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Abstract. Strong interactions exist between flow dynamics and vegetation in open-channel. Depth-averaged
shallow water equations can be used for such a study. However, explicit representation of vegetation can lead to
very high resolution of the mesh since rigid vegetation is often modelled as vertical cylinders. Our work aims
to study the ability of a single porosity-based shallow water model for these applications. More attention on
flux and source terms discretizations are required in order to archive the well-balancing and shock capturing.
We present a new Godunov-type finite volume scheme based on a simple-wave approximation and compare it
with some other methods in the literature. A first application with experimental data was performed.

1 Introduction

Vegetation is known to play important role in dynamic of
open-channel flow. Depending on the shape, density and
spatial distribution of vegetation, water depth and flow di-
rection might be significantly modified because the veg-
etation roughness is much larger than the roughness of
river bed [1, 2]. Understanding the influence of vegetation
on river flow, or more general in environmental fluid me-
chanics, have been primary interest for decades. Shallow
Water (SW) model, obtaining by depth-integrating Navier-
Stokes equations under shallowness hypothesis, can pro-
vide an accurate representation of physical processes of
flow through vegetation. Nevertheless, such an explicit
modelling is not suitable in the field, because it leads to
very expensive computational cost; furthermore, the real
geometry is generally not available or not accurate enough.

Figure 1. Flow through rigid vegetation with different densities.
Credit: Y. Peltier.
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It seems more appropriate to use implicit or macro-
scopic modelling for practical application. Traditional ap-
proaches consists in adding a drag force globally or locally
into the momentum equation of SW model to enhance the
determination of the local velocities. A more advanced
macroscopic model, that we are interested here, is to intro-
duce a porosity term into SW model. The porosity, φ, rep-
resents the fraction of the plan view area available to flow.
For emergent and rigid vegetation, one can consider an
isotropic and depth-independent porosity, see Fig. 1. This
approach is called single porosity (SP) model [3] whose
the mass and momentum conservation equations write

∂t(φh) + div (φhu) = 0,

∂t(φhu) + div (φhu ⊗ u) + ∇

(
g

2
φh2

)
=
g

2
h2∇φ − gφh∇b − τb − τd,

(1)

where h represents the depth of water and u denotes the
depth-averaged horizontal velocity with components u and
v; g is the acceleration due to gravity, b is the bed elevation,
τb stands for the friction stress and finally τd expresses the
depth-integrated drag due to vegetation. These last two
terms are estimated by empirical quadratic laws, writing

τb = gφh
n2|u|u
h4/3 , τd =

1
2

aCdh|u|u
φ

(2)

in which n is Manning’s coefficient and Cd is drag coeffi-
cient. The parameter a =

1−φ
πD/4 is often termed as frontal

area of vegetation of effective diameter D. Since drag
force acts upon the fluid which occupies only a fraction



φ of the total volume, the total drag is thus divided by φ. It
is evident that when φ = 1, we find again SW model.

Numerical scheme for SP model has been less stud-
ied than SW model. One can see from (1) that SP model
presents an additional non-conservative source term due
to spatial variation of porosity. Structure of the solution
is thus mathematically more complex than SW model. In
framework of finite volume method, a first scheme was
proposed by Guinot and Soares-Frazão [4] in which the
authors modified the numerical HLLC flux to account the
porosity source term. This method is found to be efficient
for shock capturing but it is inaccurate for steady solutions
of the model. Next, several approaches of Roe-type have
been proposed, one can cited [5–8]. All these methods re-
ply on the Roe-averaged state of SW model and the source
terms are next projected on the basis of eigenvectors of the
linearized system. These approaches are known to have
the same difficulties in preserving the positivity of water
depth or when dealing with critical state (sonic point). We
would like to mention here a third approach proposed by
Finaud-Guyot et al. [9] which particularly holds our at-
tention. Under assumption that all waves are rarefactions,
the solution can entirely be determined using Riemann in-
variants. This solver, namely PorAS, is shown to be very
accurate for regular solution, including the steady ones,
but has difficulties for estimating shock waves.

