NOTES ON THE RODRIGUES FORMULAS FOR TWO KINDS OF THE CHEBYSHEV POLYNOMIALS
Feng Qi, Da-Wei Niu, Dongkyu Lim

To cite this version:
Feng Qi, Da-Wei Niu, Dongkyu Lim. NOTES ON THE RODRIGUES FORMULAS FOR TWO KINDS OF THE CHEBYSHEV POLYNOMIALS: Rodrigues formulas for Chebyshev polynomials. 2018. <hal-01705040>

HAL Id: hal-01705040
https://hal.archives-ouvertes.fr/hal-01705040
Submitted on 9 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NOTES ON THE RODRIGUES FORMULAS FOR TWO KINDS
OF THE CHERYSHEV POLYNOMIALS

FENG QI, DA-WEI NIU, AND DONGKYU LIM

Abstract. In the paper, the authors derive, from the Rodrigues formulas for
the Chebyshev polynomials of the first and second kinds and by virtue of the
Fa`a di Bruno formula and two identities for the Bell polynomials of the second
kind, two explicit formulas for the Chebyshev polynomials of the first and second
kinds, find, by virtue of an inversion formula for combinatorial coefficients,
two inversion formulas for explicit formulas of the Chebyshev polynomials of
the first and second kinds, and collect variants of the Rodrigues formulas for
the Chebyshev polynomials of the first and second kinds.

CONTENTS

1. Introduction and main results 1
2. Lemmas 2
3. Proofs of main results 3
4. Variants of Rodrigues formulas for Chebyshev polynomials 5
References 6

1. INTRODUCTION AND MAIN RESULTS

It is well known [2, 3, 4] that the Chebyshev polynomials of the first and second
kinds \(T_n \) and \(U_n(x) \) are very important in mathematical sciences and that, in
the study of ordinary differential equations [2, pp. x xv and 1004], they arise as
solutions to the Chebyshev differential equations

\[
(1 - x^2)y'' - xy' + n^2 y = 0 \quad \text{and} \quad (1 - x^2)y'' - 3xy' + n(n + 2)y = 0
\]

for the Chebyshev polynomials of the first and second kinds \(T_n \) and \(U_n \) respectively.
In [3] Eqs. (4.30) and (4.31), the Rodrigues formulas for the Chebyshev polynomials
of the first and second kinds \(T_n \) and \(U_n \) read that

\[
T_n(x) = (-1)^n \frac{2^n n!}{(2n)!} (1 - x^2)^{1/2} \frac{d^n}{dx^n} [(1 - x^2)^{n-1/2}] \tag{1}
\]

and

\[
U_n(x) = (-1)^n \frac{2^n(n + 1)!}{(2n + 1)!} (1 - x^2)^{-1/2} \frac{d^n}{dx^n} [(1 - x^2)^{n+1/2}] . \tag{2}
\]

2010 Mathematics Subject Classification. Primary 11B38; Secondary 11C08, 26C05, 33C45,
33C47, 33D45.

Key words and phrases. explicit formula; Rodrigues formula; Chebyshev polynomial of
the first kind; Chebyshev polynomial of the second kind; variant; inversion formula for combinatorial
coefficients; Fa`a di Bruno formula; Bell polynomial of the second kind.

This paper was typeset using \texttt{AMSL\LaTeX}.
In \cite{10}, pp. 432–433,

\[T_n(x) = \binom{n}{2} \sum_{m=0}^{\lfloor n/2 \rfloor} (-1)^m \frac{(n-m)!}{m!(n-2m)!} (2x)^{n-2m} \]

and

\[U_n(x) = \sum_{m=0}^{\lfloor n/2 \rfloor} (-1)^m \frac{(n-m)!}{m!(n-2m)!} (2x)^{n-2m}, \]

where \(n \in \mathbb{N} \) and \(\lfloor t \rfloor \) denotes the floor function whose value equals the largest integer less than or equal to \(t \).

We notice that the formulas (3) and (4) can be rearranged as

\[T_n(x) = \binom{n}{2} \sum_{\ell=0}^{\lfloor n/2 \rfloor} (-1)^\ell \binom{n-\ell}{m} \frac{(2x)^{n-2\ell}}{n-\ell} \]

and

\[U_n(x) = \sum_{\ell=0}^{\lfloor n/2 \rfloor} (-1)^\ell \binom{n-\ell}{m} (2x)^{n-2\ell}. \]

In this paper, starting out from (1) and (2), by virtue of the Faà di Bruno formula, two identities for the Bell polynomials of the second kind, and an inversion theorem of combinatorial numbers, we will derive two explicit formulas for the Chebyshev polynomials \(T_n \) and \(U_n \) below.

