MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle

Pierre Touboul, Gilles Métris, Manuel Rodrigues, Yves André, Quentin Baghi, Joël Bergé, Damien Boulanger, Stefanie Bremer, Patrice Carle, Ratana Chhun, et al.

To cite this version:

HAL Id: hal-01705427
https://hal.archives-ouvertes.fr/hal-01705427
Submitted on 9 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The MICROSCOPE mission: first results of a space test of the Equivalence Principle

Pierre Touboul,1 Gilles Métris,2 Manuel Rodrigues,1 Yves André,3 Quentin Baghi,2 Joël Berg,6 Damien Boulanger,1 Stefanie Bremer,4 Patrice Carle,1 Ratana Chihun,1 Bruno Christophe,1 Valerio Cipolla,3 Thibault Damour,5 Pascale Danto,3 Hansjoerg Dittus,6 Pierre Fayet,7 Bernard Foulon,1 Claude Gageant,1 Pierre-Yves Guidotti,3 Daniel Hagedorn,5 Emilie Hardy,3 Phuong-Anh Huynh,3 Henri Inchauspe,1 Patrick Kayser,1 Stéphanie Lalain,1 Claus Lämmerzahl,4 Vincent Lebat,1 Pierre Lesueur,1 Françoise Liorzou,3 Meike List,4 Frank Löffler,8 Isabelle Panet,9 Benjamin Poulloux,3 Pascal Prieur,3 Alexandre Rebray,1 Serge Reynaud,10 Benny Rievers,4 Alain Robert,3 Hanns Selig,4 Laura Serron,2 Timothy Sumner,11 Nicolas Tanguy,1 and Pieter Visser12

1 ONERA, chemin de la Hunière, BP 80100, F-91123 Palaiseau Cedex, France
2 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD, Géozavar, 250 avenue Albert Einstein, F-06560 Valbonne, France
3 CNES, 18 avenue Edouard Belin, F-31401 Toulouse, France
4 ZARM, Center of Applied Space Technology and Microgravity, University of Bremen, Am Fallturm, D-28359 Bremen, Germany
5 IHES, Institut des Hautes Études Scientifiques, 35 route de Chartres, F-91440 Bures-sur-Yvette, France
6 DLR, Köln headquarters, Linder Höhe, 51147 Köln, Germany
7 LPTENS, École Normale Supérieure (PSL Research University), 24, rue Lhomond, 75231 Paris Cedex 05, France
8 PTB, Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
9 IGN, Institut géographique national, 73 avenue de Paris, F-94160 Saint Mandé, France
10 Laboratoire Kastler Brossel, UPMC-Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, F-75005 Paris, France
11 Blackett Laboratory, Imperial College London, United Kingdom
12 Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

(Dated: December 7, 2017)

According to the Weak Equivalence Principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10−15 precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A non-vanishing result would correspond to a violation of the Equivalence Principle, or to the discovery of a new long-range force. Analysis of the first data gives δ(Ti, Pt) = [−1±9(stat)±9(syst)]×10−15 (1σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.

I. INTRODUCTION

Gravity seems to enjoy a remarkable universality property: bodies of different compositions fall at the same rate in an external gravitational field [13]. Einstein interpreted this as an equivalence between gravitation and inertia [4], and used this (Weak) Equivalence Principle (WEP) as the starting point for the theory of General Relativity [5]. In terms of the Eötvös parameter δ(A, B) = 2(aA − aB)/(aA + aB) (aA and aB being the free-fall accelerations of the two bodies A and B), the best laboratory (1σ) upper limits on δ(A, B) are δ(Be, Ti) = (0.3±1.8)×10−13 and δ(Be, Al) = (−0.7±1.3)×10−13 [2], with similar limits on the differential acceleration between the Earth and the Moon toward the Sun [3].