We aim to study a robust scheme which inherits, on
one hand, the good properties of HLLC solver, such as
positivity preserving, shock capturing and easy to imple-
ment; on the other hand, the scheme captures accurately
steady solutions as with PorAS method. Therefore, we
have considered a suitable simple-wave approximation of
solution on which exact Riemann invariants are imposed.

The paper is organized as follows: we first recall the
two-dimension finite volume formalism whose numerical
fluxes at each cell’s interface are obtained by solving a pro-
jected one-dimension Riemann problem. Next, we detail
and analyse the construction of the simple-solver. Two
test cases for illustrating the attractive behaviours of the
method are presented. Finally a real application with ex-
perimental data was performed.

2 Numerical scheme

We propose and analyse here a novel finite volume dis-
cretization for governing equations (1). It should be con-
venient to rewrite the system under vectorial form of a con-
servation law with source terms such as

∂tW + ∂xF + ∂yG = S − Sτ, (3)

in which we have denoted the conservative variable
W = (φh, φhu, φhv)T , the fluxes F(W),G(W), the non-
conservative source term S(W, b) due to bathymetry and
porosity gradients, also the source term Sτ(W) accounting

the friction and additional drag. They write

F(W) =

 φhu
φhu2 +

g
2φh2

φhuv

 , G(W) =

 φhv
φhuv

φhv2 +
g
2φh2

 ,
S(W, b) =

(
0

g
2 h2∇φ − gφh∇b

)
, Sτ(W) =

(
0

τb + τd

)
.

2.1 Two-dimension finite volume formalism

Let Ω denote the computational domain discretized by a
simplex mesh Th. For two adjacent cells C j and Ck of the
mesh, we denote Γ jk their common edge and n jk = (n1, n2)
the outward unit normal vector to Γ jk, from C j to Ck.

Given an approximation {φ, b} j of geometric data on
the mesh and assuming that a piecewise constant approxi-
mation Wn

j at time tn = n∆t is known, that is by providing

Wn
j =

1
|C j|

∫
C j

W(x, tn) dx

with x = (x, y) the space coordinates, ∆t the time step,
finite volume scheme consists in computing the updated
solution Wn+1

j at next time level tn+1 = tn + ∆t.
Well-balanced scheme, i.e. that preserves at least the

steady state at rest (u = 0, h + b = const.), becomes nowa-
days a prerequisite criteria for modern numerical method.
A classical way to design such a discretization for shallow
water model is to solve system (3) in two following steps.

Convection. In order to balance the convective terms and
the geometrical source terms, i.e. which contain gradient
of φ and b, we solve first the following PDE system∂tW + ∂xF + ∂yG = S,

W(x, 0) = Wn.
(4)

This results an intermediate solution denoted Wn+1/2
j . Inte-

grating (4) over a space-time control volume C j × (tn, tn+1)
and applying the divergence theorem, the resulting numer-
ical scheme can be written under the form

Wn+1/2
j = Wn

j −
∆t
|C j|

∑
Γ jk⊂∂C j

|Γ jk |F (Wn
j ,W

n
k ; b j, bk), (5)

in which F (Wn
j ,W

n
k ; b j, bk) is an approximation of flux

and source terms along the edge Γ jk and in direction
n jk. Therefore, constructing a two-dimension scheme con-
sists in providing a numerical flux F . Thanks to rota-
tional invariance property, that is n1F(W) + n2G(W) =

R−1
ni j

F(Rni j W) with Rni j being the rotation matrix, the nu-
merical flux can thus be derived from the one-dimension
system. This later will be detailed in the next section.

