Notes on explicit and inversion formulas for the Chebyshev polynomials of the first two kinds
Feng Qi, Da-Wei Niu, Dongkyu Lim

To cite this version:
Feng Qi, Da-Wei Niu, Dongkyu Lim. Notes on explicit and inversion formulas for the Chebyshev polynomials of the first two kinds: Explicit and inversion formulas for Chebyshev polynomials. Miskolc Mathematical Notes, Miskolci Egyetemi Kiadó, 2019, 20 (2), pp.1127–1139. 10.18514/MMN.2019.2976 . hal-01705040v2

HAL Id: hal-01705040
https://hal.archives-ouvertes.fr/hal-01705040v2
Submitted on 19 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NOTES ON EXPLICIT AND INVERSION FORMULAS FOR THE
CHEBYSHEV POLYNOMIALS OF THE FIRST TWO KINDS

FENG QI, DA-WEI NIU, AND DONGKYU LIM

Abstract. In the paper, starting from the Rodrigues formulas for the Chebyshev polynomials of the first and second kinds, by virtue of the Faà di Bruno formula, with the help of two identities for the Bell polynomials of the second kind, and making use of a new inversion theorem for combinatorial coefficients, the authors derive two nice explicit formulas and their corresponding inversion formulas for the Chebyshev polynomials of the first and second kinds.

1. Introduction

It is well known [5,7,29] that the Chebyshev polynomials of the first and second kinds T_n and $U_n(x)$ are very important in mathematical sciences and that, in the study of ordinary differential equations [5, pp. xxxv and 1004], they arise as solutions to the Chebyshev differential equations

$$(1-x^2)y''-xy'+n^2y=0$$

and

$$(1-x^2)y''-3xy'+n(n+2)y=0$$

for the Chebyshev polynomials of the first and second kinds T_n and U_n, respectively.

In [6, Eqs. (4.30) and (4.31)], the Rodrigues formulas for the Chebyshev polynomials of the first and second kinds T_n and U_n read that

$$T_n(x) = (-1)^n \frac{2^nn!}{(2n)!} \left(1-x^2\right)^{1/2} \frac{d^n}{dx^n} \left[\left(1-x^2\right)^{n-1/2}\right]$$

(1.1)

and

$$U_n(x) = (-1)^n \frac{2^n(n+1)!}{(2n+1)!} \left(1-x^2\right)^{-1/2} \frac{d^n}{dx^n} \left[\left(1-x^2\right)^{n+1/2}\right].$$

(1.2)

For variants of the Rodrigues formulas for the Chebyshev polynomials of the first and second kinds T_n and U_n, please refer to, for example, [5, pp. 1003–1004], [7, p. 442], [18, Section 4], and [29, pp. 432–433].

In [5, p. 1003], the Rodrigues formulas for $T_n(x)$ and $U_n(x)$ are written in the forms

$$T_n(x) = (-1)^n \sqrt{1-x^2} \frac{d^n}{dx^n} \left[\left(1-x^2\right)^{n-1/2}\right]$$

(1.3)

2010 Mathematics Subject Classification. Primary 11B38; Secondary 11C08, 26C05, 33C45, 33C47, 33D45.

Key words and phrases. explicit formula; inversion formula; Rodrigues formula; Chebyshev polynomial of the first kind; Chebyshev polynomial of the second kind; Faà di Bruno formula; Bell polynomial of the second kind.

Please cite this article as “Feng Qi, Da-Wei Niu, and Dongkyu Lim, Notes on explicit and inversion formulas for the Chebyshev polynomials of the first two kinds, Miskolc Mathematical Notes 20 (2019), no. 2, 1129–1137; available online at https://doi.org/10.18514/MMN.2019.2976.”
and
\[U_n(x) = \frac{(-1)^n(n+1)}{\sqrt{1-x^2}} \frac{d^n}{dx^n} \left[(1-x^2)^{n+1/2} \right]. \tag{1.4} \]