General Relativity (GR) has passed all historical and current experimental tests [6], including, most recently, the direct observation of the gravitational waves emitted by two coalescing black holes [7]. However, it does not provide a consistent quantum gravity landscape and leaves many questions unanswered, in particular about dark energy and the unification of all fundamental interactions. Possible avenues to close those problems may involve very weakly coupled new particles, such as the string-theory spin-0 dilaton [8, 9], a chameleon [10] or a spin-1 boson U from an extended gauge group [11, 12], generally leading to an apparent WEP violation.

The MICROSCOPE space mission implements a new approach to test the WEP by taking advantage of the very quiet space environment. Non-gravitational forces acting on the satellite are counteracted by cold gas thrusters making it possible to compare the accelerations of two test masses of different compositions “freely-falling” in the same orbit around the Earth for a long period of time [13, 14]. This is done by accurately measuring the force required to keep the two test masses in relative equilibrium. Present data allow us to improve the 1σ upper limit on the validity of the WEP by an order of magnitude.

* Pierre.Touboul@onera.fr
Gilles.Metris@oca.eu
Manuel.Rodrigues@onera.fr
II. THE MICROSCOPE SPACE MISSION

MICROSCOPE aims to test the Equivalence Principle with an unprecedented precision of 10^{-15}. The T-SAGE (Twin Space Accelerometers for Gravitation Experiment) scientific payload, provided by ONERA, is integrated within a CNES microsatellite. It was launched and injected into a 710 km altitude, circular orbit, by a Soyuz launcher from Kourou on April 25, 2016. The orbit is sun-synchronous, dawn-dusk (i.e. the ascending node stays at 18 h mean solar time) in order to have long eclipse-free periods (eclipses are defined as periods within the Earth’s shadow and happen only between May and July).

T-SAGE is composed of two parallel similar differential accelerometer instruments, each one with two concentric hollow cylindrical test-masses. They are exactly the same, except for the use of different materials for the test-masses. In one instrument (SUREF) the two test-masses have the same composition, and are made from a Platinum/Rhodium alloy (90/10). In the other instrument (SUEP) the test-masses have different compositions: Pt/Rh (90/10) for the inner test-mass and Titanium/Aluminum/Vanadium (90/6/4) (TA6V) for the outer test-mass (see Table I). The test-masses' shape has been designed to reduce the local self-gravity gradients due to multipole moment residues [15].

The test-masses experience almost the same Earth gravity field and are constrained by electrostatic forces due to multipole moment residues [15]. The test-masses have the same composition, and are made from a Platinum/Rhodium alloy (90/10). In the other instrument (SUEP) the test-masses have different compositions: Pt/Rh (90/10) for the inner test-mass and Titanium/Aluminum/Vanadium (90/6/4) (TA6V) for the outer test-mass (see Table I). The test-masses' shape has been designed to reduce the local self-gravity gradients due to multipole moment residues [15].

The test-masses experience almost the same Earth gravity field and are constrained by electrostatic forces due to multipole moment residues [15]. The test-masses have the same composition, and are made from a Platinum/Rhodium alloy (90/10). In the other instrument (SUEP) the test-masses have different compositions: Pt/Rh (90/10) for the inner test-mass and Titanium/Aluminum/Vanadium (90/6/4) (TA6V) for the outer test-mass (see Table I). The test-masses’ shape has been designed to reduce the local self-gravity gradients due to multipole moment residues [15].

The satellite can be spun around the normal to the orbital plane and oppositely to the orbital motion in order to increase the frequency of the Earth gravity modulation. In this case, in the satellite frame, the Earth gravity field rotates at the sum of the orbital and spin frequencies (see Fig. 1). A WEP violation would give a signal modulated at this frequency, denoted f_{EP}. The Earth gravity field has a mean amplitude of 7.9 m s$^{-2}$ at 710 km altitude, and testing the WEP with an accuracy of 10^{-15} necessitates measuring the differential constraining force per unit of mass (henceforth called acceleration) between test mass pairs with an 1σ accuracy of 7.9×10^{-15} m s$^{-2}$ at f_{EP}.