Friction and drag. Once the state Wn+1/2
j is known, the

next step is to account the friction and drag momentum
source terms by solving∂tW = −Sτ,

W(x, 0) = Wn+1/2.
(6)



Similarity to the case of SW model, this ODE system can
be discretized by a semi-implicit scheme which ensures
the stability of the solution and is known to be very effi-
cient for wet/dry transition [10]. Regarding empirical law
(2), numerical discretization for system (6) writes

hn+1
j = hn+1/2

j ,

(φhu)n+1
j =

(φhu)n+1/2
j

1 + ∆t
(

n2g|un
j |

(hn+1
j )4/3 + 1

2
aCd |un

j |

φ2
j

) . (7)

2.2 A one-dimension Godunov-type scheme

When constructing numerical flux for two-dimension fi-
nite volume scheme (5), we have had to project convection
equations (4) on the common edge Γ jk of control volumes
C j,k. Let WL,R = Rn jk Wn

j,k be the corresponding left- and
right-states, we are concerned now to solve the self-similar
solution W(x/t) of one-dimension Riemann problem

∂tW + ∂xF = Sx,

W(x, 0) =

WL if x < 0,
WR if x > 0,

(8)

in which Sx(W, b) = (0, g2 h2∂xφ − gφh∂xb, 0)T is the non-
conservative geometrical source term in direction n jk. It is
worth noticing that this one-dimension model is equivalent
to SW model with breadth variations, see e.g. [11, 12].

As reported in [9], system (8) has three characteristic
fields propagating with the following wave speeds

λ1 = u −
√
gh, λ2 = u +

√
gh, λ3 = u. (9)

The two first fields are nonlinear and known to be rarefac-
tion or shock waves while the last field is a contact discon-
tinuity wave. It is shown that the porosity and bathymetry
remain constant along all these characteristic wave curves.
They may change only across a stationary wave, and along
which the following Bernoulli’s relation, also called well-
balancing property, has to be satisfied

φhu = const.,
u2

2g
+ h + b = const., v = const.

Approximation by simple-solver. Exact solution to the
Riemann problem (8) has a complicated structure due
to the presence of non-conservative source terms. We
consider therefore a simple-solver WR(x/t) composed
by the given data WL,WR and three intermediate states
W∗

L,W
∗,W∗

R. They are separated by four discontinuities
waves propagating with velocities λL ≤ λ0 = 0 ≤ λR and
λ∗ as illustrated in Fig. 2. The first order Godunov-type
scheme based on this simple-solver can be written as

Wn+1/2
j = Wn

j −
∆t
∆x

(
FL

j+1/2 − FR
j−1/2

)
where ∆x stands for the one-dimension mesh size, and for
each cell’s interface, the left- and right- numerical fluxes
FL,R

j+1/2 = FL,R(Wn
j ,W j+1; b j, b j+1) are given byFL = F(WL) + λL(W∗

L −WL) + λ∗−(W∗ −W∗
L),

FR = F(WR) − λR(WR −W∗
R) − λ∗+(W∗

R −W∗),
(10)

x

t

0−∆x/2 ∆x/2

λ0 λ∗ λRλL

WL WR

W∗
L W∗ W∗

R

Figure 2. Four-wave approximate solution of Riemann problem.

with λ∗± standing for the positive and negative parts of λ∗.
Therefore, the construction of scheme consists in solving
intermediate states of the simple-solver. One- and two-
dimension fluxes can be linked to each other by relation

F (Wn
j ,W

n
k ; b j, bk) = R−1

ni j
FL(Rni j W

n
j ,Rni j W

n
k ; b j, bk).

Determination of intermediate states. The simple-solver
has to be verified an integral consistency condition [13]
at interface which means that the averaged value of exact
solution must be preserved, saying

1
∆x

∫ ∆x
2

− ∆x
2

WR

( x
∆t

)
dx =

1
∆x

∫ ∆x
2

− ∆x
2

W
( x
∆t

)
dx, (11)

under a half-CFL condition

∆t ≤
1
2

∆x
max{−λL, λR}

.

