S. Rudolph, C. Sacarea, and D. Troanca, What can FCA do for Artificial Intelligence?, FCA4AI 2015, co-located with the International Joint Conference on Artificial Intelligence (IJCAI 2015), pp.55-62, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252624

G. Birkhoff, Lattice theory, vol.25, 1940.

M. Barbut and B. Monjardet, Ordre et classification. Algebre et Combinatoire, issue.2, 1970.

B. Ganter and R. Wille, Formal concept analysis-mathematical foundations, 1999.

F. Lehmann and R. Wille, A triadic approach to formal concept analysis, Conceptual Structures: Applications, Implementation and Theory, Third International Conference on Conceptual Structures, ICCS '95, pp.32-43, 1995.

R. Wille, The basic theorem of triadic concept analysis, Order, vol.12, issue.2, pp.149-158, 1995.

G. Voutsadakis, Polyadic concept analysis, Order, vol.19, issue.3, pp.295-304, 2002.

H. David, P. Krantz, R. Suppes, and . Luce, Foundations of measurement, 1971.

U. Wille, Geometric representation of ordinal contexts, 1995.

R. Godin and H. Mili, Building and Maintaining Analysis-Level Class Hierarchies Using Galois Lattices, 8th Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), pp.394-410, 1993.

K. Biedermann, Powerset trilattices, Conceptual Structures: Theory, Tools and Applications, 6th International Conference on Conceptual Structures, ICCS '98, pp.209-224, 1998.

G. Voutsadakis, Dedekind-macneille completion of n-ordered sets, Order, vol.24, issue.1, pp.15-29, 2007.