown noise distribution in Ga,τ and known σ. We show in the

next proposition that in this case the minimax rate is of the form

φ◦exp(s, d) = min{
√
s log

1
a (ed/s), d1/4}

and it is achieved by the estimator

N̂◦exp =


‖θ̂‖2 if s ≤

√
d

log
2
a (ed)

,∣∣∣∑d
j=1 Y

2
j − dσ2

∣∣∣1/2 if s >
√
d

log
2
a (ed)

,

where θ̂ is defined in (5). Note φ◦exp(s, d) can be written equivalently (up to absolute constants)
as min{

√
s log

1
a (ed), d1/4}.

Proposition 4 (Unknown noise in Ga,τ , known σ). Let a, τ > 0. The following two
properties hold.

(i) Let s and d be integers satisfying 1 ≤ s < bγdc/4, where γ ∈ (0, 1/2] is the tuning param-
eter in the definition of σ̃2. There exist constants c, C > 0, and γ ∈ (0, 1/2] depending
only on (a, τ) such that if θ̂ is the estimator defined in (5) with λj = c log

1
a (ed/j) ,

j = 1, . . . , d, then

sup
Pξ∈Ga,τ

sup
‖θ‖0≤s

Eθ,Pξ,σ

(
N̂◦exp − ‖θ‖2

)2
≤ Cσ2

(
φ◦exp(s, d)

)2
.

(ii) Let s and d be integers satisfying 1 ≤ s ≤ d and let `(·) be any loss function in the class
L. Then, there exist constants c > 0, c′ > 0 depending only on `(·), a and τ such that

inf
T̂

sup
Pξ∈Ga,τ

sup
‖θ‖0≤s

Eθ,Pξ,σ `

(
c(φ◦exp(s, d))−1

∣∣∣∣ T̂ − ‖θ‖2σ

∣∣∣∣) ≥ c′,
where inf T̂ denotes the infimum over all estimators.
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ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL 9

Proposition 4 establishes the minimax optimality of the rate φ◦exp(s, d). It also shows that
if the noise distribution is unknown and belongs to Ga,τ , the knowledge of σ leads to an
improvement of the rate compared to the case when σ is unknown. In contrast to the case of
Proposition 3 (Gaussian noise), the improvement here is substantial; it results not only in a
logarithmic but in a polynomial factor in the dense zone s >

√
d

log
2
a (ed)

.

We end this section by considering the case of unknown polynomial noise and known σ.
The next proposition shows that in this case the minimax rate, for a given a > 4, is of the
form

φ◦pol(s, d) = min{
√
s(d/s)

1
a , d1/4}

and it is achieved by the estimator

N̂◦pol =

 ‖θ̂‖2 if s ≤ d
1
2
− 1
a−2 ,∣∣∣∑d

j=1 Y
2
j − dσ2

∣∣∣1/2 if s > d
1
2
− 1
a−2 ,

where θ̂ is defined in (5).

Proposition 5 (Unknown noise in Pa,τ , known σ). Let τ > 0, a > 4. The following two
properties hold.

(i) Let s and d be integers satisfying 1 ≤ s < bγdc/4, where γ ∈ (0, 1/2] is the tuning
parameter in the definition of σ̃2. There exist constants c, C > 0, and γ ∈ (0, 1/2]

depending only on (a, τ) such that if θ̂ is the estimator defined in (5) with λj = c(d/j)
1
a ,

j = 1, . . . , d, then

sup
Pξ∈Pa,τ

sup
‖θ‖0≤s

Eθ,Pξ,σ

(
N̂◦pol − ‖θ‖2

)2
≤ Cσ2

(
φ◦pol(s, d)

)2
.

(ii) Let s and d be integers satisfying 1 ≤ s ≤ d and let `(·) be any loss function in the class
L. Then, there exist constants c > 0, c′ > 0 depending only on `(·), a and τ such that

inf
T̂

sup
Pξ∈Pa,τ

sup
‖θ‖0≤s

Eθ,Pξ,σ `

(
c(φ◦pol(s, d))−1

∣∣∣∣ T̂ − ‖θ‖2σ

∣∣∣∣) ≥ c′,
where inf T̂ denotes the infimum over all estimators.

Note that here, similarly to Proposition 4, the improvement over the case of unknown σ is
in a polynomial factor in the dense zone s > d

1
2
− 1
a−2 .

4. Estimating the variance of the noise.

4.1. Estimating σ2 when the distribution Pξ is known. In the sparse setting when ‖θ‖0 is
small, estimation of the noise level can be viewed as a problem of robust estimation of scale.
Indeed, our aim is to recover the second moment of σξ1 but the sample second moment cannot
be used as an estimator because of the presence of a small number of outliers θi 6= 0. Thus,
the models in robustness and sparsity problems are quite similar but the questions of interest
are different. When robust estimation of σ2 is considered, the object of interest is the pure
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10 COMMINGES, L., COLLIER, O., NDAOUD, M. AND TSYBAKOV, A.B.

noise component of the sparsity model while the non-zero components θi that are of major
interest in the sparsity model play a role of nuisance.

In the context of robustness, it is known that the estimator based on sample median can
be successfully applied. Recall that, when θ = 0, the median M -estimator of scale (cf. [14]) is
defined as

(12) σ̂2
med =

M̂

β

where M̂ is the sample median of (Y 2
1 , . . . , Y

2
d ), that is

M̂ ∈ arg min
x>0

∣∣Fd(x)− 1/2
∣∣,

and β is the median of the distribution of ξ2
1 . Here, Fd denotes the empirical c.d.f. of (Y 2

1 , . . . , Y
2
d ).

When F denotes the c.d.f. of ξ2
1 , it is easy to see that

(13) β = F−1(1/2).

The following proposition specifies the rate of convergence of the estimator σ̂2
med.

Proposition 6. Let ξ2
1 have a c.d.f. F with positive density, and let β be given by (13).

There exist constants γ ∈ (0, 1/8), c > 0, c∗ > 0 and C > 0 depending only on F such that
for any integers s and d satisfying 1 ≤ s < γd and any t > 0 we have

sup
σ>0

sup
‖θ‖0≤s

Pθ,F,σ

(∣∣∣ σ̂2
med

σ2
− 1
∣∣∣ ≥ c∗(√ t

d
+
s

d

))
≤ 2(e−t + e−cd),

and if E|ξ1|2+ε <∞ for some ε > 0. Then,

sup
σ>0

sup
‖θ‖0≤s

Eθ,F,σ

∣∣σ̂2
med − σ2

∣∣
σ2

≤ C max

(
1√
d
,
s

d

)
.

The main message of Proposition 6 is that the rate of convergence of σ̂2
med in probability

and in expectation is as fast as

(14) max

(
1√
d
,
s

d

)
and it does not depend on F when F varies in a large class. The role of Proposition 6 is to
contrast the subsequent results of this section dealing with unknown distribution of noise and
providing slower rates. It emphasizes the fact that the knowledge of the noise distribution is
crucial as it leads to an improvement of the rate of estimating the variance.

However, the rate (14) achieved by the median estimator is not necessarily optimal. As
shown in the next proposition, in the case of Gaussian noise the optimal rate is even better:

φN (0,1)(s, d) = max

{
1√
d
,

s

d(1 + log+(s2/d))

}
.
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ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL 11

This rate is attained by an estimator that we are going to define now. We use the ob-
servation that, in the Gaussian case, the modulus of the empirical characteristic function
ϕd(t) = 1

d

∑d
i=1 e

itYj is to within a constant factor of the Gaussian characteristic function
exp(− t2σ2

2 ) for any t. This suggests the estimator

ṽ2 = −2 log(|ϕd(t̂1)|)
t̂21

,

with a suitable choice of t = t̂1 that we further set as follows:

t̂1 =
1

σ̃

√
log
(
4(es/

√
d+ 1)

)
,

where σ̃ is the preliminary estimator (4) with some tuning parameter γ ∈ (0, 1/2]. The final
variance estimator is defined as a truncated version of ṽ2:

(15) σ̂2 =

{
ṽ2 if |ϕd(t̂1)| > (es/

√
d+ 1)−1/4,

σ̃2 otherwise.

Proposition 7 (Gaussian noise). The following two properties hold.

(i) Let s and d be integers satisfying 1 ≤ s < bγdc/4, where γ ∈ (0, 1/2] is the tuning
parameter in the definition of σ̃2. There exist absolute constants C > 0 and γ ∈ (0, 1/2]
such that the estimator σ̂2 defined in (15) satisfies

sup
σ>0

sup
‖θ‖0≤s

Eθ,N (0,1),σ

∣∣σ̂2 − σ2
∣∣

σ2
≤ CφN (0,1)(s, d).

(ii) Let s and d be integers satisfying 1 ≤ s ≤ d and let `(·) be any loss function in the class
L. Then,

inf
T̂

sup
σ>0

sup
‖θ‖0≤s

Eθ,N (0,1),σ `

(
c(φN (0,1)(s, d))−1

∣∣∣∣ T̂σ2
− 1

∣∣∣∣) ≥ c′,
where inf T̂ denotes the infimum over all estimators, and c > 0, c′ > 0 are constants that
can depend only on `(·).

Estimators of variance or covariance matrix based on the empirical characteristic function
have been studied in several papers [4, 5, 3, 6]. The setting in [4, 5, 3] is different from the ours
as those papers deal with the model where the non-zero components of θ are random with
a smooth distribution density. The estimators in [4, 5] are also quite different. On the other
hand, [3, 6] consider estimators close to ṽ2. In particular, [6] uses a similar pilot estimator for
testing in the sparse vector model where it is assumed that σ ∈ [σ−, σ+], 0 < σ− < σ+ <∞,
and the estimator depends on σ+. Although [6] does not provide explicitly stated result about
the rate of this estimator, the proofs in [6] come close to it and we believe that it satisfies an
upper bound as in item (i) of Proposition 7 with supσ>0 replaced by supσ∈[σ−,σ+].

4.2. Distribution-free variance estimators. The main drawback of the estimator σ̂2
med is

the dependence on the parameter β. It reflects the fact that the estimator is tailored for a
given and known distribution of noise F . Furthermore, as shown below, the rate (14) cannot
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12 COMMINGES, L., COLLIER, O., NDAOUD, M. AND TSYBAKOV, A.B.

be achieved if it is only known that F belongs to one of the classes of distributions that we
consider in this paper.

Instead of using one particular quantile, like the median in Section 4.1, one can estimate σ2

by an integral over all quantiles, which allows one to avoid considering distribution-dependent
quantities like (13).

Indeed, with the notation qα = G−1(1 − α) where G is the c.d.f. of (σξ1)2 and 0 < α < 1,
the variance of the noise can be expressed as

σ2 = E(σξ1)2 =

∫ 1

0
qα dα.

Discarding the higher order quantiles that are dubious in the presence of outliers and replacing
qα by the empirical quantile q̂α of level α we obtain the following estimator

(16) σ̂2 =

∫ 1−s/d

0
q̂α dα =

1

d

d−s∑
k=1

Y 2
(k),

where Y 2
(1) ≤ . . . ≤ Y 2

(d) are the ordered values of the squared observations Y 2
1 , . . . , Y

2
d . Note

that σ̂2 is an L-estimator, cf. [14]. Also, up to a constant factor, σ̂2 coincides with the statistic
used in Collier, Comminges and Tsybakov [8] .

The following theorem provides an upper bound on the risk of the estimator σ̂2 under the
assumption that the noise belongs to the class Ga,τ . Set

φexp(s, d) = max

(
1√
d
,
s

d
log2/a

(
ed

s

))
.

Theorem 3. Let τ > 0, a > 0, and let s, d be integers satisfying 1 ≤ s < d/2. Then, the
estimator σ̂2 defined in (16) satisfies

(17) sup
Pξ∈Ga,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ

(
σ̂2 − σ2

)2
σ4

≤ Cφ2
exp(s, d)

where C > 0 is a constant depending only on a and τ .