Table I. Main test-mass physical properties measured in the laboratory before integration in the instrument.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Measured</th>
<th>SUREF</th>
<th>SUREF</th>
<th>SUEP</th>
<th>SUEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>at 20°C</td>
<td>Pt/Rh</td>
<td>Pt/Rh</td>
<td>Pt/Rh</td>
<td>Ti/Al</td>
<td></td>
</tr>
<tr>
<td>Mass in kg</td>
<td>0.401533</td>
<td>1.359813</td>
<td>0.401706</td>
<td>0.300939</td>
<td></td>
</tr>
<tr>
<td>g cm$^{-3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
or SUREF, depending of the session). The other instrument, 17.5 cm away (mainly along the Y axis), undergoes inerital and gravity gradient accelerations which preclude getting the same performance despite the excellent attitude control of the satellite. This is one of the reasons why we conduct independent experiments in different sessions, using either SUREF or SUEP, but not both simultaneously.

The payload is integrated inside a magnetic shield at the center of the microsatellite whose efficiency was modeled with a 3D magnetic tool and with measured magnetic properties on instrument parts. The sensor geometry and the low noise electronics benefit from the very stable passive thermal cocoon of the satellite.

III. MEASUREMENTS AND ESTIMATION OF SYSTEMATIC ERRORS

We define $\tilde{\Gamma}_k$ as the acceleration exerted by the surrounding capacitive sensor cage on the k-th test-mass. The three components of each acceleration $\tilde{\Gamma}_k$ are measured in the frame (X_k, Y_k, Z_k) attached to the corresponding sensor cage (see Fig. 1). Because of small (time-independent) misalignments with respect to the satellite frame $(X_{sat}, Y_{sat}, Z_{sat})$, the locally measured components $\tilde{\Gamma}_k$ are related to their components $\tilde{\Gamma}_{k}^{sat}$ in the satellite frame via $\tilde{\Gamma}_k = [\theta_k] \tilde{\Gamma}_{k}^{sat}$, where the matrix $[\theta_k]$ reads

\[
[\theta_k] = \begin{bmatrix}
1 & \theta_{kz} & -\theta_{ky} \\
-\theta_{kz} & 1 & \theta_{kx} \\
\theta_{ky} & -\theta_{kx} & 1
\end{bmatrix}.
\]

The three (antisymmetric) off-diagonal elements θ_{kl} measure the small rotation between the satellite frame and the k-th test-mass frame (designed such that $\theta_{kl} < 2 \times 10^{-3}$ rad).

Besides the antisymmetric off-diagonal elements θ_{kl} there are also measurement biases, non-unit scale factors and coupling defects which lead the readouts to measure the components $\tilde{\Gamma}_k^{meas} = [A_k] \tilde{\Gamma}_k$, where the sensitivity matrix $[A_k]$ reads

\[
[A_k] = \begin{bmatrix}
1 + K_{kx} & 0 & 0 \\
0 & 1 + K_{ky} & 0 \\
0 & 0 & 1 + K_{kz}
\end{bmatrix} + \begin{bmatrix}
0 & \eta_{kz} & \eta_{ky} \\
\eta_{ky} & 0 & \eta_{kx} \\
\eta_{kx} & -\eta_{ky} & 0
\end{bmatrix}.
\]

We then define the common- and differential-mode sensitivity matrices of the two inertial sensors as: $[M_c] = \frac{1}{2}([A_1] [\theta_1] + [A_2] [\theta_2])$ and $[M_d] = \frac{1}{2}([A_1] [\theta_1] - [A_2] [\theta_2])$. By design, the elements of $[M_d]$ are smaller than 10^{-2} and known to 10^{-4} accuracy after in-orbit estimation. Similarly, $[M_c]$ is close to the identity matrix with a subpercent error.