In [5, p. 1004] and [29, pp. 432–433], the Rodrigues formulas for \(T_n(x) \) and \(U_n(x) \) are formulated as
\[T_n(x) = \frac{(-1)^n\sqrt{\pi}}{2^n\Gamma(n+1/2)} \frac{d^n}{dx^n} \left[(1-x^2)^{n-1/2} \right] \tag{1.5} \]
and
\[U_n(x) = \frac{(-1)^n\sqrt{\pi}(n+1)}{2^n\Gamma(n+3/2)} \frac{d^n}{dx^n} \left[(1-x^2)^{n+1/2} \right], \tag{1.6} \]
where \(\Gamma(z) \) stands for the classical gamma function which can be defined [? ,?] by
\[\Gamma(z) = \lim_{n \to \infty} \frac{n!n^z}{\prod_{k=0}^{n}(z+k)}, \quad z \in \mathbb{C} \setminus \{0, -1, -2, \ldots \} \]
or by
\[\Gamma(z) = \int_0^\infty t^{z-1}e^{-t} \, dt, \quad \Re(z) > 0. \]

In [7, p. 442], the Rodrigues formulas for \(T_n(x) \) and \(U_n(x) \) are arranged as
\[T_n(x) = \frac{(1-x^2)^{1/2}}{(-2)^n (1/2)_n} \frac{d^n}{dx^n} \left[(1-x^2)^{n-1/2} \right] \tag{1.7} \]
and
\[U_n(x) = \frac{(n+1)(1-x^2)^{-1/2}}{(-2)^n (3/2)_n} \frac{d^n}{dx^n} \left[(1-x^2)^{n+1/2} \right], \tag{1.8} \]
where \((x)_n \) for \(n \geq 0 \) and \(x \in \mathbb{R} \) denotes the rising factorial which can be defined [22] by
\[(x)_n = \prod_{\ell=0}^{n-1} (x+\ell) = \frac{\Gamma(x+n)}{\Gamma(x)} = \begin{cases} x(x+1) \cdots (x+n-1), & n \geq 1; \\ 1, & n = 0. \end{cases} \]

By virtue of the recurrence relation \(\Gamma(x+1) = x\Gamma(x) \), we have
\[\Gamma \left(n + \frac{1}{2} \right) = \prod_{\ell=0}^{n-1} \left(n - \ell - \frac{1}{2} \right) \Gamma \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right)_n \sqrt{\pi} = \frac{(2n-1)!}{2^n} \sqrt{\pi} \]
and
\[\Gamma \left(n + \frac{3}{2} \right) = \prod_{\ell=0}^{n} \left(n - \ell + \frac{1}{2} \right) \Gamma \left(\frac{1}{2} \right) = \left(\frac{3}{2} \right)_n \sqrt{\pi} = \frac{(2n+1)!}{2^{n+1}} \sqrt{\pi}. \]

Substituting these into (1.5) and (1.6) respectively leads to (1.3), (1.4), (1.7), and (1.8) which are equivalent to (1.1) and (1.2) respectively.

In [29, pp. 432–433], it was listed that
\[T_n(x) = \frac{n}{2} \sum_{m=0}^{\lfloor n/2 \rfloor} (-1)^m \frac{(n-m-1)!}{m!(n-2m)!} (2x)^{n-2m} \tag{1.9} \]
and
\[U_n(x) = \frac{1}{2} \sum_{m=0}^{\lfloor n/2 \rfloor} (-1)^m \frac{(n-m)!}{m!(n-2m)!} (2x)^{n-2m}, \tag{1.10} \]
where \(n \in \mathbb{N} \) and \(\lfloor t \rfloor \) denotes the floor function whose value equals the largest integer less than or equal to \(t \).

In this paper, starting from the four formulas (1.1), (1.2), (1.9), and (1.10), by virtue of the Faà di Bruno formula, with the help of two identities for the Bell polynomials of the second kind, and making use of a new inversion theorem [26, Theorem 4.3] for combinatorial coefficients, we will derive the following two nice explicit formulas and their corresponding inversion formulas for the Chebyshev polynomials \(T_n \) and \(U_n \).