The next theorem establishes the performance of variance estimation in the case of distri-
butions with polynomially decaying tails. Set

φpol(s, d) = max

(
1√
d
,
(s
d

)1− 2
a

)
.

Theorem 4. Let τ > 0, a > 4, and let s, d be integers satisfying 1 ≤ s < d/2. Then, the
estimator σ̂2 defined in (16) satisfies

(18) sup
Pξ∈Pa,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ

(
σ̂2 − σ2

)2
σ4

≤ Cφ2
pol(s, d),

where C > 0 is a constant depending only on a and τ .
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ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL 13

We assume here that the noise distribution has a moment of order greater than 4, which is
close to the minimum requirement since we deal with the expected squared error of a quadratic
function of the observations.

We now state the lower bounds matching the results of Theorems 3 and 4.

Theorem 5. Let τ > 0, a > 0, and let s, d be integers satisfying 1 ≤ s ≤ d. Let `(·) be
any loss function in the class L. Then,

(19) inf
T̂

sup
Pξ∈Ga,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ `
(
c(φexp(s, d))−1

∣∣∣ T̂
σ2
− 1
∣∣∣) ≥ c′,

where inf T̂ denotes the infimum over all estimators and c > 0, c′ > 0 are constants depending
only on `(·), a and τ .

Theorems 3 and 5 imply that the estimator σ̂2 is rate optimal in a minimax sense when the
noise belongs to Ga,τ , in particular when it is sub-Gaussian. Interestingly, an extra logarithmic
factor appears in the optimal rate when passing from the pure Gaussian distribution of ξi’s
(cf. Proposition 7) to the class of all sub-Gaussian distributions. This factor can be seen as
a price to pay for the lack of information regarding the exact form of the distribution. Also
note that this logarithmic factor vanishes as a→∞.

Under polynomial tail assumption on the noise, we have the following minimax lower bound.

Theorem 6. Let τ > 0, a ≥ 2, and let s, d be integers satisfying 1 ≤ s ≤ d. Let `(·) be
any loss function in the class L. Then,

(20) inf
T̂

sup
Pξ∈Pa,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ `
(
c(φpol(s, d))−1

∣∣∣ T̂
σ2
− 1
∣∣∣) ≥ c′

where inf T̂ denotes the infimum over all estimators and c > 0, c′ > 0 are constants depending
only on `(·), a and τ .

This theorem shows that the rate φpol(s, d) obtained in Theorem 4 cannot be improved in
a minimax sense.

A drawback of the estimator defined in (16) is in the lack of adaptivity to the sparsity
parameter s. At first sight, it may seem that the estimator

(21) σ̂2
∗ =

2

d

∑
1≤k≤d/2

Y 2
(k)

could be taken as its adaptive version. However, σ̂2
∗ is not a good estimator of σ2 as can be

seen from the following proposition.

Proposition 8. Define σ̂2
∗ as in (21). Let τ > 0, a ≥ 2, and let s, d be integers satisfying

1 ≤ s ≤ d, and d = 4k for an integer k. Then,

sup
Pξ∈Ga,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ

(
σ̂2
∗ − σ2

)2
σ4

≥ 1

64
.
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14 COMMINGES, L., COLLIER, O., NDAOUD, M. AND TSYBAKOV, A.B.

On the other hand, it turns out that a simple plug-in estimator

(22) σ̂2 =
1

d
‖Y − θ̂‖22

with θ̂ chosen as in Section 2 achieves rate optimality adaptively to the noise distribution and
to the sparsity parameter s. This is detailed in the next theorem.

Theorem 7. Let s and d be integers satisfying 1 ≤ s < bγdc/4, where γ ∈ (0, 1/2] is the
tuning parameter in the definition of σ̃2. Let σ̂2 be the estimator defined by (22) where θ̂ is
defined in (5). Then the following properties hold.

1. Let τ > 0, a > 0. There exist constants c, C > 0 and γ ∈ (0, 1/2] depending only on
(a, τ) such that if λj = c log1/a(ed/j), j = 1, . . . , d, we have

sup
Pξ∈Pa,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ

∣∣σ̂2 − σ2
∣∣ ≤ Cσ2φexp(s, d).

2. Let τ > 0, a > 4. There exist constants c, C > 0 and γ ∈ (0, 1/2] depending only on
(a, τ) such that if λj = c(d/j)1/a, j = 1, . . . , d, we have

sup
Pξ∈Pa,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ

∣∣σ̂2 − σ2
∣∣ ≤ Cσ2φpol(s, d).

5. Proofs of the upper bounds.

5.1. Proof of Proposition 1. Fix θ ∈ Θs and let S be the support of θ. We will call outliers
the observations Yi with i ∈ S. There are at least m−s blocks Bi that do not contain outliers.
Denote by J a set of m− s indices i, for which Bi contains no outliers.

As a > 2, there exist constants L = L(a, τ) and r = r(a, τ) ∈ (1, 2] such that E|ξ2
1−1|r ≤ L.

Using von Bahr-Esseen inequality (cf. [18]) and the fact that |Bi| ≥ k we get

P
(∣∣∣ 1

|Bi|
∑
j∈Bi

ξ2
j − 1

∣∣∣ > 1/2
)
≤ 2r+1L

kr−1
, i = 1, . . . ,m.

Hence, there exists a constant C1 = C1(a, τ) such that if k ≥ C1 (i.e., if γ is small enough
depending on a and τ), then

Pθ,Pξ,σ(σ̄2
i /∈ I) ≤ 1

4
, i = 1, . . . ,m,(23)

where I = [σ
2

2 ,
3σ2

2 ]. Next, by the definition of the median, for any interval I ⊆ R we have

Pθ,Pξ,σ(σ̃2 /∈ I) ≤ Pθ,Pξ,σ

( m∑
i=1

1σ̄2
i /∈I
≥ m

2

)
≤ Pθ,Pξ,σ

(∑
i∈J

1σ̄2
i /∈I
≥ m

2
− s
)
.(24)

Now, s ≤ bγdc
4 = m

4 , so that m
2 − s ≥ m−s

3 . Set ηi = 1σ̄2
i /∈I

, i ∈ J . Due to (23) we have
E(ηi) ≤ 1/4, and (ηi, i ∈ J) are independent. Using these remarks and Hoeffding’s inequality
we find

P
(∑
i∈J

ηi ≥
m

2
− s
)
≤ P

(∑
i∈J

(ηi −E(ηi)) ≥
m− s

12

)
≤ exp(−C(m− s)).
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ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL 15

Note that |J | = m− s ≥ 3m/4 = 3bγdc/4. Thus, if γ is chosen small enough depending only
on a and τ then

Pθ,Pξ,σ(σ̃2 /∈ I) ≤ exp(−Cd).

This proves the desired bound in probability. To obtain the bounds in expectation, set Z =∣∣σ̃2 − σ2
∣∣. Let first a > 4 and take some r ∈ (1, a/4). Then

Eθ,Pξ,σ

(
Z2
)
≤ σ4

4
+ Eθ,Pξ,σ

(
Z21

Z≥σ2
2

)
≤ 9σ4

4
+ 2

(
Eθ,Pξ,σ

(
σ̃4r
))1/r (

Pθ,Pξ,σ

(
Z ≥ σ2/2

))1−1/r

≤ 9σ4

4
+ 2

(
Eθ,Pξ,σ

(
σ̃4r
))1/r

exp(−Cd).

Since m ≥ 4s, we can easily argue that σ̃4r ≤
∑

i∈J σ̄
4r
i . It follows that

Eθ,Pξ,σ

(
σ̃4r
)
≤ Cσ4rd2.

Hence Eθ,Pξ,σ

(
Z2
)
≤ Cσ4. Similarly, if a > 2, then Eθ,Pξ,σ (Z) ≤ Cσ2.

5.2. Proof of Theorem 1. Set u = θ̂ − θ. It follows from Lemma A.2 in [1] that

2‖u‖22 ≤ 2σ

d∑
i=1

ξiui + σ̃‖θ‖∗ − σ̃‖θ̂‖∗,

where ui are the components of u. Next, Lemma A.1 in [1] yields

‖θ‖∗ − ‖θ̂‖∗ ≤
( s∑
j=1

λ2
j

)1/2
‖u‖2 −

d∑
j=s+1

λj |u|(d−j+1)

where |u|(k) is the kth order statistic of |u1|, . . . , |ud|. Combining these two inequalities we get

(25) 2‖u‖22 ≤ 2σ
d∑
j=1

ξjuj + σ̃
{( s∑

j=1

λ2
j

)1/2
‖u‖2 −

d∑
j=s+1

λj |u|(d−j+1)

}
.

For some permutation (ϕ(1), . . . , ϕ(d)) of (1, . . . , d), we have

(26)
∣∣∣ d∑
i=1

ξjuj

∣∣∣ ≤ d∑
j=1

|ξ|(d−j+1)|uϕ(j)| ≤
d∑
j=1

|ξ|(d−j+1)|u|(d−j+1),

where the last inequality is due to the fact that the sequence |ξ|(d−j+1) is non-increasing.
Hence

2‖u‖22 ≤ 2σ

s∑
j=1

|ξ|(d−j+1)|u|(d−j+1) + σ̃
( s∑
j=1

λ2
j

)1/2
‖u‖2 +

d∑
j=s+1

(
2σ|ξ|(d−j+1) − σ̃λj

)
|u|(d−j+1)

≤

2σ
( s∑
j=1

|ξ|2(d−j+1)

)1/2
+ σ̃

( s∑
j=1

λ2
j

)1/2
+
( d∑
j=s+1

(
2σ|ξ|(d−j+1) − σ̃λj

)2
+

)1/2

 ‖u‖2.
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16 COMMINGES, L., COLLIER, O., NDAOUD, M. AND TSYBAKOV, A.B.

This implies

‖u‖22 ≤ C

σ2
s∑
j=1

|ξ|2(d−j+1) + σ̃2
s∑
j=1

λ2
j +

d∑
j=s+1

(
2σ|ξ|(d−j+1) − σ̃λj

)2
+

 .

From Lemmas 1 and 2 we have E(|ξ|2(d−j+1)) ≤ Cλ
2
j . Using this and Proposition 1 we obtain

(27) Eθ,Pξ,σ

(
‖u‖22

)
≤ C

σ2
s∑
j=1

λ2
j + Eθ,Pξ,σ

(
d∑

j=s+1

(
2σ|ξ|(d−j+1) − σ̃λj

)2
+

) .

Define the events Aj =
{
|ξ|(d−j+1) ≤ λj/4

}
∩
{

1/2 ≤ σ̃2/σ2 ≤ 3/2
}

for j = s + 1, . . . , d.
Then

Eθ,Pξ,σ

 d∑
j=s+1

(
2σ|ξ|(d−j+1) − σ̃λj

)2
+

 ≤ 4σ2Eθ,Pξ,σ

 d∑
j=s+1

|ξ|2(d−j+1)1Acj

 .

Fixing some 1 < r < a/2 we get

Eθ,Pξ,σ

 d∑
j=s+1

(
2σ|ξ|(d−j+1) − σ̃λj

)2
+

 ≤ 4σ2
d∑

j=s+1

E
(
|ξ|2r(d−j+1)

)1/r
Pθ,Pξ,σ

(
Acj
)1−1/r

.

Lemmas 1, 2 and the definitions of parameters λj imply that

E
(
|ξ|2r(d−j+1)

)1/r
≤ Cλ2

s, j = s+ 1, . . . , d.

Furthermore, it follows from the proofs of Lemmas 1 and 2 that if the constant c in the
definition of λj is chosen large enough, then P(|ξ|(d−j+1) > λj/4) ≤ qj for some q < 1/2

depending only on a and τ . This and Proposition 1 imply that Pθ,Pξ,σ(Acj) ≤ e−cd + qj .
Hence,

Eθ,Pξ,σ

 d∑
j=s+1

(
2σ|ξ|(d−j+1) − σ̃λj

)2
+

 ≤ Cσ2λ2
s

d∑
j=s+1

(e−cd + qj)1−1/r ≤ C ′σ2
s∑
j=1

λ2
j .