Theorem 1. For \(n \geq 0 \), the Chebyshev polynomials \(T_n \) and \(U_n \) can be explicitly computed by

\[T_n(x) = x^n \sum_{\ell=0}^{\lfloor n/2 \rfloor} \binom{n}{2\ell} \left(1 - \frac{1}{x^2}\right)^\ell \]

and

\[U_n(x) = x^n \sum_{\ell=0}^{\lfloor n/2 \rfloor} \binom{n-1}{2\ell+1} \left(1 - \frac{1}{x^2}\right)^\ell. \]

Employing an inversion theorem for combinatorial numbers in \cite{9} Theorem 4.3, we will find inversion formulas of the formulas (5) and (6).

Theorem 2. For \(n \in \mathbb{N} \), we have

\[\sum_{k=1}^{n} \binom{2n-k-1}{n-1} (2x)^k T_k(x) = 2^{2n-1} x^{2n} \]

and

\[\sum_{k=1}^{n} k \binom{2n-k-1}{n-1} (2x)^k U_k(x) = n(2x)^{2n}. \]

In the last section, we will collect variants of the Rodrigues formulas for the Chebyshev polynomials of the first and second kinds \(T_n \) and \(U_n \).

2. Lemmas

In this paper, we need the following lemmas.
Lemma 1 ([1] pp. 134 and 139). For $n \geq k \geq 0$, the Bell polynomials of the second kind, or say, partial Bell polynomials, denoted by $B_{n,k}(x_1, x_2, \ldots, x_{n-k+1})$, are defined by

$$B_{n,k}(x_1, x_2, \ldots, x_{n-k+1}) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \frac{n!}{\prod_{i=1}^{n-k+1} i!} \prod_{i=1}^{n-k+1} (\frac{x_i}{n})^{i}. $$

Fà di Bruno’s formula can be described in terms of the Bell polynomials of the second kind $B_{n,k}(x_1, x_2, \ldots, x_{n-k+1})$ by

$$\frac{d^n}{dt^n} f \circ h(t) = \sum_{k=0}^{n} f^{(k)}(h(t)) B_{n,k}(h(t), h''(t), \ldots, h^{(n-k+1)}(t)). \quad (11)$$

Lemma 2 ([1] p. 135]). For $n \geq k \geq 0$, we have

$$B_{n,k}(a x_1, a x_2, \ldots, a x_{n-k+1}) = a^k B_{n,k}(x_1, x_2, \ldots, x_{n-k+1}), \quad (12)$$

where a and b are any complex numbers.

Lemma 3 ([3] Theorem 4.1]). For $n \geq k \geq 0$, the Bell polynomials of the second kind $B_{n,k}$ satisfy

$$B_{n,k}(x, 1, 0, \ldots, 0) = \frac{1}{2^{n-k}} \frac{n!}{k!} \binom{k}{n-k} x^{2k-n}, \quad (13)$$

where $\binom{0}{0} = 1$ and $\binom{q}{p} = 0$ for $q > p \geq 0$.

Lemma 4 ([4] Theorem 4.3]). For $k \geq 1$, let s_k and S_k be two sequences independent of n such that $n \geq k \geq 1$. Then

$$\frac{s_n}{n!} = \sum_{k=1}^{n} (-1)^k \binom{k}{n-k} s_k \text{ if and only if } n S_n = \sum_{k=1}^{n} \frac{(-1)^k}{(k-1)!} \binom{2n-k-1}{n-1} s_k.$$

3. PROOFS OF MAIN RESULTS

Now we begin to prove our main results stated in the first section.

Proof of Theorem 2. By virtue of the formulas ([11], [12], and [13]), we have

$$\frac{d^n}{dx^n} (1 - x^2)^{n-1/2} = \sum_{k=1}^{n} \frac{d^k}{dx^k} (1 - x^2)^{n-k-1/2} B_{n,k}(-2x, -2, 0, \ldots, 0)$$

$$= \sum_{k=1}^{n} \frac{k!}{\ell!} \prod_{\ell=0}^{k-1} (n - \ell - \frac{1}{2}) u^{-k-1/2} (-2)^k B_{n,k}(x, 1, 0, \ldots, 0)$$

$$= \sum_{k=1}^{n} \frac{1}{2^k} \prod_{\ell=0}^{k-1} (2n - 2\ell - 1) (1 - x^2)^{n-k-1/2} (-2)^k \frac{n!}{k!} \binom{k}{n-k} x^{2k-n}$$