2. Four lemmas

For proving our main results, Theorems 1 and 2 below, we need the following four lemmas.

Lemma 1 ([4, pp. 134 and 139]). For \(n \geq k \geq 0 \), the Faà di Bruno formula can be described in terms of the Bell polynomials of the second kind \(B_{n,k}(x_1, x_2, \ldots, x_{n-k+1}) \) by

\[
\frac{d^n}{dt^n} f \circ h(t) = \sum_{k=0}^{n} f^{(k)}(h(t)) B_{n,k}(h'(t), h''(t), \ldots, h^{(n-k+1)}(t)).
\] (2.1)

Lemma 2 ([4, p. 135]). For \(n \geq k \geq 0 \), we have

\[
B_{n,k}(ax_1, ax_2, \ldots, ax_{n-k+1}) = a^k b^n B_{n,k}(x_1, x_2, \ldots, x_{n-k+1}),
\] (2.2)

where \(a \) and \(b \) are any complex numbers.

Lemma 3 ([13, Theorem 5.1] and [25, Section 3]). For \(n \geq k \geq 0 \), the Bell polynomials of the second kind \(B_{n,k}(x_1, x_2, \ldots, x_{n-k+1}) \) satisfy

\[
B_{n,k}(x, 1, 0, \ldots, 0) = \frac{1}{2^{n-k} k!} \binom{n}{k} x^{2k-n},
\] (2.3)

where \(\binom{0}{p} = 1 \) and \(\binom{p}{q} = 0 \) for \(q > p \geq 0 \).

Lemma 4 ([26, Theorem 4.3]). For \(n \geq k \geq 1 \), let \(s_k \) and \(S_k \) be two sequences independent of \(n \). Then

\[
\frac{s_n}{n!} = \sum_{k=1}^{n} (-1)^k \binom{k}{n-k} S_k
\]

if and only if

\[
n S_n = \sum_{k=1}^{n} \frac{(-1)^k}{(k-1)!} \binom{2n-k-1}{n-1} s_k.
\]

3. Main results and their proofs

Now we begin to state and prove our main results, Theorems 1 and 2 below.

Theorem 1. For \(n \geq 0 \), the Chebyshev polynomials \(T_n \) and \(U_n \) can be explicitly computed by

\[
T_n(x) = x^n \sum_{\ell=0}^{\lfloor n/2 \rfloor} \binom{n}{2\ell} \left(1 - \frac{1}{x^2} \right)^\ell
\] (3.1)
and
\[U_n(x) = x^n \sum_{\ell=0}^{\lfloor n/2 \rfloor} \binom{n+1}{2\ell+1} \left(1 - \frac{1}{x^2}\right)^\ell. \] (3.2)