Combining this inequality with (27) we obtain

(28) Eθ,Pξ,σ

(
‖u‖22

)
≤ Cσ2

s∑
j=1

λ2
j .

To complete the proof, it remains to note that
∑s

j=1 λ
2
j ≤ C(φ∗pol(s, d))2 in the polynomial

case and
∑s

j=1 λ
2
j ≤ C(φ∗exp(s, d))2 in the exponential case, cf. Lemma 3.
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5.3. Proof of part (i) of Proposition 3. We consider separately the "dense" zone s >
√
d

and the "sparse" zone s ≤
√
d. Let first s >

√
d. Then the rate φ∗N (0,1)(s, d) is of order√

s
1+log+(s2/d)

. Thus, for s >
√
d we need to prove that

(29) sup
σ>0

sup
‖θ‖0≤s

Eθ,N (0,1),σ

(∣∣∣∣N̂∗ − ‖θ‖2σ

∣∣∣∣2) ≤ Cs

1 + log+(s2/d)
.

Denoting ξ = (ξ1, . . . , ξd) we have

∣∣∣N̂∗ − ‖θ‖2∣∣∣ =

∣∣∣∣∣∣∣ d∑
j=1

Y 2
j − dσ̂2

∣∣∣1/2 − ‖θ‖2∣∣∣∣(30)

=

∣∣∣∣√∣∣‖θ‖22 + 2σ(θ, ξ) + σ2‖ξ‖22 − dσ̂2
∣∣− ‖θ‖2∣∣∣∣

≤
∣∣∣∣√∣∣‖θ‖22 + 2σ(θ, ξ)

∣∣− ‖θ‖2∣∣∣∣+ σ
√∣∣‖ξ‖22 − d∣∣+

√
d|σ2 − σ̂2|.

The first term in the last line vanishes if θ = 0, while for θ 6= 0 it is bounded as follows:

(31)
∣∣∣∣√∣∣‖θ‖22 + 2σ(θ, ξ)

∣∣− ‖θ‖2∣∣∣∣ = ‖θ‖2
∣∣∣∣
√∣∣∣1 +

2σ(θ, ξ)

‖θ‖22

∣∣∣− 1

∣∣∣∣ ≤ 2σ|(θ, ξ)|
‖θ‖2

where we have used the inequality |
√
|1 + x| − 1| ≤ |x|, ∀x ∈ R. Since here |(θ, ξ)|/‖θ‖2 ∼

N (0, 1) we have, for all θ,

(32) E

(∣∣∣∣√∣∣‖θ‖22 + 2σ(θ, ξ)
∣∣− ‖θ‖2∣∣∣∣2

)
≤ 4σ2,

and since ‖ξ‖22 has a chi-square distribution with d degrees of freedom we have

E
(∣∣‖ξ‖22 − d∣∣) ≤

(
E
(∣∣‖ξ‖22 − d∣∣2))1/2

=
√

2d.

Next, by Proposition 7 we have that, for s >
√
d,

(33) sup
σ>0

sup
‖θ‖0≤s

Eθ,N (0,1),σ

(∣∣∣ σ̂2

σ2
− 1
∣∣∣) ≤ Cs

d(1 + log+(s2/d))

for some absolute constant C > 0. Combining (30) – (33) yields (29).
Let now s ≤

√
d. Then the rate φ∗N (0,1)(s, d) is of order

√
s log(1 + d/s2). Thus, for s ≤

√
d

we need to prove that

(34) sup
σ>0

sup
‖θ‖0≤s

Eθ,N (0,1),σ

(∣∣∣∣N̂∗ − ‖θ‖2σ

∣∣∣∣2) ≤ Cs log(1 + d/s2).
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18 COMMINGES, L., COLLIER, O., NDAOUD, M. AND TSYBAKOV, A.B.

We have∣∣∣N̂∗ − ‖θ‖2∣∣∣ =

∣∣∣∣∣∣∣ d∑
j=1

(Y 2
j 1{|Yj |>ρj})− dασ̂

2
∣∣∣1/2 − ‖θ‖2∣∣∣∣(35)

=

∣∣∣∣∣∣∣∑
j∈S

(Y 2
j 1{|Yj |>ρj}) + σ2

∑
j 6∈S

(ξ2
j 1{σ|ξj |>ρj})− dασ̂

2
∣∣∣1/2 − ‖θ‖2∣∣∣∣

≤

∣∣∣∣∣∣
√∑

j∈S
(Y 2
j 1{|Yj |>ρj})− ‖θ‖2

∣∣∣∣∣∣+

∣∣∣∣∣∣σ2
∑
j 6∈S

(ξ2
j 1{σ|ξj |>ρj})− dασ̂

2

∣∣∣∣∣∣
1/2

.

Here, ∣∣∣∣∣∣
√∑

j∈S
(Y 2
j 1{|Yj |>ρj})− ‖θ‖2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
√∑

j∈S
(Yj 1{|Yj |>ρj} − θj)2

∣∣∣∣∣∣(36)

≤
√∑

j∈S
ρ2
j + σ

√∑
j∈S

ξ2
j .

Hence, writing for brevity Eθ,N (0,1),σ = E, we get

E

∣∣∣∣∣∣
√∑

j∈S
(Y 2
j 1{|Yj |>ρj})− ‖θ‖2

∣∣∣∣∣∣
2 ≤ 16E

(
σ̂2
med,1 + σ̂2

med,2

)
s log

(
1 + d/s2

)
+ 2σ2s

≤ Cσ2s log(1 + d/s2),

where we have used the fact that E
(
|σ̂2

med,k − σ2|
)
≤ Cσ2, k = 1, 2, by Proposition 6. Next,

we study the term Γ =
∣∣∣σ2
∑

j 6∈S(ξ2
j 1{σ|ξj |>ρj})− dασ̂2

∣∣∣. We first write

Γ ≤

∣∣∣∣∣∣σ2
∑
j 6∈S

ξ2
j ( 1{σ|ξj |>ρj} − 1{σ|ξj |>t∗})

∣∣∣∣∣∣+

∣∣∣∣∣∣σ2
∑
j 6∈S

(ξ2
j 1{σ|ξj |>t∗})− dασ̂

2

∣∣∣∣∣∣ ,(37)

where t∗ = 2σ
√

2 log(1 + d/s2). For the second summand on the right hand side of (37) we
have∣∣∣∣∣∣σ2
∑
j 6∈S

(ξ2
j 1{σ|ξj |>t∗})− dασ̂

2

∣∣∣∣∣∣ ≤ σ2

∣∣∣∣∣∣
∑
j 6∈S

(ξ2
j 1{σ|ξj |>t∗})− (d− |S|)α

∣∣∣∣∣∣+ ∣∣σ2 − σ̂2
∣∣ dα+ |S|ασ2,

where |S| denotes the cardinality of S. By Proposition 7 we have E(|σ̂2 − σ2|) ≤ C/
√
d for

s ≤
√
d. Hence,

E

∣∣∣∣∣∣σ2
∑
j 6∈S

(ξ2
j 1{σ|ξj |>t∗})− dασ̂

2

∣∣∣∣∣∣ ≤ σ2

√
dE
(
ξ4

1 1{|ξ1|>
√

2 log(1+d/s2)}

)
+ Cασ2

(√
d+ s

)
.
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It is not hard to check (cf., e.g., [8, Lemma 4]) that, for s ≤
√
d,

α ≤ C(log
(
1 + d/s2

)
)1/2 s

2

d
,

and

E
(
ξ4

1 1{|ξ1|>
√

2 log(1+d/s2)}

)
≤ C(log

(
1 + d/s2

)
)3/2 s

2

d
,

so that

E

∣∣∣∣∣∣σ2
∑
j 6∈S

(ξ2
j 1{σ|ξj |>t∗})− dασ̂

2

∣∣∣∣∣∣ ≤ Cσ2s log(1 + d/s2).

Thus, to complete the proof it remains to show that

(38) σ2
∑
j 6∈S

E
∣∣∣ξ2
j (1{σ|ξj |>ρj} − 1{σ|ξj |>t∗})

∣∣∣ ≤ Cσ2s log(1 + d/s2).

Recall that ρj is independent from ξj . Hence, conditioning on ρj we obtain

σ2E
(∣∣∣ξ2

j (1{σ|ξj |>ρj} − 1{σ|ξj |>t∗})
∣∣∣ ρj) ≤ |ρ2

j − t2∗|e−t
2
∗/(8σ

2) + σ21{ρj<t∗/2},(39)

where we have used the fact that, for b > a > 0,∫ b

a
x2e−x

2/2dx ≤
∫ b

a
xe−x

2/4dx ≤ |b2 − a2|e−min(a2,b2)/4/2.

Using Proposition 6 and definitions of ρj and t∗, we get that, for s ≤
√
d,

E
(
|ρ2
j − t2∗|

)
e−t

2
∗/(8σ

2) ≤ 8 max
k=1,2

E(|σ̂2
med,k − σ2|)s

2

d
log(1 + d/s2)(40)

≤ Cσ2 s

d
log(1 + d/s2).

Next, it follows from Proposition 6 that there exists γ ∈ (0, 1/8) small enough such that
for s ≤ γd we have maxk=1,2 P(σ̂2

med,k < σ2/2) ≤ 2e−cγd where cγ > 0 is a constant. Thus,
σ2P(ρj < t∗/2) ≤ 2σ2e−cγd ≤ Cσ2(s/d) log(1 + d/s2). Combining this with (39) and (40)
proves (38).

5.4. Proof of part (i) of Proposition 4 and part (i) of Proposition 5. We only prove Propo-
sition 4 since the proof of Proposition 5 is similar taking into account that E(ξ4

1) < ∞. We
consider separately the "dense" zone s >

√
d

log
2
a (ed)

and the "sparse" zone s ≤
√
d

log
2
a (ed)

. Let first

s >
√
d

log
2
a (ed)

. Then the rate φ◦exp(s, d) is of order d1/4 and thus we need to prove that

sup
Pξ∈Ga,τ

sup
‖θ‖0≤s

Eθ,Pξ,σ

(
|N̂◦exp − ‖θ‖2|2

)
≤ Cσ2

√
d.

Since σ is known, arguing similarly to (30) - (31) we find

|N̂◦exp − ‖θ‖2| ≤
∣∣∣∣2σ|(θ, ξ)|
‖θ‖2

∣∣∣∣1θ 6=0 + σ
√∣∣‖ξ‖22 − d∣∣.
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As E(ξ4
1) <∞, this implies

Eθ,Pξ,σ

(
|N̂◦exp − ‖θ‖2|2

)
≤ 8σ2 + Cσ2

√
d,

which proves the result in the dense case. Next, in the sparse cas s ≤
√
d

log
2
a (ed)

, we need to

prove that
sup

Pξ∈Ga,τ
sup
‖θ‖0≤s

Eθ,Pξ,σ

(
|N̂◦exp − ‖θ‖2|2

)
≤ Cσ2s log

2
a (ed).

This is immediate by Theorem 1 and the fact that |N̂◦exp − ‖θ‖2|2 ≤ ‖θ̂ − θ‖22 for the plug-in
estimator N̂◦exp = ‖θ̂‖2.

5.5. Proof of Proposition 6. Denote by G the cdf of (σξ1)2 and by Gd the empirical cdf of
((σξi)

2 : i 6∈ S), where S is the support of θ. Let M be the median of G, that is G(M) = 1/2.
By the definition of M̂ ,

(41) |Fd(M̂)− 1/2| ≤ |Fd(M)− 1/2|.

It is easy to check that |Fd(x)−Gd(x)| ≤ s/d for all x > 0. Therefore,

(42) |Gd(M̂)− 1/2| ≤ |Gd(M)− 1/2|+ 2s/d.

The DKW inequality [24, page 99], yields that P(supx∈R |Gd(x) − G(x)| ≥ u) ≤ 2e−2u2(d−s)

for all u > 0. Fix t > 0 such that
√

t
d + s

d ≤ 1/8, and consider the event

A :=

{
sup
x∈R
|Gd(x)−G(x)| ≤

√
t

2(d− s)

}
.