It is worth noticing that the factor 1/2 in this CFL con-
dition is rather theoretical; and in practical it is often set
to unity. Additional relations on intermediate states can
be imposed in order to be consistent with well-balancing
property and Riemann invariants of exact solution

φLh∗Lu∗L = φRh∗Ru∗R := q∗, (12)

u∗2L /2g + h∗L + bL = u∗2R /2g + h∗R + bR, (13)
v∗L = vL, v

∗
R = vR,h∗ = h∗R, u∗ = u∗R, v

∗ = v∗L if λ∗ ≥ 0,
h∗ = h∗L, u∗ = u∗L, v

∗ = v∗R otherwise.

(14)

Now, let WHLL denote the usual HLL-state of the ho-
mogeneous Riemann problem, i.e. without source term,

WHLL =
λRWR − λLWL

λR − λL
−

F(WR) − F(WL)
λR − λL

. (15)

Recall that λL and λR are estimations of slowest and fastest
wave speeds. We used in this study a classical estimation
based on λ1 and λ2 from equation (9), that writes

λL = min{0, λ1(WL), λ1(WR)},
λR = max{0, λ2(WL), λ2(WR)}.

Intermediate states of the simple-solver can be seen a
priori as some perturbations of WHLL due to the source
term Sx(W, b) := (0, S x, 0)T . To see this, we integrate
first the conservation law (8) on the rectangular C =



[−∆x/2,∆x/2] × [0,∆t], see again Fig. 2. We use next the
consistency (11) and equation (12) to obtain the following
relations, after some algebraic manipulations,

(φh)HLL = αφRh∗R + (1 − α)φLh∗L, α =
λR

λR − λL
, (16)

(φhu)HLL = q∗ −
∆x S x

λR − λL
, S x =

1
|C|

∫
C

S x dx dt. (17)

Therefore, by equation (16), which is resulted from mass
consistency, (φh)HLL is nothing that a convex combination
of φLh∗L and φRh∗R. Equation (17) expresses momentum
consistency and allows to compute intermediate discharge
q∗ from that of HLL-state once given an approximation S x

of the source term. We discuss later how such an approxi-
mation can be made.

Once q∗ is known, we turn now to solve intermediate
water depths by employing the well-balancing condition
(13). This equation can be rewritten under the form

q∗2

2g

(
1

(φRh∗R)2 −
1

(φLh∗L)2

)
+
φRh∗R
φR
−
φLh∗L
φL

= bL − bR.

Combining it with (16), by which φRh∗R can be seen as
function of φLh∗L, the well-balancing condition results thus
a nonlinear equation in φLh∗L. Let consider further a natu-
ral condition saying that intermediate states have the same
regime, i.e. they are both sub-critical or super-critical, this
nonlinear equation admits thus an unique and positive so-
lution which can be solved numerically by any iterative
method. Solving this (fully) Bernoulli relation allows to
provide very accurate result, in particular for the case with
large porosity gradient and/or with steep bottom slope.

An alternative approach, which is less accurate but
faster and preserves as well steady state at rest, is to re-
place (13) by a hydrostatic approximation, being h∗L +bL =

h∗R + bR. Coupling again with (16) results an explicit ex-
pression of intermediate water depths, writing

h∗L =
(φh)HLL + αφR(bR − bL)

αφR + (1 − α)φL
,

h∗R =
(φh)HLL − (1 − α)φL(bR − bL)

αφR + (1 − α)φL
.

(18)

It remains up to now an estimation for velocity λ∗ of
the contact discontinuity field. Straightforward calcula-
tions from integral consistency condition (11) and Rie-
mann invariants (14) yield

λ∗ =
φLhL(uL − λL) + φRhR(uR − λR) + λLφLh∗L + λRφRh∗R

2(φh)∗
,

in which (φh)∗ standing for the first component of W∗ and
thus being φLh∗L or φRh∗R, depending on the sign of λ∗.
Since (φh)∗ is positive in all case, λ∗ is thus well defined
once given intermediate water depths h∗L and h∗R.