$$= \frac{n!}{(2x)^n} (1 - x^2)\frac{1}{2^n} \frac{1}{n!} \frac{\binom{2n}{n-k} x^{n-k}}{[2(n-k)-1]!!} \binom{2k}{1} \frac{x^2}{1-x^2}$$

$$= \frac{n!}{(2x)^n} (1 - x^2)^{n-1/2} \sum_{k=1}^{n} (-1)^k \binom{k}{n-k} \frac{2^k}{k!} \frac{x^{2k}}{1-x^2},$$

where $n \in \mathbb{N}$, $u = u(x) = 1 - x^2$, and the double factorial of negative odd integers $-2n - 1$ is defined by

$$(-2n - 1)!! = \frac{(-1)^n}{(2n-1)!!} = (-1)^n \frac{2^n n!}{(2n)!}, \quad n \geq 0.$$
Replacing the above established equality into (1) and simplifying lead to
\[T_n(x) = \sum_{k=1}^{n} \frac{(-1)^{n-k}}{4^{n-k}} \binom{n}{k} \binom{k}{n} \frac{2(n - k)!!}{[2(n - k) - 1]!!} x^{2k-n} (1 - x^2)^{n-k} \]
which can be rearranged, by replacing \(n - k \) by \(\ell \), as
\[T_n(x) = x^n \sum_{\ell=0}^{n-1} \frac{(-1)^{\ell}}{4^{\ell}} \binom{n}{\ell} \binom{n - \ell}{\ell} \frac{(2\ell)!!}{(2\ell - 1)!!} \left(\frac{1}{x^2} - 1 \right)^\ell. \]
Since
\[\frac{1}{4^\ell} \binom{n}{\ell} \binom{n - \ell}{\ell} \frac{(2\ell)!!}{(2\ell - 1)!!} = \binom{n}{2\ell}, \]
we arrive at the identity (7).

Repeating the above process, we can obtain
\[
\frac{d^n}{dx^n} [(1 - x^2)^{n+1/2}] = \sum_{k=1}^{n} \frac{d^k u^{n+1/2}}{du^k} B_{n,k}(-2x,-2,0,\ldots,0)
= \sum_{k=1}^{n} \prod_{\ell=0}^{k-1} \left(n - \ell + \frac{1}{2} \right) u^{n-k+1/2} (-2) B_{n,k}(x,1,0,\ldots,0)
= \sum_{k=1}^{n} \frac{1}{2^k} \prod_{\ell=0}^{k-1} (2n - 2\ell + 1)(1 - x^2)^{n-k+1/2} (-2)^k \frac{1}{2^{n-k}} \frac{n!}{k!} \binom{k}{n-k} x^{2k-n}
= \frac{n!}{(2x)^n} (1 - x^2)^{n+1/2} \sum_{k=1}^{n} (-1)^k \binom{k}{n-k} \left(\frac{2(n+1)!!}{[2(n-k) + 1]!!} \frac{2^k}{k!} \left(\frac{x^2}{1-x^2} \right)^k \right)
= \frac{n!(2n+1)!!}{(2x)^n} (1 - x^2)^{n+1/2} \sum_{k=1}^{n} (-1)^k \binom{k}{n-k} \frac{2^k}{k!} \left(\frac{x^2}{1-x^2} \right)^k.
\]
Substituting this into (2) and simplifying lead to
\[U_n(x) = \sum_{k=1}^{n} \frac{(-1)^{n-k}}{2^{2k-1}} \binom{k}{n-k} \binom{n+1}{k} \frac{2(n-k+1)!!}{[2(n-k) + 1]!!} x^{2k-n} (1 - x^2)^{n-k}. \]
Replacing \(n - k \) by \(\ell \) reveals that
\[U_n(x) = \sum_{\ell=0}^{n-1} \frac{(-1)^{\ell}}{2^{2\ell+1}} \binom{n+1}{\ell} \binom{n - \ell}{\ell} \frac{2(\ell+1)!!}{(2\ell + 1)!!} x^{n-2\ell} (1 - x^2)^{\ell}. \]
Due to
\[\frac{1}{2^{2\ell+1}} \binom{n+1}{\ell} \binom{n - \ell}{\ell} \frac{2(\ell+1)!!}{(2\ell + 1)!!} = \binom{n+1}{2\ell + 1}, \]
we derive (8). The proof of Theorem 2 is complete. \(\square \)