Then, P(A) ≥ 1− 2e−t. On the event A, we have

(43) |G(M̂)− 1/2| ≤ |G(M)− 1/2|+ 2

(√
t

2(d− s)
+
s

d

)
≤ 2

(√
t

d
+
s

d

)
≤ 1

4
,

where the last two inequalities are due to the fact that G(M) = 1/2 and to the assumption
about t. Notice that

(44) |G(M̂)− 1/2| = |G(M̂)−G(M)| =
∣∣F (M̂/σ2)− F (M/σ2)

∣∣.
Using (43), (44) and the fact that M = σ2F−1(1/2) we obtain that, on the event A,

(45) F−1(1/4) ≤ M̂/σ2 ≤ F−1(3/4).

This and (44) imply

(46) |G(M̂)− 1/2| ≥ c∗∗
∣∣M̂/σ2 −M/σ2

∣∣ = c∗∗β
∣∣σ̂2

med/σ
2 − 1

∣∣.
where c∗∗ = minx∈[F−1(1/4),F−1(3/4)] F

′(x) > 0, and β = F−1(1/2). Combining the last in-
equality with (43) we get that, on the event A,

∣∣σ̂2
med/σ

2 − 1
∣∣ ≤ c−1

∗∗ β

(√
t

d
+
s

d

)
.
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Recall that we assumed that
√

t
d + s

d ≤ 1/8. Thus, there exists a constant c∗ > 0 depending

only on F such that for t > 0 and integers s, d satisfying
√

t
d + s

d ≤ 1/8 we have

(47) sup
σ>0

sup
‖θ‖0≤s

Pθ,F,σ

(∣∣∣ σ̂2
med

σ2
− 1
∣∣∣ ≥ c∗(√ t

d
+
s

d

))
≤ 2e−t.

This and the assumption that s
d ≤ γ < 1/8 imply the result of the proposition in probability.

We now prove the result in expectation. Set Z =
∣∣σ̂2

med − σ2
∣∣ /σ2. We have

Eθ,F,σ (Z) ≤ c∗s/d+

∫ c∗/8

c∗s/d
Pθ,F,σ (Z > u) du+ Eθ,F,σ

(
Z1Z≥c∗/8

)
.

Using (47), we get ∫ c∗/8

c∗s/d
Pθ,F,σ (Z > u) du ≤ 2c∗√

d

∫ ∞
0

e−t
2
dt ≤ C√

d
.

As s < d/2, one may check that σ̂2+ε
med ≤

(
maxi 6∈S(σξi)

2/β
)1+ε/2 ≤ (σ2/β)1+ε/2

∑d
i=1 |ξi|2+ε.

Since E|ξ1|2+ε <∞ this yields Eθ,F,σ

(
Z1+ε

)
≤ Cd. It follows that

Eθ,F,σ

(
Z1Z≥c∗/8

)
≤
(
Eθ,F,σ

(
Z1+ε

))1/(1+ε)
Pθ,F,σ (Z ≥ c∗/8)ε/(1+ε) ≤ Cde−d/C .

Combining the last three displays yields the desired bound in expectation.

5.6. Proof of part (i) of Proposition 7. In this proof, we write for brevity E = Eθ,σ,N (0,1)

and P = Pθ,σ,N (0,1). Set

ϕd(t) =
1

d

d∑
i=1

eitYj , ϕ(t) = E(ϕd(t)), ϕ0(t) = e−
t2σ2

2 .

Since s/d < 1/8 and ϕ(t) = ϕ0(t)
(
1− |S|d + 1

d

∑
j∈S exp(iθjt)

)
, we have

(48)
3

4
ϕ0(t) ≤

(
1− 2s

d

)
ϕ0(t) ≤ |ϕ(t)| ≤ ϕ0(t).

Consider the events

B1 =
{
σ2/2 ≤ σ̃2 ≤ 3σ2/2

}
and Au =

{
sup
v∈R
|ϕd(v)− ϕ(v)| ≤

√
u

d

}
, u > 0.

By Proposition 1, B1 holds with probability at least 1− e−cd if the tuning parameter γ in the
definition of σ̃2 is small enough. Using Hoeffding’s inequality, it is not hard to check that Au
holds with probability at least 1− 4e−u. Moreover,

(49) E
(√

d sup
v∈R
|ϕd(v)− ϕ(v)|

)
≤ C.

Notice that on the event D = {|ϕd(t̂1)| > (es/
√
d+ 1)−1/4} we have σ̂2 = ṽ2 ≤ 2σ̃2. First, we

bound the risk restricted to D ∩ Bc1. We have

E
(
|σ̂2 − σ2|1D∩Bc1

)
≤ E

(
|2σ̃2 + σ2|1Bc1

)
.
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Thus, using the Cauchy-Schwarz inequality and Proposition 1 we find

(50) E
(
|σ̂2 − σ2|1D∩Bc1

)
≤ Cσ2e−d/C ≤ C ′σ2

√
d
.

Next, we bound the risk restricted to Dc. It will be useful to note that Alog d∩B1 ⊂ D. Indeed,
on Alog d ∩ B1, using the assumption s < d/8 we have

|ϕd(t̂1)| ≥ 3

4
ϕ0(t̂1)−

√
log d

d
≥ 3

4(es/
√
d+ 1)1/3

−
√

log d

d
>

1

4(es/
√
d+ 1)

.

Thus, applying again the Cauchy-Schwarz inequality and Proposition 1 we find

E
(
|σ̂2 − σ2|1Dc

)
= E

(
|σ̃2 − σ2|1Dc

)
≤
(
E
(
|σ̃2 − σ2|2

))1/2
(P(Dc))1/2(51)

≤ Cσ2
√

P(Aclog d) + P(Bc1) ≤ Cσ2

√
4

d
+ e−cd ≤ C ′σ2

√
d
.

To complete the proof, it remains to handle the risk restricted to the event C = D ∩ B1. We
will use the following decomposition

(52) |σ̂2 − σ2| ≤
∣∣∣2 log(|ϕd(t̂1)|)

t̂21
− 2 log(|ϕ(t̂1)|)

t̂21

∣∣∣+
∣∣∣− 2 log(|ϕ(t̂1)|)

t̂21
− σ2

∣∣∣.
Since −2 log(|ϕ0(t̂1)|)/t̂21 = σ2, it follows from (48) that∣∣∣− 2 log(|ϕ(t̂1)|)

t̂21
− σ2

∣∣∣ ≤ Cs

d t̂21
=

Csσ̃2

d log(4(es/
√
d+ 1))

.

Therefore,

(53) E
(∣∣∣− 2 log(|ϕ(t̂1)|)

t̂21
− σ2

∣∣∣1C) ≤ Csσ2

d log(es/
√
d+ 1)

.

Next, using the inequality∣∣ log(|ϕd(t)|)− log(|ϕ(t)|)
∣∣ ≤ |ϕd(t)− ϕ(t)|
|ϕ(t)| ∧ |ϕd(t)|

, ∀t ∈ R,

we find ∣∣∣ log(|ϕd(t̂1)|)
t̂21

− log(|ϕ(t̂1)|)
t̂21

∣∣∣1C ≤ supv∈R |ϕd(v)− ϕ(v)|
t̂21|ϕ(t̂1)| ∧ |ϕd(t̂1)|

1C

≤ Cσ2U√
d log(es/

√
d+ 1)

(
es√
d

+ 1

)
,

where U =
√
d supv∈R |ϕd(v)− ϕ(v)|. Bounding E(U) by (49) we finally get

(54) E

[∣∣∣ log(|ϕd(t̂1)|)
t̂21

− log(|ϕ(t̂1)|)
t̂21

∣∣∣1C] ≤ Cσ2 max

(
1√
d
,

s

d log(es/
√
d+ 1)

)
.

We conclude by combining inequalities (50) - (54).
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5.7. Proof of Theorems 3 and 4. Let ‖θ‖0 ≤ s and denote by S the support of θ. Note
first that, by the definition of σ̂2,

(55)
σ2

d

d−2s∑
i=1

ξ2
(i) ≤ σ̂

2 ≤ σ2

d

∑
i∈Sc

ξ2
i ,

where ξ2
(1) ≤ · · · ≤ ξ2

(d) are the ordered values of ξ2
1 , . . . , ξ

2
d. Indeed, the right hand inequality

in (55) follows from the relations

d−s∑
k=1

Y 2
(k) = min

J :|J |=d−s

∑
i∈J

Y 2
(i) ≤

∑
i∈Sc

Y 2
(i) =

∑
i∈Sc

σ2ξ2
i .

To show the left hand inequality in (55), notice that at least d − 2s among the d − s order
statistics Y 2

(1), . . . , Y
2

(d−s) correspond to observations Yk of pure noise, i.e., Yk = σξk. The sum
of squares of such observations is bounded from below by the sum of the smallest d−2s values
σ2ξ2

(1), . . . , σ
2ξ2

(d−2s) among σ2ξ2
1 , . . . , σ

2ξ2
d.

Using (55) we get (
σ̂2 − σ2

d

d∑
i=1

ξ2
i

)2
≤ σ4

d2

( d∑
i=d−2s+1

ξ2
(i)

)2
,

so that

Eθ,Pξ,σ

(
σ̂2 − σ2

d

d∑
i=1

ξ2
i

)2
≤ σ4

d2

( 2s∑
i=1

√
Eξ4

(d−i+1)

)2
.

Then

Eθ,Pξ,σ(σ̂2 − σ2)2 ≤ 2Eθ,Pξ,σ

(
σ̂2 − σ2

d

d∑
i=1

ξ2
i

)2
+ 2Eθ,Pξ,σ

(σ2

d

d∑
i=1

ξ2
i − σ2

)2

≤ 2σ4

d2

( 2s∑
i=1

√
Eξ4

(d−i+1)

)2
+

2σ4E(ξ4
1)

d
.

Note that under assumption (2) we have E(ξ4
1) <∞ and Lemmas 1 and 3 yield

2s∑
i=1

√
Eξ4

(d−i+1) ≤
√
C

2s∑
i=1

log2/a
(
ed/i

)
≤ C ′

√
Cs log2/a

(ed
2s

)
.

This proves Theorem 3. To prove Theorem 4, we act analogously by using Lemma 2 and the
fact that E(ξ4

1) <∞ under assumption (3) with a > 4.

5.8. Proof of Theorem 7. With the same notation as in the proof of Theorem 1, we have

(56) σ̂2 − σ2 =
σ2

d

(
‖ξ‖22 − d

)
+

1

d

(
‖u‖22 − 2σuT ξ

)
.

It follows from (25) that

‖u‖22 + 2σ|uT ξ| ≤ 3σ|uT ξ|+ σ̃

2

{( s∑
j=1

λ2
j

)1/2
‖u‖2 −

d∑
j=s+1

λj |u|(d−j+1)

}
.
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Arguing as in the proof of Theorem 1, we obtain

‖u‖22 + 2σ|uT ξ| ≤
(
U1 +

σ̃

2

( s∑
j=1

λ2
j

)1/2
+ U2

)
‖u‖2,

where

U1 = 3σ
( s∑
j=1

|ξ|2(d−j+1)

)1/2
, U2 =

( d∑
j=s+1

(
3σ|ξ|(d−j+1) −

σ̃

2
λj

)2

+

)1/2

Using the Cauchy-Schwarz inequality, Proposition 1 and (28) and writing for brevity E =
Eθ,Pξ,σ we find

E
(
σ̃
( s∑
j=1

λ2
j

)1/2
‖u‖2

)
≤
( s∑
j=1

λ2
j

)1/2√
E(σ̃2)

√
E(‖u‖22) ≤ Cσ2

s∑
j=1

λ2
j .

