N. Nosengo, Can artificial intelligence create the next wonder material?, Nature, vol.533, issue.7601, pp.22-25, 2016.
DOI : 10.1038/533022a

T. Kalil and C. Wadia, Materials Genome Initiative for Global Competitiveness (The National Science and Technology Council, 2011.

R. Pophale, P. A. Cheeseman, and M. W. Deem, A database of new zeolite-like materials, Physical Chemistry Chemical Physics, vol.360, issue.27, pp.12407-12412, 2011.
DOI : 10.1016/j.memsci.2010.05.032

H. Furukawa, K. E. Cordova, M. O-'keeffe, and O. M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks, Science, vol.210, issue.51, p.974, 2013.
DOI : 10.1002/macp.200900354

K. S. Park, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl Acad. Sci. USA 103, pp.10186-10191, 2006.
DOI : 10.1021/cr60290a003

A. Cooper, Conjugated Microporous Polymers, Advanced Materials, vol.108, issue.55, pp.1291-1295, 2009.
DOI : 10.1002/masy.19920540135

C. E. Wilmer, Large-scale screening of hypothetical metal???organic frameworks, Nature Chemistry, vol.48, issue.2, pp.83-89, 2012.
DOI : 10.1016/j.cej.2010.10.035

Y. G. Chung, Computation-Ready, Experimental Metal???Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals, Chemistry of Materials, vol.26, issue.21, pp.6185-6192, 2014.
DOI : 10.1021/cm502594j

Y. Bao, In Silico Discovery of High Deliverable Capacity Metal???Organic Frameworks, The Journal of Physical Chemistry C, vol.119, issue.1, pp.186-195, 2015.
DOI : 10.1021/jp5123486

R. L. Martin, L. Lin, K. Jariwala, B. Smit, and M. Haranczyk, Mail-Order Metal???Organic Frameworks (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic Molecules, The Journal of Physical Chemistry C, vol.117, issue.23, pp.12159-12167, 2013.
DOI : 10.1021/jp401920y

URL : https://infoscience.epfl.ch/record/200712/files/Martin-2013-Mail-Order Metal?Org.pdf

R. L. Martin, C. M. Simon, B. Smit, and M. Haranczyk, Design of Porous Polymer Networks: High-Throughput Screening for Methane Storage Materials, Journal of the American Chemical Society, vol.136, issue.13, pp.5006-5022, 2014.
DOI : 10.1021/ja4123939

C. M. Simon, Optimizing nanoporous materials for gas storage, Physical Chemistry Chemical Physics, vol.38, issue.12, pp.5499-5513, 2014.
DOI : 10.1039/b802256a

L. Lin, Extracting insights from the shape of complex data using topology, Sci. Rep, vol.3, p.1236, 2013.

L. Zhu, A fingerprint based metric for measuring similarities of crystalline structures, The Journal of Chemical Physics, vol.2, issue.3, p.34203, 2016.
DOI : 10.1021/acs.jpclett.5b01456

A. R. Oganov and M. Valle, How to quantify energy landscapes of solids, The Journal of Chemical Physics, vol.84, issue.10, p.104504, 2009.
DOI : 10.1023/A:1011326007550

R. L. Martin, B. Smit, and M. Haranczyk, Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials, Journal of Chemical Information and Modeling, vol.52, issue.2, pp.308-318, 2012.
DOI : 10.1021/ci200386x

G. Carlsson, Topology and data. Bull Am, Math. Soc, vol.46, pp.255-308, 2009.

C. Simon, The materials genome in action: identifying the performance limits for methane storage, Energy & Environmental Science, vol.23, issue.402, pp.1190-1199, 2015.
DOI : 10.1002/adma.201002854

F. Chazal, V. De-silva, and S. Oudot, Persistence stability for geometric complexes, Geometriae Dedicata, vol.33, issue.2, pp.193-214, 2014.
DOI : 10.1007/s00454-004-1146-y

URL : https://hal.archives-ouvertes.fr/hal-00923560

S. K. Bhatia and A. L. Myers, Optimum Conditions for Adsorptive Storage, Langmuir, vol.22, issue.4, pp.1688-1700, 2006.
DOI : 10.1021/la0523816

J. A. Mason, M. Veenstra, and J. Long, Evaluating metal???organic frameworks for natural gas storage, Chem. Sci., vol.26, issue.1, pp.32-51, 2014.
DOI : 10.1007/s10450-013-9543-2

Y. S. Bae and R. Snurr, Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal???organic frameworks, Microporous and Mesoporous Materials, vol.132, issue.1-2, pp.300-303, 2010.
DOI : 10.1016/j.micromeso.2010.02.023

H. Frost and R. Q. Snurr, Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials, The Journal of Physical Chemistry C, vol.111, issue.50, pp.18794-18803, 2007.
DOI : 10.1021/jp076657p

P. Y. Lum, Extracting insights from the shape of complex data using topology, Scientific Reports, vol.2, issue.1, p.1236, 2013.
DOI : 10.1002/wics.101

K. Mischaikow and V. Nanda, Morse Theory for Filtrations and Efficient Computation of Persistent Homology, Discrete & Computational Geometry, vol.37, issue.10, pp.330-353, 2013.
DOI : 10.2307/1968689

P. Bubenik and P. D?otko, A persistence landscapes toolbox for topological statistics, Journal of Symbolic Computation, vol.78, pp.91-114, 2016.
DOI : 10.1016/j.jsc.2016.03.009

URL : https://hal.archives-ouvertes.fr/hal-01258875

A. Bondi, van der Waals Volumes and Radii, The Journal of Physical Chemistry, vol.68, issue.3, pp.441-451, 1964.
DOI : 10.1021/j100785a001

R. S. Rowland and R. Taylor, Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii, The Journal of Physical Chemistry, vol.100, issue.18, pp.7384-7391, 1996.
DOI : 10.1021/jp953141+