It could be checked that the fluxes FL,R are nonconser-
vative for second component due to the source term, that is
FL
φhu , FR

φhu, while they are conservative for first and third
components, i.e. FL

φh = FR
φh := Fφh, FL

φhv = FR
φhv := Fφhv.

In practical, we have not to compute λ∗ since straightfor-
ward manipulations show that Fφh and λ∗ have the same

sign, and furthermore, the flux Fφhv can be expressed un-
der upwinding form

Fφhv =

vLFφh if Fφh ≥ 0,
vRFφh otherwise.

(19)

Finally, the scheme accounts automatically for the fact
that water cannot flow into region of zero porosity. In-
deed, considering the case φR = 0, equation (16) leads to
−λLφLh∗L = (λR − λL)(φh)HLL = −λLφLhL + φLhLuL and so
the flux Fφh = 0 from its definition. Let us remark that this
behaviour is due to the adopted structure of simple-solver
and, unlike other approaches [4, 5, 9], it does not require
any specific approximation of porosity at the interface.

Source term approximation. Deriving an appropriate ap-
proximation S x is a key point of the scheme. This con-
sists in defining a numerical value of water depth and
porosity at the interface, and can be done by investigat-
ing well-balancing property. Indeed, considering now the
case where WL and WR are steady states at rest, that is
uL = uR = 0 and hL + bL = hR + bR, these states are
preserved by the scheme if q∗ = 0. Substituting this into
momentum consistency equation (17) leads to

∆x S x =
g

2

(
φRh2

R − φLh2
L

)
(20)

= g

(
hLhR

2
(φR − φL) +

φLhL + φRhR

2
(hR − hL)

)
= g

(
hLhR

2
(φR − φL) −

φLhL + φRhR

2
(bR − bL)

)
.

Consequently, we have approximated h2 by hLhR and φh
by (φLhL +φRhR)/2 at the interface. As we can see, this ap-
proximation is consistent in the sense that S x converges to
S x(W, b) when ∆x → 0 and WL,WR → W, bL, bR → b,
in other words when the data and the solution are regular.

To conclude this section, let us summarize the main
steps which are useful for practical implementation of pro-
posed method. For convection step (5), we compute first
HLL-state WHLL by (15). Next, we solve intermediate
states by providing a source term approximation S x, such
as (20). This allows to obtain intermediate discharge q∗ via
(17). After, intermediate water depths h∗L,R are computed
by coupling (13) and (16) or by using directly solution (18)
which is resulted from hydrostatic approximation. At this
stage, we can already calculate the fluxes FL,R from def-
inition (10) for the two first components and (19) for the
last one. We finally take into account the friction and drag
force by solving (6) with semi-implicit discretization (7).

3 Numerical experiments

The two first test cases are one-dimension and aim to as-
sess well-balancing property also shock capturing ability
of the proposed scheme. Next, a real application of the
scheme for macroscopic modelling of open-channel flow
with vegetation is found in the third test case, for which
numerical results and experimental data are compared.



3.1 Steady sub-critical flow over a bump

The proposed scheme is shown to be well-balanced in the
sense that it preserves exactly the steady state at rest, i.e.
that with zero discharge. Steady solutions with non-null
discharge can also be captured accurately by solving di-
rectly Bernoulli relation (13), and not hydrostatic approx-
imation (18), when computing intermediate water depths.
To illustrate this, we return to a well-known test case of
SW model consisting of steady sub-critical flow over a
parabolic bump

b(x) =

{
0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12,

0 otherwise.