Since E(ξ4
1) < ∞ we also have E

∣∣‖ξ‖22 − d
∣∣ ≤ C

√
d. Finally, using again (28) we get, for

k = 1, 2,

E(Uk‖u‖2) ≤
√
E(‖u‖22)

√
E(U2

k ) ≤ σ
( s∑
j=1

λ2
j

)1/2√
E(U2

k ) ≤ Cσ2
s∑
j=1

λ2
j ,

where the last inequality follows from the same argument as in the proof of Theorem 1. These
remarks together with (56) imply

E
(
|σ̂2 − σ2|

)
≤ C

d

(
σ2
√
d+ σ2

s∑
j=1

λ2
j

)
.

We conclude the proof by bounding
∑s

j=1 λ
2
j in the same way as in the end of the proof of

Theorem 1.

6. Proofs of the lower bounds.

6.1. Proof of Theorems 5 and 6 and part (ii) of Proposition 7. Since we have `(t) ≥
`(A)1t≥A for any A > 0, it is enough to prove the theorems for the indicator loss `(t) = 1t≥1.
This remark is valid for all the proofs of this section and will not be further repeated.

(i) We first prove the lower bounds with the rate 1/
√
d in Theorems 5 and 6. Let f0 : R→

[0,∞) be a probability density with the following properties: f0 is continuously differentiable,
symmetric about 0, supported on [−3/2, 3/2], with variance 1 and finite Fisher information
If0 =

∫
(f ′0(x))2(f0(x))−1dx. The existence of such f0 is shown in Lemma 7. Denote by F0

the probability distribution corresponding to f0. Since F0 is zero-mean, with variance 1 and
supported on [−3/2, 3/2] it belongs to Ga,τ with any τ > 0, a > 0, and to Pa,τ with any τ > 0,
a ≥ 2. Define P0 = P0,F0,1, P1 = P0,F0,σ1 where σ2

1 = 1+c0/
√
d and c0 > 0 is a small constant

to be fixed later. Denote by H(P1,P0) the Hellinger distance between P1 and P0. We have

(57) H2(P1,P0) = 2
(
1− (1− h2/2)d

)
where h2 =

∫
(
√
f0(x) −

√
f0(x/σ1)/σ1)2dx. By Theorem 7.6. in Ibragimov and Hasminskii

[15],

h2 ≤ (1− σ1)2

4
sup

t∈[1,σ1]
I(t)
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where I(t) is the Fisher information corresponding to the density f0(x/t)/t, that is I(t) =
t−2If0 . It follows that h2 ≤ c̄c2

0/d where c̄ > 0 is a constant. This and (57) imply that
for c0 small enough we have H(P1,P0) ≤ 1/2. Finally, choosing such a small c0 and using
Theorem 2.2(ii) in Tsybakov [21] we obtain

inf
T̂

max
{
P0

(∣∣∣T̂ − 1
∣∣∣ ≥ c0

2(1 + c0)
√
d

)
,P1

(∣∣∣ T̂
σ2

1

− 1
∣∣∣ ≥ c0

2(1 + c0)
√
d

)}
≥ inf

T̂
max

{
P0

(
|T̂ − 1| ≥ c0

2
√
d

)
,P1

(
|T̂ − σ2

1| ≥
c0

2
√
d

)}
≥ 1−H(P1,P0)

2
≥ 1

4
.

(ii) We now prove the lower bound with the rate s
d log2/a(ed/s) in Theorem 5. It is enough to

conduct the proof for s ≥ s0 where s0 > 0 is an arbitrary absolute constant. Indeed, for s ≤ s0

we have s
d log2/a(ed/s) ≤ C/

√
d where C > 0 is an absolute constant and thus Theorem 5

follows already from the lower bound with the rate 1/
√
d proved in item (i). Therefore, in the

rest of this proof we assume without loss of generality that s ≥ 32.
We take Pξ = U where U is the Rademacher distribution, that is the uniform distribution on

{−1, 1}. Clearly, U ∈ Ga,τ . Let δ1, . . . , δd be i.i.d. Bernoulli random variables with probability
of success P(δ1 = 1) = s

2d , and let ε1, . . . , εd be i.i.d. Rademacher random variables that
are independent of (δ1, . . . , δd). Denote by µ the distribution of (αδ1ε1, . . . , αδdεd) where α =
(τ/2) log1/a(ed/s). Note that µ is not necessarily supported on Θs = {θ ∈ Rd | ‖θ‖0 ≤ s} as
the number of nonzero components of a vector drawn from µ can be larger than s. Therefore,
we consider a restricted to Θs version of µ defined by

(58) µ̄(A) =
µ(A ∩Θs)

µ(Θs)

for all Borel subsets A of Rd. Finally, we introduce two mixture probability measures

(59) Pµ =

∫
Pθ,U,1 µ(dθ) and Pµ̄ =

∫
Pθ,U,1 µ̄(dθ).

Notice that there exists a probability measure P̃ ∈ Ga,τ such that

(60) Pµ = P0,P̃ ,σ0

where σ0 > 0 is defined by

(61) σ2
0 = 1 +

τ2s

8d
log2/a(ed/s) ≤ 1 +

τ2

8
.

Indeed, σ2
0 = 1 + α2s

2d is the variance of zero-mean random variable αδε + ξ, where ξ ∼ U ,
ε ∼ U , δ ∼ B

(
s
2d

)
and ε, ξ, δ are jointly independent. Thus, to prove (60) it is enough to show

that, for all t ≥ 2,

(62) P
(
(τ/2) log1/a(ed/s) δε+ ξ > tσ0

)
≤ e−(t/τ)a .

But this inequality immediately follows from the fact that for t ≥ 2 the probability in (62) is
smaller than

P(ε = 1, δ = 1)1(τ/2) log1/a(ed/s)>t−1 ≤
s

4d
1τ log1/a(ed/s)>t ≤ e

−(t/τ)a .(63)
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Now, for any estimator T̂ and any u > 0 we have

sup
Pξ∈Ga,τ

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(∣∣∣ T̂
σ2
− 1
∣∣∣ ≥ u)

≥ max
{
P0,P̃ ,σ0

(|T̂ − σ2
0| ≥ σ2

0u),

∫
Pθ,U,1(|T̂ − 1| ≥ u)µ̄(dθ)

}
≥ max

{
Pµ(|T̂ − σ2

0| ≥ σ2
0u),Pµ̄(|T̂ − 1| ≥ σ2

0u)
}

(64)

where the last inequality uses (60). Write σ2
0 = 1 + 2φ where φ = τ2s

16d log2/a(ed/s) and choose
u = φ/σ2

0 ≥ φ/(1 + τ2/8). Then, the expression in (64) is bounded from below by the proba-
bility of error in the problem of distinguishing between two simple hypotheses Pµ and Pµ̄, for
which Theorem 2.2 in Tsybakov [21] yields

max
{
Pµ(|T̂ − σ2

0| ≥ φ),Pµ̄(|T̂ − 1| ≥ φ)
}
≥ 1− V (Pµ,Pµ̄)

2
(65)

where V (Pµ,Pµ̄) is the total variation distance between Pµ and Pµ̄. The desired lower bound
follows from (65) and Lemma 5 for any s ≥ 32.

(iii) Finally, we prove the lower bound with the rate τ2(s/d)1−2/a in Theorem 6. Again, we
do not consider the case s ≤ 32 since in this case the rate 1/

√
d is dominating and Theorem 6

follows from item (i) above. For s ≥ 32, the proof uses the same argument as in item (ii) above
but we choose α = (τ/2)(d/s)1/a. Then the variance of αδε+ ξ is equal to

σ2
0 = 1 +

τ2(s/d)1−2/a

8
.

Furthermore, with this definition of σ2
0 there exists P̃ ∈ Pa,τ such that (60) holds. Indeed,

analogously to (62) we now have, for all t ≥ 2,

P
(
α δε+ ξ > tσ0

)
≤ P(ε = 1, δ = 1)1(τ/2)(d/s)1/a>t−1 ≤

s

4d
1τ(d/s)1/a>t ≤ (t/τ)a.(66)

To finish the proof, it remains to repeat the argument of (64) and (65) with φ = τ2(s/d)1−2/a

16 .

6.2. Proof of Theorem 2. We argue similarly to the proof of Theorems 5 and 6, in par-
ticular, we set α = (τ/2) log1/a(ed/s) when proving the bound on the class Ga,τ , and α =
(τ/2)(d/s)1/a when proving the bound on Pa,τ . In what follows, we only deal with the class
Ga,τ since the proof for Pa,τ is analogous. Consider the measures µ µ̄, Pµ, Pµ̄ and P̃ defined
in Section 6.1. Similarly to (64), for any estimator T̂ and any u > 0 we have

sup
Pξ∈Ga,τ

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(
|T̂ − ‖θ‖2| ≥ σu

)
≥ max

{
P0,P̃ ,σ0

(|T̂ | ≥ σ0u),

∫
Pθ,U,1(|T̂ − ‖θ‖2| ≥ u)µ̄(dθ)

}
≥ max

{
Pµ(|T̂ | ≥ σ0u),Pµ̄(|T̂ − ‖θ‖2| ≥ σ0u)

}
≥ max

{
Pµ(|T̂ | ≥ σ0u),Pµ̄(|T̂ | < σ0u, ‖θ‖2 ≥ 2σ0u)

}
≥ min

B
max

{
Pµ(B),Pµ̄(Bc)− µ̄(‖θ‖2 < 2σ0u)

}
≥ min

B

Pµ(B) + Pµ̄(Bc)

2
− µ̄(‖θ‖2 < 2σ0u)

2
(67)
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where σ0 is defined in (61), U denotes the Rademacher law and minB is the minimum over all
Borel sets. The third line in the last display is due to (60) and to the inequality σ0 ≥ 1. Since
minB

{
Pµ(B) + Pµ̄(Bc)

}
= 1− V (Pµ,Pµ̄), we get

sup
Pξ∈Ga,τ

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(
|T̂ − ‖θ‖2|/σ ≥ u

)
≥ 1− V (Pµ,Pµ̄)− µ̄(‖θ‖2 < 2σ0u)

2
.(68)

Consider first the case s ≥ 32. Set u = α
√
s

4σ0
. Then (77) and (80) imply that

V (Pµ,Pµ̄) ≤ e−
3s
16 , µ̄(‖θ‖2 < 2σ0u) ≤ 2e−

s
16 ,

which, together with (68) and the fact that s ≥ 32 yields the result.
Let now s < 32. Then we set u = α

√
s

8
√

2σ0
. It follows from (78) and (81) that

1− V (Pµ,Pµ̄)− µ̄(‖θ‖2 < 2σ0u) ≥ P
(
B
(
d,

s

2d

)
= 1
)

=
s

2

(
1− s

2d

)d−1
.

It is not hard to check that the minimum of the last expression over all integers s, d such that
1 ≤ s < 32, s ≤ d, is bounded from below by a positive number independent of d. We conclude
by combining these remarks with (68).

6.3. Proof of part (ii) of Proposition 4 and part (ii) of Proposition 5. We argue similarly
to the proof of Theorems 5 and 6, in particular, we set α = (τ/2) log1/a(ed/s) when proving
the bound on the class Ga,τ , and α = (τ/2)(d/s)1/a when proving the bound on Pa,τ . In what
follows, we only deal with the class Ga,τ since the proof for Pa,τ is analogous. Without loss of
generality we assume that σ = 1.

To prove the lower bound with the rate φ◦exp(s, d), we only need to prove it for s such that
(φ◦exp(s, d))2 ≤ c0

√
d/ log2/a(ed) with any small absolute constant c0 > 0, since the rate is

increasing with s.
Consider the measures µ µ̄, Pµ, Pµ̄ defined in Section 6.1 with σ0 = 1. Let ξ1 be distributed

with c.d.f. F0 defined in item (i) of the proof of Theorems 5 and 6. Using the notation as in
the proof of Theorems 5 and 6, we define P̃ as the distribution of ξ̃1 = σ1ξ1 + αδ1ε1 with
σ2

1 = (1 + α2s/(2d))−1 where now δ1 is the Bernoulli random variable with P(δ1 = 1) =
s
2d(1 + α2s/(2d))−1. By construction, Eξ̃1 = 0 and Eξ̃2

1 = 1. Since the support of F0 is in
[−3/2, 3/2] one can check as in item (ii) of the proof of Theorems 5 and 6 that P̃ ∈ Ga,τ . Next,
analogously to (67) - (68) we obtain that, for any u > 0,

sup
Pξ∈Ga,τ

sup
‖θ‖0≤s

Pθ,Pξ,1

(
|T̂ − ‖θ‖2| ≥ u

)
≥

1− V (Pµ̄, P0,P̃ ,1)− µ̄(‖θ‖2 < 2u)

2
.