The quantity of interest is the difference between the accelerations exerted on the two test-masses of a given sensor unit, namely the inner mass ($k = 1$) and the outer mass ($k = 2$), $\tilde{\Gamma}_d^{meas} = \tilde{\Gamma}_1^{meas} - \tilde{\Gamma}_2^{meas}$. This measured
differential acceleration is directly related to the Eötvös ratio $\delta(2,1)$ and to the various forces acting on the satellite (see Ref. [20] for a detailed derivation):

$$
\vec{\Gamma}_d^{\text{meas}} \simeq \vec{R}_{0,d} + [M_d] \left(([T] - [J_n]) \Delta \mathbf{X} - 2 \Omega \times \Delta \mathbf{X} + \delta(2,1) \vec{g} (O_{\text{sat}}) \right) + 2[M_d] \left[\vec{r}_{\text{app}} + T_{\text{grav}} + \vec{M}_{\text{diff}} \times \hat{\Omega} + \vec{\Gamma}_{d}^t \right].
$$

All terms in Eq. (1) are described in Table [II]. Eq. (1) shows that the measurement may be sensitive to the common acceleration of the platform applied to both sensors of each instrument. Hence the mission scenario includes calibration sessions scheduled to match the sensitivities of the sensors, in order to estimate $[M_d]$ and to a posteriori correct its effect [19].

The gravity acceleration \vec{g} and the gravity gradient tensor $[T]$ projected into the satellite frame are computed from the ITSG-GRACE2014s Earth’s gravity potential model [20], by using the measured position and attitude of the satellite. The distance between the two test-masses’ centers of mass is estimated to $(\Delta_x, \Delta_y, \Delta_z) = (20.1, -8.0, -5.6) \pm (0.1, 0.2, 0.1) \mu$m. The Δ_x and Δ_z components are estimated from the gravity gradient signal at $2f_{\text{EP}}$ (at $2f_{\text{EP}}$, systematic errors are smaller than required for the above 0.1μm accuracy). The corresponding acceleration is simultaneously computed and corrected from the measured differential acceleration. The Δ_y component, although contributing only marginally to the differential acceleration, is estimated through a dedicated session [19]. In the particular mode where the satellite is spinning, the effect of test-mass miscentering is negligible at f_{EP} and could be left uncorrected. The satellite orbit and attitude are determined to 0.42 m and 0.4μrad precision, much better than the required 2 m and 1μrad.

The different error source contributions to Eq. (1) are summarized in Table [III] [21] [22]. As X is the preferred axis for the EP test, in-flight calibration of the first two rows of $[M_d]$ is sufficient: $M_{drx} = 8.5 \times 10^{-3} \pm 1.5 \times 10^{-4}$, $M_{dyx} = 8.5 \times 10^{-3} \pm 1.5 \times 10^{-4}$, $M_{dzx} = 1.5 \times 10^{-4}$ rad. The effect of the Earth’s gravity field and its gradient is considered along X at f_{EP} and in phase with any EP signal. All other terms are considered at f_{EP} but without considering the phase which is conservative.

Thermal effects are currently the dominant contribution to the systematic error. These were evaluated in a specific session where thermistors applied temperature variations at f_{EP} either to the electronic interface (ΔT_{FEU}) or to the SU baseplate (ΔT_{SU}). The effect of these variations (or their gradients) on the differential acceleration signal is $\Gamma_{\text{d}}^{\text{meas}}(\text{therm.}) = (7 \times 10^{-11} \text{ m s}^{-2} \text{ K}^{-1}) \Delta T_{\text{FEU}} + (4.3 \times 10^{-9} \text{ m s}^{-2} \text{ K}^{-1}) \Delta T_{\text{SU}}$. The SU temperature sensitivity was more than 2 orders of magnitude larger than expected and far too large to be due to the radiome-
ter effect or radiation pressure [23] and thus must come from another source. Fortunately the maximum observed FEEU and SU temperature variations during 120 orbits were less than respectively 20×10^{-5}K and 15×10^{-5}K, about 2 orders of magnitude smaller than expected. The mean variation in fact was limited by the resolution of the probes, leading to the upper limit on the thermal systematic included in Table [III]. Additional data could lower this upper limit.

