S. [. Agrachev, A. Kuksin, A. Sarychev, and . Shirikyan, On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier???Stokes equations, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.43, issue.4, pp.399-415, 2007.
DOI : 10.1016/j.anihpb.2006.06.001

]. V. Arn63 and . Arnold, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Nauk, vol.18, issue.5113, pp.13-40, 1963.

A. [. Agrachev and . Sarychev, Controllability of 2D Euler and Navier-Stokes Equations by Degenerate Forcing, Communications in Mathematical Physics, vol.37, issue.3, pp.673-697, 2006.
DOI : 10.1007/978-1-4684-7398-8

E. [. Alekseev and . Yurova, On Gaussian conditional measures depending on a parameter, Theory Stoch, Processes, vol.22, issue.38 2, 2017.

]. V. Bak86 and . Bakhtin, Averaging in multifrequency systems, Funct. Anal. Appl, vol.20, issue.2, pp.83-88, 1986.

J. Bricmont, A. Kupiainen, and R. Lefevere, Exponential mixing of the 2D stochastic Navier?Stokes dynamics, Communications in Mathematical Physics, vol.230, issue.1, pp.87-132, 2002.
DOI : 10.1007/s00220-002-0708-1

]. W. Doe00 and . Doeblin, Sur l'´ equation de Kolmogoroff, no. Special Issue, pp.1059-1128, 2000.

]. R. Dud02 and . Dudley, Real Analysis and Probability, 2002.

W. E. and J. C. Mattingly, Ergodicity for the Navier?Stokes equation with degenerate random forcing: Finite-dimensional approximation, Comm. Pure Appl. Math, vol.54, pp.1386-1402, 2001.

J. [. Mattingly and Y. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier?Stokes equation, Comm. Math. Phys, vol.224, issue.1, pp.83-106, 2001.

]. H. Fed69 and . Federer, Geometric Measure Theory, 1969.

J. Földes, N. Glatt-holtz, G. Richards, and E. Thomann, Ergodic and mixing properties of the Boussinesq equations with a degenerate random forcing, Journal of Functional Analysis, vol.269, issue.8, pp.2427-2504, 2015.
DOI : 10.1016/j.jfa.2015.05.014

B. [. Flandoli and . Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Communications in Mathematical Physics, vol.42, issue.1, pp.119-141, 1995.
DOI : 10.1007/978-1-4684-0313-8

J. [. Hairer and . Mattingly, Ergodicity of the 2D Navier???Stokes equations with degenerate stochastic forcing, Annals of Mathematics, vol.164, issue.3, pp.993-1032, 2006.
DOI : 10.4007/annals.2006.164.993

V. [. Kuksin and . Nersesyan, Stochastic CGL equations without linear dispersion in any space dimension, Stochastic Partial Differential Equations: Analysis and Computations, vol.6, issue.4, pp.389-423, 2013.
DOI : 10.1007/978-94-009-1423-0

URL : https://hal.archives-ouvertes.fr/hal-00694470

]. A. Kol54 and . Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk SSSR (N.S.), pp.98-527, 1954.

S. [. Karatzas and . Shreve, Brownian Motion and Stochastic Calculus, 1991.

A. [. Kuksin and . Shirikyan, Stochastic Dissipative PDE's and Gibbs Measures, Communications in Mathematical Physics, vol.213, issue.2, pp.291-330, 2000.
DOI : 10.1007/s002200000237

URL : http://www.ma.hw.ac.uk/~kuksin/art.ps

]. S. Kuk82 and . Kuksin, Diffeomorphisms of function spaces that correspond to quasilinear parabolic equations, Mat. Sb. (N.S.), vol.117, issue.159 3, pp.359-378, 1982.

I. I. Malofeev, Measurable dependence of conditional measures on a parameter, Doklady Mathematics, vol.8, issue.1, pp.13-17, 2016.
DOI : 10.1137/1131070

J. Moser, A rapidly convergent iteration method and non-linear partial differential equations. I, II, Ann. Scuola Norm, Sup. Pisa, vol.20, issue.3, pp.265-315, 1966.

J. C. Mattingly, Malliavin calculus for the stochastic 2D Navier???Stokes equation, Communications on Pure and Applied Mathematics, vol.976, issue.12, pp.1742-1790, 2006.
DOI : 10.1007/978-3-662-06400-9

]. D. Nua06 and . Nualart, The Malliavin Calculus and Related Topics, 2006.

]. A. Shi15 and . Shirikyan, Control and mixing for 2D Navier?Stokes equations with space-time localised noise, Ann. Sci. ´ Ec. Norm. Supér, vol.48, issue.4 2, pp.253-280, 2015.

]. W. Van06 and . Van-etten, Introduction to Random Signals and Noise, 2006.

]. C. Vil03 and . Villani, Topics in Optimal Transportation, 2003.

]. J. Zab08 and . Zabczyk, Mathematical Control Theory, Modern Birkhäuser Classics, 2008.