Let P0 and P1 denote the distributions of (ξ1, . . . , ξd) and of (σ1ξ1, . . . , σ1ξd), respectively.
Acting as in item (i) of the proof of Theorems 5 and 6 and using the bound

|1− σ1| ≤ α2s/d =
τ2

4

s

d
log2/a(ed/s) ≤ Cc0/

√
d

we find that V (P0,P1) ≤ H(P0,P1) ≤ 2κc2
0 for some κ > 0. Therefore, V (Pµ, P0,P̃ ,1) =

V (P0∗Q,P1∗Q) ≤ V (P0,P1) ≤ 2κc2
0 where Q denotes the distribution of (αδ1ε1, . . . , αδdεd).

This bound and the fact that V (Pµ̄, P0,P̃ ,1) ≤ V (Pµ̄,Pµ) + V (Pµ, P0,P̃ ,1) imply

sup
Pξ∈Ga,τ

sup
‖θ‖0≤s

Pθ,Pξ,1

(
|T̂ − ‖θ‖2| ≥ u

)
≥ 1− V (Pµ,Pµ̄)− µ̄(‖θ‖2 < 2u)

2
− κc2

0.
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We conclude by repeating the argument after (68) in the proof of Theorem 2 and choosing
c0 > 0 small enough to guarantee that the right hand side of the last display is positive.

6.4. Proof of part (ii) of Proposition 7. The lower bound with the rate 1/
√
d follows from

the argument as in item (i) of the proof of Theorems 5 and 6 if we replace there F0 by the
standard Gaussian distribution. The lower bound with the rate s

d(1+log+(s2/d))
follows from

Lemma 8 and the lower bound for estimation of ‖θ‖2 in Proposition 3.

6.5. Proof of Proposition 8. Assume that θ = 0, σ = 1 and set

ξi =
√

3εiui,

where the εi’s and the ui are independent, with Rademacher and uniform distribution on [0, 1]
respectively. Then note that

E0,Pξ,1

(
σ̂2
∗ − 1

)2 ≥ (E0,Pξ,1(σ̂2
∗)− 1

)2
=
(
E0,Pξ,1

{
σ̂2
∗ −

3

d

d∑
i=1

u2
i

})2
,(69)

since E(u2
i ) = 1/3. Note also that σ̂2

∗ = 3
d/2

∑d/2
i=1 u

2
(i). Now,

1

d/2

d/2∑
i=1

u2
(i) −

1

d

d∑
i=1

u2
i =

1

d

d/2∑
i=1

u2
(i) −

1

d

d∑
i=d/2+1

u2
(i)

≤ 1

d

d/4∑
i=1

u2
(i) −

1

d

d∑
i=3d/4+1

u2
(i)

≤ 1

4
(u2

(d/4) − u
2
(3d/4)).

Since u(i) follows a Beta distribution with parameters (i, d−i+1) we have E(u2
(i)) = i(i+1)

(d+1)(d+2) ,
and

E0,Pξ,1

( 1

d/2

d/2∑
i=1

u2
(i) −

1

d

d∑
i=1

u2
i

)
≤ 1

4
E0,Pξ,1(u2

(d/4) − u
2
(3d/4)) = − d

8(d+ 2)
≤ − 1

24
.

This and (69) prove the proposition.

7. Lemmas.

7.1. Lemmas for the upper bounds.

Lemma 1. Let z1, . . . , zd
iid∼ P with P ∈ Ga,τ for some a, τ > 0 and let z(1) ≤ · · · ≤ z(d) be

the order statistics of |z1|, . . . , |zd|. Then for u > 21/aτ ∨ 2, we have

(70) P
(
z(d−j+1) ≤ u log1/a

(
ed/j

)
,∀ j = 1, . . . , d

)
≥ 1− 4e−u

a/2,

and, for any r > 0,

(71) E
(
zr(d−j+1)

)
≤ C logr/a

(
ed/j

)
, j = 1, . . . , d,

where C > 0 is a constant depending only on τ , a and r.
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Proof. Using the definition of Ga,τ we get that, for any t ≥ 2,

P
(
z(d−j+1) ≥ t

)
≤
(
d

j

)
Pj(|z1| ≥ t) ≤ 2

(ed
j

)j
e−j(t/τ)a , j = 1, . . . , d.

Thus, for v ≥ 21/a ∨ (2/τ) we have

(72) P(z(d−j+1) ≥ vτ log1/a(ed/j)) ≤ 2
(ed
j

)j(1−va)
≤ 2e−jv

a/2, j = 1, . . . , d,

and

P
(
∃ j ∈ {1, . . . , d} : z(d−j+1) ≥ vτ log1/a(ed/j)

)
≤ 2

d∑
j=1

e−jv
a/2 ≤ 4e−v

a/2

implying (70). Finally, (71) follows by integrating (72).

Lemma 2. Let z1, . . . , zd
iid∼ P with P ∈ Pa,τ for some a, τ > 0 and let z(1) ≤ · · · ≤ z(d) be

the order statistics of |z1|, . . . , |zd|. Then for u > (2e)1/aτ ∨ 2, we have

(73) P
(
z(d−j+1) ≤ u

(d
j

)1/a
,∀ j = 1, . . . , d

)
≥ 1− 2eτa

ua

and, for any r ∈ (0, a),

(74) E
(
zr(d−j+1)

)
≤ C

(d
j

)r/a
, j = 1, . . . , d,

where C > 0 is a constant depending only on τ , a and r.

Proof. Using the definition of Pa,τ we get that, for any t ≥ 2,

P
(
z(d−j+1) ≥ t

)
≤
(ed
j

)j(τ
t

)ja
.

Set tj = u
(
d
j

)1/a
and q = e(τ/u)a. The assumption on u yields that q < 1/2, so that

P
(
∃ j ∈ {1, . . . , d} : z(d−j+1) ≥ u

(d
j

)1/a)
≤

d∑
j=1

(ed
j

)j( τ
tj

)ja
=

d∑
j=1

qj ≤ 2q.

This proves (73). The proof of (74) is analoguous to that of (71).

Lemma 3. For all a > 0 and all integers 1 ≤ s ≤ d,
s∑
i=1

log2/a
(
ed/i

)
≤ Cs log2/a

(ed
s

)
where C > 0 depends only on a.

The proof is simple and we omit it.
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7.2. Lemmas for the lower bounds. For two probability measures P1 and P2 on a mea-
surable space (Ω,U), we denote by V (P1,P2) the total variation distance between P1 and
P2:

V (P1,P2) = sup
B∈U
|P1(B)− P2(B)| .

Lemma 4 (Deviations of the binomial distribution). Let B(d, p) denote the binomial ran-
dom variable with parameters d and p ∈ (0, 1). Then, for any λ > 0,

P
(
B(d, p) ≥ λ

√
d+ dp

)
≤ exp

(
− λ2

2p(1− p)
(
1 + λ

3p
√
d

)),(75)

P
(
B(d, p) ≤ −λ

√
d+ dp

)
≤ exp

(
− λ2

2p(1− p)

)
.(76)

Inequality (75) is a combination of formulas (3) and (10) on pages 440–441 in [19]. Inequality
(76) is formula (6) on page 440 in [19].

Lemma 5. Let Pµ and Pµ̄ be the probability measures defined in (59). The total variation
distance between these two measures satisfies

(77) V (Pµ,Pµ̄) ≤ P
(
B
(
d,

s

2d

)
> s
)
≤ e−

3s
16 ,

and

(78) V (Pµ,Pµ̄) ≤ 1−P
(
B
(
d,

s

2d

)
= 0
)
−P

(
B
(
d,

s

2d

)
= 1
)
.

Proof. We have

V (Pµ,Pµ̄) = sup
B

∣∣∣∣∫ Pθ,U,1(B)dµ(θ)−
∫

Pθ,U,1(B)dµ̄(θ)

∣∣∣∣ ≤ sup
|f |≤1

∣∣∣∣∫ fdµ−
∫
fdµ̄

∣∣∣∣ = V (µ, µ̄).

Furthermore, V (µ, µ̄) ≤ µ(Θc
s) since for any Borel subset B of Rd we have

∣∣µ(B) − µ̄(B)
∣∣ ≤

µ(B ∩Θc
s). Indeed,

µ(B)− µ̄(B) ≤ µ(B)− µ(B ∩Θ) = µ(B ∩Θc)

and
µ̄(B)− µ(B) =

µ(B ∩Θ)

µ(Θ)
− µ(B ∩Θ)− µ(B ∩Θc) ≥ −µ(B ∩Θc).

Thus,

(79) V (Pµ,Pµ̄) ≤ µ(Θc
s) = P

(
B
(
d,

s

2d

)
> s
)
.

Combining this inequality with (75) we obtain (77). To prove (78), we use again (79) and
notice that P

(
B
(
d, s2d

)
> s
)
≤ P

(
B
(
d, s2d

)
≥ 2
)
for any integer s ≥ 1.
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Lemma 6. Let µ̄ be defined in (58) with some α > 0.Then

(80) µ̄
(
‖θ‖2 <

α

2

√
s
)
≤ 2e−

s
16 ,

and, for all s ≤ 32,

(81) µ̄
(
‖θ‖2 <

α
√
s

4
√

2

)
= P

(
B
(
d,

s

2d

)
= 0
)
.

Proof. First, note that

(82) µ
(
‖θ‖2 <

α

2

√
s
)

= P
(
B
(
d,

s

2d

)
<
s

4

)
≤ e−

s
16

where the last inequality follows from (76). Next, inspection of the proof of Lemma 5 yields
that µ̄(B) ≤ µ(B)+e−

3s
16 for any Borel set B. Taking here B = {‖θ‖2 ≤ α

√
s/2} and using (82)

proves (80). To prove (81), it suffices to note that µ
(
‖θ‖2 < α

√
s

4
√

2

)
= P

(
B
(
d, s2d

)
< s

32

)
.

Lemma 7. There exists a probability density f0 : R→ [0,∞) with the following properties:
f0 is continuously differentiable, symmetric about 0, supported on [−3/2, 3/2], with variance 1
and finite Fisher information If0 =

∫
(f ′0(x))2(f0(x))−1dx.

Proof. LetK : R→ [0,∞) be any probability density, which is continuously differentiable,
symmetric about 0, supported on [−1, 1], and has finite Fisher information IK , for example,
the density K(x) = cos2(πx/2)1|x|≤1. Define f0(x) = [Kh(x + (1 − ε)) + Kh(x − (1 − ε))]/2
where h > 0 and ε ∈ (0, 1) are constants to be chosen, and Kh(u) = K(u/h)/h. Clearly, we
have If0 < ∞ since IK < ∞. It is straightforward to check that the variance of f0 satisfies∫
x2f0(x)dx = (1− ε)2 +h2σ2

K where σ2
K =

∫
u2K(u)du. Choosing h =

√
2ε− ε2/σK and ε ≤

σ2
K/8 guarantees that

∫
x2f0(x)dx = 1 and the support of f0 is contained in [−3/2, 3/2].

Lemma 8. Let τ > 0, a > 4 and let s, d be integers satisfying 1 ≤ s ≤ d. Let P be
any subset of Pa,τ . Assume that for some function φ(s, d) of s and d and for some positive
constants c1, c2, c

′
1, c
′
2 we have

(83) inf
T̂

sup
Pξ∈P

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(∣∣∣∣∣ T̂σ2
− 1

∣∣∣∣∣ ≥ c1√
d

)
≥ c′1,

and

(84) inf
T̂

sup
Pξ∈P

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(∣∣∣∣∣ T̂ − ‖θ‖2σ

∣∣∣∣∣ ≥ c2φ(s, d)

)
≥ c′2.