The self gravity and magnetic effects have been evaluated by finite element calculation and found negligible compared to the previous error sources.

Fig. 2 shows the measurement spectrum for SUEP and SUREF. As expected, the measured noise varies as f^2 at high frequency; at low frequency, it varies as the $f^{-1/2}$ law expected for the damping noise of the gold wire. At f_{EP} the noise of the differential acceleration is dominated by this damping noise. It amounts to $5.6 \times 10^{-11} \text{ m s}^{-2} \text{ Hz}^{-1/2}$ for SUEP and to $1.8 \times 10^{-11} \text{ m s}^{-2} \text{ Hz}^{-1/2}$ for SUREF.

In the data used for this letter, the total amplitude of the differential acceleration FFT appears dominated by statistical signals over integration times lower than 62 to 120 orbits, respectively for SUREF and SUEP, as shown in Fig. 3: the blue line shows the evolution of the FFT amplitude at f_{EP} as the integration time (i.e number of orbits N) increases; the red line shows a $N^{-1/2}$ fit. The total FFT amplitude evolution appears inversely proportional to the square root of the integration time. A steady systematic effect would break this inverse proportionality law; for example a steady systematic effect (including a potential EP signal in SUEP) would show up as a constant offset. The results from both SUEP and SUREF are reaching sensitivities close to where no time dependent systematic effects should become apparent if they are present (without counterbalancing signal in SUEP) at the upper limit to the predictions shown in Table [III].

IV. EÖTVÖS PARAMETER ESTIMATION

We simultaneously estimate the Eötvös parameter $\delta(2,1)$ and the Δ_x and Δ_z miscenterings with a least-square fit based on Eq. (1) in the frequency domain. More precisely, N equations (one per data point) in the time domain are converted into N equivalent equations in the frequency domain through a Fourier transform; then the equation system is lightened by selecting the bands where the signal is expected (centered on f_{EP} for $\delta(2,1)$ and $2f_{\text{EP}}$ for Δ_x,z, with a 4×10^{-5} Hz width [24]).

The 1σ statistical errors are given by the 1σ uncertainty on the least-square estimate. The SUEP systematic error 9×10^{-15} is given by the upper limit evaluation performed in Table [III].

The Eötvös parameter for the SUEP instrument is obtained with 120 orbits $(713,518$s):

$$
\delta(Ti, Pt) = [-1 \pm 9(\text{stat}) \pm 9(\text{syst})] \times 10^{-15} \text{ at } 1\sigma,
$$

[2]
TABLE II. Description of the terms in Eq. (1).