Proof of Theorem 3 The inversion theorem in Lemma 3 can be restated as
\[(-1)^n \frac{\delta_n}{n!} = \sum_{\ell=0}^{n-1} (-1)^{\ell} \binom{n - \ell}{\ell} S_{n-\ell} = \sum_{\ell=0}^{\lfloor n/2 \rfloor} (-1)^{\ell} \binom{n - \ell}{\ell} S_{n-\ell} \]
if and only if
\[n S_n = \sum_{\ell=0}^{n} (-1)^{\ell} \binom{2n - \ell - 1}{n - 1} S_\ell. \]
The formulas (5) and (6) can be rearranged as
\[\frac{2}{n} (2x)^n T_n(x) = \sum_{\ell=0}^{\lfloor n/2 \rfloor} (-1)^{\ell} \binom{n - \ell}{\ell} \frac{(2x)^{2(n-\ell)}}{n-\ell}. \]
In [2, p. 1004] and [10, pp. 432–433], the Rodrigues formulas for
and
where \(\Gamma(z) \) are formulated as
and
by
where
which can be simplified as (9) and (10). The proof of Theorem 2 is complete. \(\square \)

4. Variants of Rodrigues formulas for Chebyshev polynomials

In [2, p. 1003], the Rodrigues formulas for \(T_n(x) \) and \(U_n(x) \) are written in the forms

\[
T_n(x) = (-1)^n \frac{\sqrt{1-x^2}}{2n-1} \frac{d^n}{dx^n} \left[(1-x^2)^{n-1/2} \right]
\]

and

\[
U_n(x) = \frac{(-1)^n(n+1)}{2^n n+1} \frac{d^n}{dx^n} \left[(1-x^2)^{n+1/2} \right].
\]

In [2] p. 1004 and [10] pp. 432–433, the Rodrigues formulas for \(T_n(x) \) and \(U_n(x) \) are formulated as

\[
T_n(x) = \frac{(-1)^n}{2^n \Gamma(n+1/2)} \frac{\sqrt{\pi}}{2} \frac{d^n}{dx^n} \left[(1-x^2)^{n-1/2} \right]
\]

and

\[
U_n(x) = \frac{(-1)^n}{2^n \Gamma(n+3/2)} \frac{\sqrt{\pi}}{2} \frac{d^n}{dx^n} \left[(1-x^2)^{n+1/2} \right],
\]

where \(\Gamma(z) \) stands for the classical gamma function which can be defined [5, 7] by

\[
\Gamma(z) = \lim_{n \to \infty} \frac{n^n z^n \prod_{k=0}^{n} (z+k)}{1 \cdot 2 \cdot \ldots \cdot n}, \quad z \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}
\]

or by

\[
\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt, \quad \Re(z) > 0.
\]

In [4] p. 442, the Rodrigues formulas for \(T_n(x) \) and \(U_n(x) \) are arranged as

\[
T_n(x) = \frac{(1-x^2)^{1/2}}{(-2)^n (1/2)_n} \frac{d^n}{dx^n} \left[(1-x^2)^{n-1/2} \right]
\]

and

\[
U_n(x) = \frac{(n+1)(1-x^2)^{-1/2}}{(-2)^n (3/2)_n} \frac{d^n}{dx^n} \left[(1-x^2)^{n+1/2} \right],
\]

where \((x)_n\) for \(n \geq 0 \) and \(x \in \mathbb{R} \) denotes the rising factorial which can be defined [8] by

\[
(x)_n = \begin{cases}
(x+1) \cdots (x+n-1), & n \geq 1 \\
1, & n = 0
\end{cases} = \prod_{\ell=0}^{n-1} (x+\ell) = \frac{\Gamma(x+n)}{\Gamma(x)}.
\]

By virtue of the recurrence relation \(\Gamma(x+1) = x\Gamma(x) \), we have

\[
\Gamma\left(n + \frac{1}{2} \right) = \prod_{\ell=0}^{n-1} \left(n - \ell - \frac{1}{2} \right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}
\]
and
\[\Gamma \left(n + \frac{3}{2} \right) = \prod_{\ell=0}^{n} \left(n - \ell + \frac{1}{2} \right) \Gamma \left(\frac{1}{2} \right) = \left(\frac{3}{2} \right) \frac{\sqrt{\pi}}{2} \left(\frac{2n+1}{2} \right)! \sqrt{\pi}. \]

Substituting these into (16) and (17) respectively leads to (14), (15), (18), and (19) which are equivalent to (1) and (2) respectively.

References