Then

inf
T̂

sup
Pξ∈P

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(∣∣∣∣∣ T̂σ2
− 1

∣∣∣∣∣ ≥ c3 max

(
1√
d
,
φ2(s, d)

d

))
≥ c′3

for some constants c3, c
′
3 > 0.
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Proof. Let σ̂2 be an arbitrary estimator of σ2. Based on σ̂2, we can construct an estimator
T̂ = N̂∗ of ‖θ‖2 defined by formula (11), case s >

√
d. It follows from (30), (31) and (84) that

c′2 ≤ P (2|(θ, ξ)| ≥ c2‖θ‖2φ(s, d)/3) + P

(√
|‖ξ‖22 − d| ≥ c2φ(s, d)/3

)
+ P

(√
d

∣∣∣∣ σ̂2

σ2
− 1

∣∣∣∣ ≥ c2φ(s, d)/3

)
,

where we write for brevity P = Pθ,Pξ,σ. Hence

P

(∣∣∣∣ σ̂2

σ2
− 1

∣∣∣∣ ≥ c2
2φ

2(s, d)/(9d)

)
≥ c′2 − c∗max

(
d

φ4(s, d)
,

1

φ2(s, d)

)
for some constant c∗ > 0 depending only on a and τ . If φ2(s, d) > max

(√
2c∗d
c′2
, 2c∗

c′2

)
, then

P

(∣∣∣∣ σ̂2

σ2
− 1

∣∣∣∣ ≥ C max

(
1√
d
,
φ2(s, d)

d

))
≥ c′2/2.

If φ2(s, d) ≤ max
(√

2c∗d
c′2
, 2c∗

c′2

)
, then max

(
1√
d
, φ

2(s,d)
d

)
is of order 1√

d
and the result follows

from (83).
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Abstract We prove the lower bound of Proposition 3 in [1].

1. A result on the lower bound for estimation of the norm. In this Supplement,

we use the notation of [1] without, in general, recalling its definition. Set

φ∗N (0,1)(s, d) = max

{√
s log(1 +

√
d/s),

√
s

1 + log+(s2/d)

}
,

where log+(x) = max(0, log(x)) for any x > 0. Our aim is to prove part (ii) of Proposition 3

in [1], that is the following fact.

Proposition 3(ii). Let s and d be integers satisfying 1 ≤ s ≤ d and let `(·) be any loss

function in the class L. Then,

inf
T̂

sup
σ>0

sup
‖θ‖0≤s

Eθ,N (0,1),σ `

(
c(φ∗N (0,1)(s, d))−1

∣∣∣∣ T̂ − ‖θ‖2σ

∣∣∣∣) ≥ c′,
where inf T̂ denotes the infimum over all estimators, and c > 0, c′ > 0 are constants that can

depend only on `(·).

Proof of Proposition 3(ii). In the following, we denote by C absolute positive constants

that can be different on different appearances.

If s ≤
√
d or d ≤ C, the rate φ∗N (0,1)(s, d) is of order

√
s log(1 +

√
d/s), the same as the

minimax rate for the case of known σ [2]. The lower bound with this rate for any fixed σ > 0 is

available from [2]. Hence, it is enough to prove the result for s, d such that s ≥
√
d and d ≥ C̄

where C̄ > 0 is a large enough absolute constant. In the sequel, we only consider such s and d.

We denote by φσ2 the density of N (0, σ2). We set ε = s
2d ≤ 1/2, τ =

√
α log(es2/d), where

α > 1 is a constant that will be chosen large enough, and ϕ = c0ε/τ
2, where 0 < c0 < 1 is the

constant from Lemma 9 below. Note that 0 < ϕ < 1.

We start by defining some probability distributions on Θs. Let δ1, . . . , δd be i.i.d. Bernoulli

random variables with probability of success P(δ1 = 1) = ε. Let g1 and g2 be the densities from

Lemma 9 below. We define µ1 as the joint distribution of (δ1X
(1)
1 , . . . , δdX

(1)
d ) where the X(1)

i

1
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2 L. COMMINGES, O. COLLIER, M. NDAOUD AND A.B. TSYBAKOV

are i.i.d. random variables with density φϕ ∗g1 independent from δ1, . . . , δd. Similarly, we define

µ2 as the joint distribution of (δ1X
(2)
1 , . . . , δdX

(2)
d ) where the X(2)

i are i.i.d. random variables

with density g2 independent from δ1, . . . , δd. Next, consider two mixture probability measures

P1 =

∫
Rd

Pθ,N (0,1),1 µ1(dθ), P2 =

∫
Rd

Pθ,N (0,1),
√

1+ϕ µ2(dθ)

whose density functions are f⊗d1 and f⊗d2 , respectively, where

(1) f1 = (1− ε)φ1 + εφ1+ϕ ∗ g1, f2 = (1− ε)φ1+ϕ + εφ1+ϕ ∗ g2.

Define the truncated versions of µ1 and µ2 supported on Θs as

µ̄i(A) =
µi
(
A ∩Θs

)
µi
(
Θs

) , i = 1, 2.

Set

P̄1 =

∫
Rd

Pθ,N (0,1),1 µ̄1(dθ), P̄2 =

∫
Rd

Pθ,N (0,1),
√

1+ϕ µ̄2(dθ).

As in the proof of Theorem 2 in [1], it is enough to obtain the lower bound for the indicator

loss `(t) = 1t≥1. Using Theorem 2.15 in [3] for any v > 0 we get

inf
T̂

sup
σ>0

sup
θ∈Θs

Pθ,N (0,1),σ

(∣∣∣ T̂ − ‖θ‖2
σ

∣∣∣ ≥ v)(2)

≥ inf
T̂

max
{
P̄1

(∣∣T̂ − ‖θ‖2∣∣ ≥ v), P̄2

(∣∣T̂ − ‖θ‖2∣∣ ≥ v(1 + ϕ)1/2
)}

≥ inf
T̂

max
{
P̄1

(∣∣T̂ − ‖θ‖2∣∣ ≥ 2v
)
, P̄2

(∣∣T̂ − ‖θ‖2∣∣ ≥ 2v
)}
≥ 1− V ′

2
,

where

V ′ = V (P̄1, P̄2) + µ̄1(‖θ‖2 ≤ w + 4v) + µ̄2(‖θ‖2 ≥ w)

with any w > 0. Here, V (P̄1, P̄2) ≤ V (P1,P2)+V (P1, P̄1)+V (P2, P̄2) and, as in the proof of

Lemma 5 in [1], we have V (Pi, P̄i) ≤ V (µi, µ̄i), i = 1, 2. Since also V (P1,P2) ≤
√
χ2(P1,P2),

cf. [3, Chapter 2], we get

V ′ ≤ 2V (µ1, µ̄1) + 2V (µ2, µ̄2) +
√
χ2(P1,P2)

+ µ1

(
‖θ‖2 ≤ w + 4v

)
+ µ2

(
‖θ‖2 ≥ w

)
.

Using Lemma 5 in [1] we obtain 2V (µ1, µ̄1) + 2V (µ2, µ̄2) ≤ 4e−
3s
16 ≤ 1/4, where the last

inequality is granted since we assume that s ≥
√
d and d ≥ C̄, where C̄ > 0 is large enough.
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ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL 3

Now, we choose

v =

√
a+ 2u−

√
a

4
, w =

√
a,

where

a = m2 +
m1 −m2

4
, u =

m1 −m2

4
, mi = Eµi

(
‖θ‖22

)
, i = 1, 2,

and Eµi denotes the expectation with respect to µi. Since, by definition,

m1 =
s

2

∫
x2g1 ∗ φϕ(x) dx, m2 =

s

2

∫
x2g2(x) dx,

Lemma 9 implies that

m1 +m2 ≤
β1s

τ2
, m1 −m2 =

c0s

2τ2
,

so that

(3) v =

√
a+ 2u−

√
a

4
=

u

2(
√
a+ 2u+

√
a)
≥ C m1 −m2√

m1 +m2
≥ C
√
s

τ
≥ Cφ∗N (0,1)(s, d)

for s ≥
√
d. Moreover, using the von Bahr-Esseen inequality [4] and Lemma 9 we find

µ1

(
‖θ‖2 ≤ w + 4v

)
= µ1

(
‖θ‖22 ≤ a+ 2u

)
= µ1

(
‖θ‖22 −m1 ≤ −u

)
≤

CdEµ1
(∣∣θ2

1 −Eµ1(θ2
1)
∣∣5/4)

u5/4
≤
CdEµ1

(∣∣θ1

∣∣5/2)
u5/4

≤ Cs

u5/4

∫
|x|5/2g1 ∗ φϕ(x) dx ≤ Cs

τ5/2u5/4
≤ 1/8,

where the last inequality is granted since u = c0s
8τ2

, s ≥
√
d and d ≥ C̄, where C̄ > 0 is large

enough. Quite similarly, we prove that µ2

(
‖θ‖2 ≥ w

)
≤ 1/8. In summary,

(4) 2V (µ1, µ̄1) + 2V (µ2, µ̄2) + µ1

(
‖θ‖2 ≤ w + 4v

)
+ µ2

(
‖θ‖2 ≥ w

)
≤ 1/2.

Furthermore, since χ2(P1,P2) = (1+χ2(f1, f2))d−1, Lemma 10 implies that χ2(P1,P2) ≤ 1/4

if c0 > 0 is chosen small enough. It follows from this remark and (4) that V ′ ≤ 3/4, which

together with (2) and (3) completes the proof.

2. Technical Lemmas. In the proofs below, we will use the Fourier transform defined for

any integrable function f as

f̂(t) =

∫
R
e−itxf(x) dx.

Lemma 9. Let ϕ = c0ε/τ
2, where ε and τ are defined in the proof of Proposition 3(ii). There

exist two probability density functions g1 and g2 such that, for all c0 ∈ (0, 1) small enough,
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4 L. COMMINGES, O. COLLIER, M. NDAOUD AND A.B. TSYBAKOV

(i) max
{ ∫

R x
2g1 ∗ φϕ(x) dx,

∫
R x

2g2(x) dx
}
≤ β1τ

−2,

(ii)
∫
R x

2g1 ∗ φϕ(x) dx−
∫
R x

2g2(x) dx = c0τ
−2,

(iii) max
{ ∫

R |x|
5/2g2(x) dx,

∫
R |x|

5/2g1 ∗ φϕ(x) dx
}
≤ β2τ

−5/2,

where β1 > 0 and β2 > 0 are absolute constants.

Proof of Lemma 9. We define

g1(x) =

0 if |x| ≤ π
10τ

c
τ3x4

if |x| > π
10τ

, c =
3π3

2000
, g2 = g1 + g,

with

(5) g =
ĥ

2π
, h(t) =


k(t) if |t| < τ,

j(t) if τ ≤ |t| ≤ 2τ

0 if |t| > 2τ ,

, k(t) =
1− ε
ε

(e
ϕt2

2 − 1),

and

j(t) = (1− ε)
∑
n≥1

εn−1cn0
2nn!

[
c1,n

(2τ − t)2

τ2
+ c2,n

(2τ − t)3

τ3
+ c3,n

(2τ − t)4

τ4

]
,

where

c1,n = 2n2 + 5n+ 6, c2,n = −4n2 − 8n− 8, c3,n = 2n2 + 3n+ 3.

One can check directly that g1 is a probability density. We now prove that g2 is a probability

density if c0 is small enough. We start by showing that g2 is positive on R if c0 is small enough.

First, note that h is bounded on [−2τ, 2τ ], so that ĥ is well-defined. Thus, we can write

(6) g(x) =
1

π

∫ τ

0
k(t) cos(tx) dt+

1

π

∫ 2τ

τ
j(t) cos(tx) dt.