<table>
<thead>
<tr>
<th>Terms of Eq. (1)</th>
<th>Description of the terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{K}_{0,d}$</td>
<td>Vector of the difference of the inertial sensor measurement bias.</td>
</tr>
<tr>
<td>$\vec{\Delta} = (\Delta_x, \Delta_y, \Delta_z)^T$</td>
<td>Vector (in the satellite frame) connecting the center of the inner mass to that of the outer mass.</td>
</tr>
<tr>
<td>$\vec{\Delta}$ and $\vec{\Delta}$</td>
<td>First and second time derivatives of $\vec{\Delta}$. They are nullified in the instrument’s bandwidth when the instruments servo-controls maintain the masses motionless versus the satellite frame.</td>
</tr>
<tr>
<td>$[\Omega]$</td>
<td>Satellite’s angular velocity matrix, $\vec{\Omega} \times \vec{r} = [\Omega]\vec{r}$</td>
</tr>
<tr>
<td>$[T]$</td>
<td>Gravity gradient tensor in the satellite frame.</td>
</tr>
<tr>
<td>$[I_n]$</td>
<td>Matrix gradient of inertia defined in the satellite frame by $[I_n] = \frac{\dot{\vec{\Omega}}}{2}$.</td>
</tr>
<tr>
<td>$\vec{g} = (g_x, g_y, g_z)^T$</td>
<td>Gravity acceleration vector in the satellite frame of 7.9 m s^{-2} in magnitude at the 710 km altitude.</td>
</tr>
<tr>
<td>$\delta (2, 1)$ Eötvös parameter of the outer mass (2) with respect to the inner mass (1).</td>
<td></td>
</tr>
<tr>
<td>$2 [\Omega] \vec{\Delta}$</td>
<td>Coriolis effect in the satellite frame. Very weak because the relative velocity of the test-masses at the test frequency is limited by the integral term of the accelerometer’ servo-loops and because the angular velocity is well controlled by the satellite DFACS loops.</td>
</tr>
<tr>
<td>$\vec{\Gamma}_{\text{app}}$</td>
<td>Mean acceleration applied on both masses in the satellite frame. Limited by the satellite DFACS.</td>
</tr>
<tr>
<td>$\vec{\Gamma}_{\text{quad}}$</td>
<td>Difference of the non-linear terms in the measurement, mainly the difference of the quadratic responses of the inertial sensors.</td>
</tr>
<tr>
<td>$[\text{Coupl}_{d}]$</td>
<td>Matrix of the difference, between the two sensors, of the coupling from the angular acceleration $\vec{\Omega}$ to the linear acceleration.</td>
</tr>
<tr>
<td>$\vec{\Gamma}_{d}$</td>
<td>Difference of the acceleration measurement noises of the two sensors (coming from thermal noise, electronics noise, parasitic forces,...), comprising stochastic and systematic error sources.</td>
</tr>
</tbody>
</table>

TABLE III. Evaluation of systematic errors in the differential acceleration measurement for SUEP @ $f_{EP} = 3.1113 \times 10^{-3}$ Hz.

<table>
<thead>
<tr>
<th>Term in the Eq. (1) projected on \vec{r}</th>
<th>Amplitude or upper bound</th>
<th>Method of estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity gradient effect $[T] \vec{\Delta}$ along X @ f_{EP} (in phase with g_x)</td>
<td>$< (10^{-18};10^{-19};10^{-17}) \text{ m s}^{-2}$</td>
<td>Earth’s gravity model and in flight calibration.</td>
</tr>
<tr>
<td>Gradient of inertia matrix $[I_n]$ effect along X @ f_{EP}</td>
<td>$10^{-18} \text{ m s}^{-2}$</td>
<td>DFACS performances and calibration.</td>
</tr>
<tr>
<td>$\vec{\Omega}_y \Delta_x - \Omega_x \Delta_y$</td>
<td>$1.3 \times 10^{-17} \text{ m s}^{-2}$</td>
<td>DFACS performances and calibration.</td>
</tr>
<tr>
<td>$\vec{\Omega}_y \Delta_y - \Omega_x \Delta_x - (\Omega_y^2 + \Omega_z^2) \Delta_z$</td>
<td>$< (10^{-16};10^{-15};10^{-14}) \text{ m s}^{-2}$</td>
<td>Earth’s gravity model and in flight calibration.</td>
</tr>
<tr>
<td>Drag-free control</td>
<td>$1.7 \times 10^{-15} \text{ m s}^{-2}$</td>
<td>DFACS performances and calibration.</td>
</tr>
<tr>
<td>Instrument systematics and defects</td>
<td>$5 \times 10^{-17} \text{ m s}^{-2}$</td>
<td>DFACS performances and calibration.</td>
</tr>
<tr>
<td>$([M_d] \vec{\Gamma}_{\text{app}}) \vec{r}$</td>
<td>$< 2 \times 10^{-15} \text{ m s}^{-2}$</td>
<td>Couplings observed during commissioning phase.</td>
</tr>
<tr>
<td>Thermal systematics</td>
<td>$< 67 \times 10^{-15} \text{ m s}^{-2}$</td>
<td>Thermal sensitivity in-orbit evaluation.</td>
</tr>
<tr>
<td>Magnetic systematics</td>
<td>$< 2.5 \times 10^{-16} \text{ m s}^{-2}$</td>
<td>Finite elements calculation.</td>
</tr>
<tr>
<td>Total of systematics in $\Gamma_{\text{ meas}}$</td>
<td>$< 71 \times 10^{-15} \text{ m s}^{-2}$</td>
<td></td>
</tr>
<tr>
<td>Total of systematics in δ</td>
<td>$< 9 \times 10^{-15}$</td>
<td></td>
</tr>
</tbody>
</table>
FIG. 2. Square root of the measured PSD of the differential acceleration along X during the scientific session 218 with SUEP (left) and during the scientific session 176 with SUREF (right); on left, \(f_{\text{EP}} = 3.1113 \times 10^{-3} \text{Hz}, f_{\text{orb}} = 1.6818 \times 10^{-4} \text{Hz} \) and satellite spin = \(2.9432 \times 10^{-3} \text{Hz} \); on right, \(f_{\text{EP}} = 0.9250 \times 10^{-3} \text{Hz} \) and satellite spin = \(0.5886 \times 10^{-3} \text{Hz} \). The gravity gradient effect are clearly observed at \(2f_{\text{EP}} \). The red line is a power law fit to the spectrum.