Proof. By virtue of the formulas [2.1], [2.2], and [2.3], we have
\[
\frac{d^n}{dx^n} \left((1 - x^2)^{n-1/2} \right) = \sum_{k=1}^{n} \frac{d^k u^{n-1/2}}{du^k} B_{n,k}(-2x,-2,0 \ldots, 0)
\]
\[
= \sum_{k=1}^{n} \prod_{\ell=0}^{k-1} \left(n - \ell - \frac{1}{2} \right) u^{n-k-1/2} (-2)^k B_{n,k}(x,1,0 \ldots, 0)
\]
\[
= \sum_{k=1}^{n} \frac{1}{2^k} \prod_{\ell=0}^{k-1} (2n - 2\ell - 1) (1 - x^2)^{n-k-1/2} (-2)^k \frac{1}{2^{n-k}} \frac{n!}{k!} \binom{k}{n-k} x^{2k-n}
\]
\[
= \frac{n!}{(2n-1)!!} (1 - x^2)^{n-1/2} \sum_{k=1}^{n} (-1)^k \binom{k}{n-k} \frac{(2n-1)!!}{2^{n-k} (n-k-1)!!} \frac{2^k}{k!} \left(\frac{x^2}{1-x^2} \right)^k
\]
where \(n \in \mathbb{N}, u = u(x) = 1 - x^2, \) and the double factorial of negative odd integers
\(-2n-1\) is defined by
\[
(-2n-1)!! = \frac{(-1)^n}{(2n-1)!!} = (-1)^n \frac{2^n n!}{(2n)!}, \quad n \geq 0.
\]
Substituting the above established equality into (1.1) and simplifying lead to
\[
T_n(x) = \sum_{k=1}^{n} \frac{n-k}{4^{n-k}} \binom{k}{n-k} \binom{n}{k} \frac{[2(n-k)!!]}{[2(n-k)-1]!!} x^{2k-n} (1 - x^2)^{n-k}
\]
which can be rearranged, by replacing \(n-k \) by \(\ell, \) as
\[
T_n(x) = x^n \sum_{\ell=0}^{n-1} \frac{(-1)^\ell}{4^\ell} \binom{n}{n-\ell} \binom{n-\ell}{\ell} \frac{(2\ell)!!}{(2\ell-1)!!} \left(\frac{1}{x^2} - 1 \right)^\ell.
\]
Since
\[
\frac{1}{4^\ell} \binom{n}{n-\ell} \binom{n-\ell}{\ell} \frac{(2\ell)!!}{(2\ell-1)!!} = \binom{n}{2\ell},
\]
we arrives at the identity (3.1).
Repeating the above process, we can obtain
\[
\frac{d^n}{dx^n} \left((1 - x^2)^{n+1/2} \right) = \sum_{k=1}^{n} \frac{d^k u^{n+1/2}}{du^k} B_{n,k}(-2x,-2,0 \ldots, 0)
\]
\[
= \sum_{k=1}^{n} \prod_{\ell=0}^{k-1} \left(n - \ell + \frac{1}{2} \right) u^{n-k+1/2} (-2)^k B_{n,k}(x,1,0 \ldots, 0)
\]
\[
= \sum_{k=1}^{n} \frac{1}{2^k} \prod_{\ell=0}^{k-1} (2n - 2\ell + 1) (1 - x^2)^{n-k+1/2} (-2)^k \frac{1}{2^{n-k}} \frac{n!}{k!} \binom{k}{n-k} x^{2k-n}
\]
Replacing \(n \) and \(k \) for Theorem 2. we derive (3.2). The proof of Theorem 1 is complete.

Due to
\[
\frac{n!(2n+1)!!}{(2x)^n}(1-x^2)^{n+1/2} \sum_{k=1}^{n} (-1)^k \binom{k}{n-k} \frac{(2n+1)!!}{2(n-k)+1}!! \frac{2^k}{k!} \left(\frac{x^2}{1-x^2} \right)^k.
\]

Substituting this into (1.2) and simplifying lead to
\[
U_n(x) = \sum_{k=1}^{n} \frac{(-1)^{n-k}}{2^{2n-2k+1}} \binom{k}{n-k} \binom{n+1}{k} \frac{[2(n-k+1)]!!}{2(n-k)!!} x^{2k-n} (1-x^2)^{n-k}.
\]

Replacing \(n-k \) by \(\ell \) reveals that
\[
U_n(x) = \sum_{\ell=0}^{n-1} \frac{(-1)\ell}{2^{2\ell+1}} \binom{n+1}{n-\ell} \binom{n-\ell}{\ell} \frac{[2(\ell+1)]!!}{(2\ell+1)!!} x^{-2\ell} (1-x^2)^\ell.
\]

Due to
\[
\frac{1}{2^{2\ell+1}} \binom{n+1}{n-\ell} \binom{n-\ell}{\ell} \frac{[2(\ell+1)]!!}{(2\ell+1)!!} = \binom{n+1}{2\ell+1},
\]

we derive (3.2). The proof of Theorem 1 is complete.

\[\Box\]

Theorem 2. For \(n \in \mathbb{N} \), we have
\[
\sum_{k=1}^{n} \binom{2n-k-1}{n-1} (2x)^k T_k(x) = \frac{1}{2} (2x)^{2n}
\]

and
\[
\sum_{k=1}^{n} \binom{2n-k-1}{n-1} (2x)^k U_k(x) = n(2x)^{2n}.
\]