We impose at upstream an unit discharge hu = 4.42m2/s
while pre-describe a water depth h = 2m at downstream.
Numerical solutions with ∆x = 0.1m are given in Fig. 3.
The results allow to highlight that by solving Bernoulli re-

4.4

4.41

4.42

4.43

4.44

6 8 10 12 14

h
u
(m

2
/s
)

x(m)

Reference solution
Hydrostatic approx.
Bernoulli resolution

Figure 3. Steady sub-critical flow over a bump. Reference and
numerical results for unit discharge with ∆x = 0.1m.

lation the scheme is able to provide very accurate solution,
contrary to hydrostatic approximation. Furthermore, one
can observe that the present scheme is as efficient as the
PorAS scheme [9] for this type of regular solution.

3.2 Dambreak with large porosity discontinuity

This second test case aims to show an attractive behaviours
of the proposed scheme compared to the PorAS one re-
lating on the shock capturing property. We consider a
dambreak on flat bottom but with large porosity discon-
tinuity. This test case was proposed in [4] and consists in
solving Riemann problem (8) with initial condition

(φ, h, u) =

 (1, 10, 0) if x < 50,
(0.1, 1, 0) if x > 50.

We notice that discontinuity on porosity at the dam posi-
tion leads to a complex structure of solution compared to
the case of SW model, i.e. with constant porosity. Pre-
cisely, from left-state WL, the solution starts first with a
1-rarefaction wave following by a stationary discontinuity

to reach a critical state W∗, that is u∗ =
√
gh∗, just after

the dam; it continues again with a 1-rarefaction wave and
links finally to right-state WR by a 2-shock, see Fig 4. Ex-
act solution can be computed by using Riemann invariants,
Rankine-Hugoniot relations and well-balancing property.

0

2

4

6

8

10

0 20 40 60 80 100

h
(m

)

x(m)

critical state

Initial condition
Hydrostatic approx.
Bernoulli resolution

Figure 4. Dambreak with very large porosity discontinuity. The
hydrostatic approximation converges to wrong solution.

The proposed scheme with Bernoulli resolution is able
to capture correctly the exact solution of Riemann prob-
lem while hydrostatic approximation can not, as we can
observe on Fig. 4 which is the results at T = 3s computed
with ∆x = 10−2m. Indeed, this can be understood by the
fact that hydrostatic approximation leads to only one inter-
mediate depth because the topography is flat, while solv-
ing Bernoulli relation allows to account the discontinuity
of porosity. Finally we recall that the construction of Po-
rAS scheme is based on rarefaction waves hypothesis, and,
therefore it might present some difficulties when estimat-
ing shock waves speed, as noticed in [9] by their authors.

3.3 Transition from meadow to wood

We apply now the SP model solving with the proposed
scheme for simulating the flow resistance caused by emer-
gent and rigid vegetation in open-channel flow. We con-
sider here a case of longitudinal transition from meadow to
wood in an 18m long and 1m width laboratory flume, and
with two types of hydraulic roughness: a bed-roughness
figuring a highly submerged dense meadow and emer-
gent macro-roughness figuring a forest. The longitudi-
nal bottom slope was S 0 = 1.05mm/m. Wood-type veg-
etation was modelled using circular cylinders of diameter
D = 10mm, uniformly distributed in staggered rows with
density N = 81 cylinders/m2, see Fig. 5 (top). We refer to
[14] for more details on experimental setup.

Experimental data reported that the vertical profile of
mean velocity, both in meadow and in vegetation regions,
remains flat except within a boundary layer. Therefore, ex-
plicit simulation with SW model can provide correct result
but will leads to very expensive computation cost. Indeed,
the circular form of cylinder requires a very high mesh res-
olution whose the element diameters range typically from
1mm (near the cylinders) to 10mm, see Fig. 5 (bottom).



Figure 5. Top: side view of cylinder array (credit: V.
Dupuis). Bottom: computational mesh for explicit simulation
with TELEMAC-2D (SW model).

