Exponential mixing for a class of dissipative PDEs with bounded degenerate noise

Abstract : We study a class of discrete-time random dynamical systems with compact phase space. Assuming that the deterministic counterpart of the system in question possesses a dissipation property, its linearisation is approximately controllable, and the driving noise has a decomposable structure, we prove that the corresponding family of Markov processes has a unique stationary measure, which is exponentially mixing in the dual-Lipschitz metric. The abstract result is applicable to nonlinear dissipative PDEs perturbed by a random force which affects only a few Fourier modes and belongs to a certain class of random processes. We assume that the nonlinear PDE in question is well posed, its nonlinearity is non-degenerate in the sense of the control theory, and the random force is a regular and bounded function of time which satisfies some decomposability and observability hypotheses. This class of forces includes random Haar series, where coefficients for high Haar modes decay sufficiently fast. In particular, the result applies to the 2D Navier–Stokes system and the nonlinear complex Ginzburg–Landau equations. The proof of the abstract theorem uses the coupling method, enhanced by the Newton–Kantorovich–Kolmogorov fast convergence.
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01705491
Contributeur : Armen Shirikyan <>
Soumis le : vendredi 9 février 2018 - 14:50:05
Dernière modification le : vendredi 31 août 2018 - 09:01:00
Document(s) archivé(s) le : jeudi 10 mai 2018 - 12:54:48

Fichier

Exponential mixing.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01705491, version 1

Citation

Sergei Kuksin, Vahagn Nersesyan, Armen Shirikyan. Exponential mixing for a class of dissipative PDEs with bounded degenerate noise. 2018. 〈hal-01705491〉

Partager

Métriques

Consultations de la notice

402

Téléchargements de fichiers

23