A Two-Level Plagiarism Detection System for Arabic Documents

Abstract : Measuring the amount of shared information between two documents is a key to address a number of Natural Language Processing (NLP) challenges such as Information Retrieval (IR), Semantic Textual Similarity (STS), Sentiment Analysis (SA) and Plagiarism Detection (PD). In this paper, we report a plagiarism detection system based on two layers of assessment: 1. fingerprinting which simply compares the documents fingerprints to detect the verbatim reproduction. 2. Word embedding which uses the semantic and syntactic properties of words to detect much more complicated reproductions. Moreover, Word Alignment (WA), Inverse Document Frequency (IDF) and Part-of-Speech (POS) weighting are applied on the examined documents to support the identification of words that are most descriptive in each textual unit. In the present work, we focused on Arabic documents and we evaluated the performance of the system on a data-set of holding three types of plagiarism: 1. Simple reproduction (copy and paste), 2. Word and phrase shuffling 3. Intelligent plagiarism including synonym substitution, diacritics insertion and paraphrasing. The results show a recall of 88% and a precision of 85%. Compared to the results obtained by the systems participating in the Arabic Plagiarism Detection Shared Task 2015, our system outperforms all of them with a plagiarism detection score (Plagdet) of 83%.
Type de document :
Article dans une revue
Cybernetics and Information Technologies, In press, XX
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01706138
Contributeur : Didier Schwab <>
Soumis le : samedi 10 février 2018 - 17:40:51
Dernière modification le : jeudi 11 octobre 2018 - 08:48:03
Document(s) archivé(s) le : vendredi 11 mai 2018 - 12:29:49

Fichier

Final_papaer_ICT_Camera_Ready ...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01706138, version 1

Collections

Citation

El Moatez Billah Nagoudi, Ahmed Khorsi, Hadda Cherroun, Didier Schwab. A Two-Level Plagiarism Detection System for Arabic Documents. Cybernetics and Information Technologies, In press, XX. 〈hal-01706138〉

Partager

Métriques

Consultations de la notice

218

Téléchargements de fichiers

509