FIG. 3. Evolution of the mean amplitude of the FFT of the differential signal along X at \(f_{\text{EP}} \) as a function of integrating times (on left, from 12 to 120 orbits for the session 218 with SUEP and on right, from 11 to 62 orbits for SUREF). The mean of the FFT is computed as the average of the Fourier amplitudes over a narrow band of \(10^{-4} \text{Hz} \) around \(f_{\text{EP}} \). For SUEP, the black dashed line shows the estimated upper bound of the systematic errors given by the error assessment of Table III.

with a goodness-of-fit \(\chi^2_{\text{red}} = 1.17 \)

The test performed with the SUREF instrument over 62 useful orbits (368,650 s) yields:

\[
\delta(\mathbf{P}_t, \mathbf{P}_0) = [+4 \pm 4 \text{(stat)}] \times 10^{-15} \text{ at } 1\sigma, \tag{3}
\]

with \(\chi^2_{\text{red}} = 1.24 \). This estimation is fully compatible with a null result (which is expected for this instrument), suggesting no evidence of systematic errors at the order of magnitude of \(4 \times 10^{-15} \) consistent with the SUEP conservative evaluation of Table III. To complete this analysis on the SUREF, specific sensitivity sessions are scheduled before the end of the mission in particular to detail the systematics.

V. CONCLUSION

We have presented the first results on MICROSCOPE’s test of the Weak Equivalence Principle with conservative upper limits for some errors. Nevertheless this result constitutes an improvement of one order of magnitude over the present ground experiments \[2\]. Forthcoming sessions dedicated to complete the detailed exploration of systematic errors will allow us to improve the experiment’s accuracy. Thousands of orbits of scientific measurements should be available by the end of the mission in 2018. The integration over longer periods of the differential accelerometer signal should lead to a better precision on the WEP test. MICROSCOPE will certainly take a step forward in accuracy, closer to the mission objective of \(10^{-15} \) and bring new constraints to alternative gravity theories.
ACKNOWLEDGMENTS

The authors express their gratitude to the different services involved in the mission partners and, in particular, CNES in charge of the satellite. They also thank Sandrine Pires (CEA Saclay) for numerous discussions and her help in the development of the data analysis pipeline. This work is based on observations made with the T-SAGE instrument, installed on the CNES-ESA-ONERA-CNRS-OCA-DLR-ZARM Microscope mission. ONERA authors’ work is financially supported by CNES and internal funding. Authors from OCA have been supported by OCA, CNRS and CNES. ZARM authors’ work is supported by the German Space Agency of DLR with funds of the BMWi (FKZ 50 OY 1305) and by the Deutsche Forschungsgemeinschaft DFG (LA 905/12-1). The authors would like to thank the referees for their useful comments.