Integration by parts yields∫ 2τ

τ

(2τ − t)n

τn
cos(tx) dt = −sin(τx)

x
+ n

cos(τx)

x2τ
+ n(n− 1)

sin(τx)

x3τ2
+ an(x)

and ∫ τ

0

t2n

τ2n
cos(tx) dt =

sin(τx)

x
+ 2n

cos(τx)

x2τ
− 2n(2n− 1)

sin(τx)

x3τ2
+ bn(x)
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ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL 5

with |an(x)|∨ |bn(x)| ≤ Cn3

x4τ3
. Considering (6) and the fact that k(t) = 1−ε

ε

∑
n≥1

cn0 ε
nt2n

2nτ2nn!
we get

g(x) =
1− ε
π

∑
n≥1

cn0 ε
n−1

2nn!

[sin(τx)

x
(1− c1,n − c2,n − c3,n) +

cos(τx)

τx2
(2n+ 2c1,n + 3c2,n + 4c3,n)

+
sin(τx)

τ2x3
(−2n(2n− 1) + 2c1,n + 6c2,n + 12c3,n) +

(
an(x) + bn(x)

)]
.

The coefficients ci,n are chosen in such a way that the first three terms in the square brackets

vanish. Hence,

|g(x)| ≤ Cc0
τ3x4

.(7)

On the other hand, if 0 ≤ x ≤ π/(10τ) and 0 ≤ t ≤ 2τ , then 0 ≤ xt ≤ π/5, so that

I :=

∫ τ

0

t2

τ2
cos(tx) dt+

∫ 2τ

τ

(
13

(2τ − t)2

τ2
− 20

(2τ − t)3

τ3
+ 8

(2τ − t)4

τ4

)
cos(tx) dt(8)

≥ cos(π/5)
[ ∫ τ

0

t2

τ2
dt+ 13

∫ 2τ

τ

(2τ − t)2

τ2
dt+ 8

∫ 2τ

τ

(2τ − t)4

τ4
dt
]
− 20

∫ 2τ

τ

(2τ − t)3

τ3
dt

≥
(94

15
cos(π/5)− 5

)
τ.

Thus, using the elementary inequality |ex − 1 − x| ≤ ex2/2 for x ∈ [0, 1] and the fact that

|ci,n| ≤ 20n2, we get

∣∣g(x)− (1− ε)c0I/2π
∣∣ ≤ e

2

∫ τ

0

(c0εt
2

2τ2

)2
dt+

∑
n≥2

20cn0n
2

2nn!

[1

3
+

1

4
+

1

5

]
τ(9)

≤
(94

15
cos(π/5)− 5

)
τ

for c0 small enough. Finally, combining (7), (8) and (9) yields that g2 is positive on R.
From (7) and the fact that g is uniformly bounded we get that g and ĥ are integrable. Then,

ĝ(x) = (2π)−1
∫
ĥ(t)e−itxdt = h(−x),∫

g(x)dx = ĝ(0) = h(0) = 0,

so that
∫
g2 =

∫
g1 = 1. Thus, we have proved that both g1 and g2 are probability densities.

Next, to prove the properties (i) and (ii) of g1 and g2, it suffices to note that∫
x2g1 ∗ φϕ(x) dx = −(ĝ1φ̂ϕ)′′(0) = −ĝ′′1(0)φ̂ϕ(0)− φ̂′′ϕ(0)ĝ1(0)− 2ĝ′1(0)φ̂′ϕ(0)

=

∫
x2g1(x) dx+ ϕ ≤ C

τ2
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and similarly, since ĝ(t) = h(−t),∫
x2g2(x) dx =

∫
x2g1(x) dx− h′′(0) =

∫
x2g1(x) dx− (1− ε)ϕ

ε
≤ C

τ2
.

Finally, we prove the property (iii). Using (6) it is not hard to check that |g(x)| ≤ Cτ for x ∈
[−τ−1, τ−1]. This and (7) imply that

∫
|x|5/2|g(x)| dx ≤ Cτ−5/2. Since also

∫
|x|5/2g1(x) dx ≤

Cτ−5/2, we have

(10)
∫
|x|5/2g2(x) dx ≤ Cτ−5/2.

Next, using again (7) we get that, for any x ∈ R,∣∣∣ ∫
|y|≤|x|/2

(g1(x− y)− g1(x))φϕ(y) dy
∣∣∣ ≤ C

τ3x4
,

and since g1 is uniformly bounded by Cτ ,∣∣∣ ∫
|y|>|x|/2

(g1(x− y)− g1(x))φϕ(y) dy
∣∣∣ ≤ Cτ ∫

|y|>|x|/2
φϕ(y) dy

≤ Cτ√ϕ |x|−1e−x
2/8ϕ

≤ C

τ3x4
.

Consequently, |g1 ∗ φϕ(x)| ≤ |g1 ∗ φϕ(x) − g1(x)| + |g1(x)| ≤ C
τ3x4

for all x ∈ R. We also have

|g1 ∗ φϕ(x)| ≤ maxt∈R |g1(t)| ≤ Cτ for all x ∈ R. Using these remarks we find∫
|x|5/2g1 ∗ φϕ(x) dx ≤

∫
|x|≤1/τ

|x|5/2g1 ∗ φϕ(x) dx+

∫
|x|>1/τ

|x|5/2g1 ∗ φϕ(x) dx ≤ C

τ5/2
.

Combining the last bound with (10) completes the proof.

Lemma 10. Let f1 and f2 be the probability densities defined in (1) with g1 and g2 as in

Lemma 9. Then there exists an absolute constant β3 > 0 such that, for all c0 ∈ (0, 1) small

enough and α > 1 large enough,

χ2(f1, f2) ≤ β3c0

d
.

Proof of Lemma 10. Note that f1 ≥ (1 − ε)φ1. Since φ−1
1 (t) =

√
2π
∑

n≥0
t2n

2nn! and ε ≤
1/2, we get

χ2(f1, f2) =

∫
(f1 − f2)2

f1
≤ 2
√

2π
∑
n≥0

∫
t2n

2nn!
(f1 − f2)2(t) dt.

As f̂2− f̂1 = (1− ε)(φ̂1+ϕ− φ̂1) + εφ̂1+ϕ(ĝ2− ĝ1) with ĝ2− ĝ1 = h defined in Lemma 9, it holds

imsart-aos ver. 2014/10/16 file: supplement_adapt_robust.tex date: April 17, 2019



ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL 7

that f̂1 − f̂2 is infinitely many times differentiable everywhere except the points ±τ and ±2τ .

Thus

χ2(f1, f2) ≤ C
∑
n≥0

1

2nn!

∫
[f̂

(n)
2 (t)− f̂ (n)

1 (t)]2 dt = C
∑
n≥0

1

2n−1n!

∫ +∞

τ
[f̂

(n)
2 (t)− f̂ (n)

1 (t)]2 dt,

since by construction (1− ε)(φ̂1+ϕ − φ̂1) + εφ̂1+ϕk = 0 (cf. Lemma 9), where k is the function

defined in (5). Furthermore, for every n ≥ 0,∫ +∞

τ
[f̂

(n)
2 (t)− f̂ (n)

1 (t)]2 dt ≤ 2ε2
∫ +∞

τ

(
[φ̂1+ϕ(t)(ĝ2 − ĝ1)](n)

)2
(t) dt

+ 2

∫ +∞

τ

[
(φ̂1+ϕ − φ̂1)(n)(t)

]2
dt.(11)

Then, note that |j(m)(t)| ≤ C
∑

n≥1
εn−1cn0n

2

2nn! ≤ Cc0 for all t ∈ [τ, 2τ ], so that

∫ +∞

τ

(
[φ̂1+ϕ(ĝ2 − ĝ1)](n)

)2
=

∫ 2τ

τ

(
[φ̂1+ϕĵ]

(n)
)2 ≤ Cc0 sup

n−4≤m≤n

(
n

m

)2 ∫ 2τ

τ

(
[φ̂1+ϕ](m)

)2
.

Recall that the Hermite polynomials Hm are defined by

Hm(x) = (−1)mex
2/2 d

m

dxm

(
e−x

2/2
)
,

so that if n− 4 ≤ m ≤ n,∫ 2τ

τ

(
[φ̂1+ϕ](m)

)2 ≤ (1 + ϕ)n
∫ 2τ

τ
H2
m(t
√

1 + ϕ)e−t
2(1+ϕ) dt ≤ (1 + ϕ)nn! e−τ

2/2.

Therefore, if α is large enough and c0 is small enough,

ε2
∑
n≥0

1

2nn!

∫ +∞

τ

(
[φ̂1+ϕ(ĝ2 − ĝ1)](n)

)2 ≤ Cc0ε2e−τ2/2 ≤ Cc0

d
.(12)

Consider now the second integral in (11). Applying the mean value theorem to the k-th deriva-

tive of f(t) = exp(−t2/2) we get that, for t ≥ 0,

∣∣(φ̂1+ϕ − φ̂1)(n)(t)
∣∣ ≤ [(1 + ϕ)n/2 − 1]

∣∣f (n)(t
√

1 + ϕ)
∣∣+ t(

√
1 + ϕ− 1) sup

u∈[t,t
√

1+ϕ]

|f (n+1)(u)|

≤ (1 + ϕ)n/2
∣∣Hn(t

√
1 + ϕ)e−

(1+ϕ)t2

2

∣∣+ tϕ sup
u∈[t,t

√
1+ϕ]

|Hn+1(u)e−u
2/2|.
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By integrating the square of the first term on the right hand side, we get∫ +∞

τ
(1 + ϕ)nH2

n(t
√

1 + ϕ)e−t
2(1+ϕ) dt ≤ (1 + ϕ)ne−τ

2/2

∫ +∞

0
H2
n(t
√

1 + ϕ)e−
t2(1+ϕ)

2 dt

≤ C(1 + ϕ)nn! e−τ
2/2.

On the other hand, using the fact that Hn(u) =
∑bn/2c

l=0 (−1)l n!
2ll!(n−2l)!

un−2l, we find

∫ +∞

τ
t2 sup
u∈[t,t

√
1+ϕ]

|Hn(u)|2e−t2 dt ≤ (1 + ϕ)ne−τ
2/2n

bn/2c∑
l=0

( n!

2ll!(n− 2l)!

)2
∫ +∞

0
t2n−4l+2e−t

2/2 dt

≤ C(1 + ϕ)ne−τ
2/2n

bn/2c∑
l=0

( n!

2ll!(n− 2l)!

)2
2n−2l(n− 2l + 1)!

≤ C(1 + ϕ)ne−τ
2/22nn3 sup

0≤l≤bn/2c

(n!)2

(l!)2(n− 2l)!

≤ C(1 + ϕ)ne−τ
2/2(2e)nn5n!

and

∑
0≤n≤b4 log

(
es2

d

)
c

1

2nn!

∫ +∞

τ

[
(φ̂1+ϕ − φ̂1)(n)(t)

]2
dt(13)

≤ Cϕ2(1 + ϕ)4 log
(

es2

d

) (s2

d

)4
log5

(es2

d

)
e−τ

2/2 ≤ Cc0
d

for all α large enough and c0 small enough. Furthermore, using the mean value theorem we

obtain ∫ +∞

τ

[
(φ̂1+ϕ − φ̂1)(n)(t)

]2
dt ≤ 2π

∫
t2n(φ1+ϕ − φ1)2(t) dt

≤ Cϕ2

∫
t2n+4e−t

2/(1+ϕ) dt

≤ Cϕ2(1 + ϕ)n+2(n+ 2)!

Thus, if c0 is small enough

∑
n≥b4 log

(
es2

d

)
c

1

2nn!

∫ ∞
τ

[
(φ̂1+ϕ − φ̂1)(n)(t)

]2
dt ≤ Cϕ2

(3(1 + ϕ)

4

)4 log
(

es2

d

)
≤ Cc0

d
,

since 4 log(4/3) > 1. The result follows from the last formula, (12) and (13).
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