Proof. We notice that the formulas (1.9) and (1.10) can be rearranged as
\[
T_n(x) = \frac{n}{2} \sum_{m=0}^{[n/2]} (-1)^m \binom{n-m}{m} \frac{(2x)^{n-2m}}{n-m}
\]

and
\[
U_n(x) = \sum_{m=0}^{[n/2]} (-1)^m \binom{n-m}{m} (2x)^{n-2m}.
\]

The inversion theorem in Lemma 4 can be restated as
\[
(-1)^n \frac{s_n}{n!} = \sum_{\ell=0}^{n-1} (-1)^{\ell} \binom{n-\ell}{\ell} s_{n-\ell} = \sum_{\ell=0}^{[n/2]} (-1)^{\ell} \binom{n-\ell}{\ell} s_{n-\ell}
\]

if and only if
\[
n s_n = \sum_{\ell=1}^{n} \frac{(-1)^{\ell}}{[\ell-1]!} \binom{2n-\ell-1}{n-1} s_{\ell}.
\]

The formulas (3.5) and (3.6) can be rearranged as
\[
\frac{2}{n} (2x)^n T_n(x) = \sum_{\ell=0}^{[n/2]} (-1)^{\ell} \binom{n-\ell}{\ell} \frac{(2x)^{2(n-\ell)}}{n-\ell}
\]
and
\[(2x)^n U_n(x) = \sum_{\ell=0}^{n/2} (-1)^\ell \binom{n-\ell}{\ell} (2x)^{2(n-\ell)}.
\]
Consequently, we obtain
\[n (2x)^{2n} = \sum_{k=1}^{n} \frac{(-1)^k}{(k-1)!} \binom{2n - k - 1}{n-1} (-1)^k 2^{k-1} (2x)^k T_k(x)
\]
and
\[n (2x)^{2n} = \sum_{k=1}^{n} \frac{(-1)^k}{(k-1)!} \binom{2n - k - 1}{n-1} (-1)^k k! (2x)^k U_k(x)
\]
which can be simplified as (3.3) and (3.4). The proof of Theorem 2 is complete. □

4. REMARKS

In this section, we will list several remarks to explain more about the formula (2.3), Lemma 4, our main results, and other things.

Remark 1. To the best of our knowledge, the nice formula (2.3) was first concluded in [13] and has been extensively applied in the papers [8–16, 18, 19, 21, 23, 25, 27, 28] and closely related references therein. The formula (2.3) has been generalized in the papers [16,19,20] and closely related references therein.

Remark 2. To the best of our knowledge, Lemma 4 is a new inversion theorem and has been applied in the paper [8,17,18,24].

Remark 3. Because both the formula (2.3) and Lemma 4 are new, our main results stated in Theorems 1 and 2, or at least their proofs, are also new.

Remark 4. The Chebyshev polynomials are classical, but their study is still very active. As examples, we recommend three newly-published papers [1–3] to readers. Considering the length of this paper, we would not like to detail main results in these three papers and the closely-related references therein.

Remark 5. This paper is a slightly revised version of the preprint [18].

Acknowledgements. The third author was supported by the National Research Foundation of Korea (Grant No. 2018R1D1A1B07041846).

The authors appreciate anonymous referees for their valuable comments on the original version of this paper.

REFERENCES

Authors’ addresses

Feng Qi
Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, Henan, China; College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China; School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China

Email address: qifeng618@gmail.com, qifeng618@hotmail.com
URL: https://qifeng618.wordpress.com

Da-Wei Niu
Department of Science, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China

Email address: nnddww@gmail.com
URL: https://orcid.org/0000-0003-4033-7911

Dongkyu Lim
Department of Mathematics Education, Andong National University, Andong 36729, Republic of Korea

Email address: dgrim84@gmail.com, dklim@andong.ac.kr
URL: https://orcid.org/0000-0002-0928-8489