This restriction on mesh resolution can of course be
relaxed when using SP model. In our study, we used an
uniform resolution of 10mm, that is the cylinder’s diame-
ter. Next, porosity of the elements close to a cylinder is the
ratio of cylinder’s area, πD2/4, and the total surface occu-
pied by these elements. This simple setting results values
of porosity ranging from 0.8 to 0.9. Otherwise, porosity
of the elements in water region is set to unity. Numerical
simulations were made for the case of uniform discharge
0.015m2/s, with both SW and SP models. Water depth was
imposed at downstream with measured value.

Figure 6. Visualization of velocity field and unit discharge (rep-
resented by background color) in vegetation region: SW model
(top) and SP model (bottom).

It remains to determine the friction and drag coeffi-
cients in order to perform the simulations. One can see
a priori that the flow is controlled by the bed friction in
meadow region while it is dominated by drag force in veg-
etation region. First, a Strickler roughness coefficient of
the meadow was set to Ks = 60.24m1/3/s based on the
measures from several uniform flows on meadow channel
without wood transition, see [15]. This corresponds to a
Manning coefficient n = 1/Ks = 0.0166s/m1/3. Next, a

simple one-dimension momentum balance equation was
used to account the drag force exerted by the cylinders.
Drag coefficient was thus evaluated as Cd = 1.2, see again
[14] for more details. Our first simulation was performed
with this reference set of values. On Fig. 6 we visualize
the velocity field and the unit discharge in vegetation re-
gion given by SW and SP models. One can observe that
SP model is able to cope macroscopic behaviours: the flow
is accelerated between two longitudinal rows of cylinders
(called fast vein) while it is decelerated after each cylinder.
Slight deviation of flow from the main direction around the
cylinders is also observed with SP model.

We turn now to investigate the influence of the transi-
tion from bed friction to emergent cylinder drag on longi-
tudinal profile of water depth. Recall that cylinders occupy
only on the half last part of the fume, i.e. between x = 9m
and x = 18m. Fig. 7 presents water depths measured along
the line y = 0.5m with an accuracy of ±0.5mm. One can
observed that the water depth increases upstream of rough-
ness transition, i.e. in meadow region, and becomes nearly
constant within vegetation region. This can be understood
by the fact that bed friction is negligible compared to drag
force in the last part of the flume.
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Figure 7. Longitudinal profile of water depth along y = 0.5m.

Because of expensive computational cost of SW
model, explicit simulation was performed only on a part
of vegetation region, from x = 12m to x = 17m. This sim-
ulation allows first to confirm a good agreement between
the results of SW and SP models on velocity field, as we
have seen before. Next, the water depth predicted by SW
model compared to the measured one confirms again that
the SW model can be used for detailed modelling of inter-
actions between vegetation and the flow. On the results of
SP model, one can see that qualitative behaviours of water
depth profile is well captured. Moreover, a good agree-
ment can be found in vegetation region for the result com-
puted with reference value of friction and drag coefficients
(Ks = 60.24, Cd = 1.2, blue curve in Fig. 7). Neverthe-
less, water depth is overestimated about 2mm in meadow
region; this can be improved by imposing a smaller drag
coefficient, but in that case, the predictive quality in veg-



etation part will be reduced. A value Cd = 1 seems to be
the best compromise for two regions.

4 Conclusion

We have presented in this paper a novel finite volume
scheme of Godunov-type for SP model. The solver is
based on a four-wave approximation of Riemann problem.
This can be seen as an augmented HLLC scheme which is
well-balanced, positivity preserving and shock capturing.
Details on practical implementation of the scheme were
also discussed. Next, a first application to modelling in-
teractions between rigid vegetation with the flow in a lab-
oratory flume was performed. Good agreement was found
both with experimental data and the result provided by an
explicit simulation with SW model.

Experimental data were provided by the FlowRes projet, sup-
ported by the French National Research Agency (ANR) under
the grant NoANR14-CE003-0010. We acknowledge in particular
V. Dupuis and S. Proust for their insightful comments.
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