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Abstract

The exponential stability problem of the nonlinear Saint-Venant equations is addressed in this paper. We consider the
general case where an arbitrary friction and space-varying slope are both included in the system, which lead to non-uniform
steady-states. An explicit quadratic Lyapunov function as a weighted function of a small perturbation of the steady-states is
constructed. Then we show that by a suitable choice of boundary feedback controls, that we give explicitly, the local exponential
stability of the nonlinear Saint-Venant equations for the H2-norm is guaranteed.
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1 Introduction

Since discovered in 1871 by Barré de Saint-Venant [16],
the shallow water equations (or Saint-Venant equations
in unidimensional form) have been frequently used by
hydraulic engineers in their practice. Their apparent
simplicity and their ability to describe fairly well the be-
haviour of rivers and water channel make them a useful
tool for many applications as for instance the regula-
tion of navigable rivers and irrigation networks in agri-
culture. Among which, the problem of designing control
tools to regularize the water level and the flow rate in
the open hydraulic systems has been studied for a long
time [15,24,30–32].

The Saint-Venant equations constitute a nonlinear 2×2
1-D hyperbolic system. In the last decades, the bound-
ary feedback stabilization problem for 1-D hyperbolic
systems has been widely investigated, and many tools
have been developed. To our knowledge, the first result
for nonlinear 2 × 2 homogeneous systems was obtained
by Greenberg and Li [23] in the framework of C1 solu-
tions by using the characteristic method. Later on, this
result was generalized by Qin [34] to n × n homoge-
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neous systems. In 1999, Coron et al. introduced another
method: the quadratic Lyapunov function, firstly used
to analyze the asymptotic behavior of linear hyperbolic
equations in the L2 norm but then generalized for non-
linear hyperbolic equations in the framework of C1 and
H2 solutions [8–11]. Both of these two methods guaran-
tee the exponential stability of the nonlinear homoge-
neous hyperbolic systems when the boundary conditions
satisfy an appropriate sufficient dissipativity property.
Such boundary conditions are the so-called static bound-
ary feedback control and lead to feedbacks that only
depend on the measures at the boundaries. However,
when inhomogenous systems are considered, it is usually
difficult (or even impossible) to construct a quadratic
Lyapunov function with static boundary feedback [3,
Chapter 5.6] or in [2]. The backstepping method intro-
duced by Krstic et al. in [29] is a powerful tool to deal
with the exponential stabilization of inhomogenous hy-
perbolic systems. Initially developed for parabolic equa-
tions [35], this method has been firstly applied to first
order hyperbolic equations in [28], and then generalized
to n+ 1× n+ 1 linear hyperbolic systems with n posi-
tive and one negative characteristic speed in [36,18]. The
case of general bidirectional linear systems was recently
treated in [26]. For the nonlinear case, one can refer to
[14], where the authors designed a full-state feedback
control actuated on only one boundary and achieved ex-
ponential stability for the closed-loop 2 × 2 quasilinear
hyperbolic systems inH2-norm. Later on, this result was
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generalized in [27] to n × n quasilinear hyperbolic sys-
tems. In particular, in the context of the Saint-Venant
equations, the backstepping method has been used to
achieve exponential stabilization of the linearized Saint-
Venant Exner equations with arbitrary slope or friction
in [20], both in subcritical and supercritical regime. It
has also been used in [21] to stabilize a linearized bilay-
ered Saint-Venant model, a 4 × 4 system of two Saint-
Venant systems interacting with each other. With the
backstepping method, one can realize rapid decay (i.e.,
exponential decay with arbitrary rate) or even finite
time stabilization for some linear case [1,12,26]. How-
ever, one requires a full-state feedback control rather
than static boundary feedback control depending only
on the values at the boundaries. Nevertheless, in some
cases, it is possible to design an observer to tackle this
issue [17,19,20,36]. In this paper, we will use a direct
Lyapunov approach to study the exponential stability
for nonhomogeneous Saint-Venant equations with arbi-
trary friction and space-varying slope. The advantage
is that using this method, we only need to measure the
value at the boundary, which is much easier for practical
implementations.

The first result concerning this method applied to Saint-
Venant equations was obtained by Coron et al. in 1999
for the homogeneous case, i.e., without any friction or
slope [10]. There, they use an entropy of the system as
a Lyapunov function. But this Lyapunov function has
only a semi-negative definite time derivative. One has to
conclude the stability result using LaSalle’s invariance
principle which is usually difficult to apply due to the
problem of precompactness of the trajectories. Later on,
the authors introduce in [11] a strict Lyapunov function
for conservation laws that can be diagonalized with Rie-
mann invariants. The time derivative of the Lyapunov
function can be made strictly negative definite by an ap-
propriate choice of the boundary conditions. They ap-
ply the result to regulate the level and flow in an open
channel without friction or slope. Under the assumption
that the friction and the slope are sufficiently small in
C1-norm, the stability may be proved using the method
of characteristics as in [22,33] or using a Lyapunov ap-
proach as in [7,9]. In the special case where the slope is
a constant and “compensate” with the influence of the
friction, thus resulting the uniform steady-states, the
stability of the linearized system was considered in [5].
There, the authors use the same Lyapunov function as in
[11]. More recently, in [4], the authors managed to study
the stability in H2-norm of the nonlinear and nonhomo-
geneous system when the friction is arbitrary but in the
absence of the slope. It should be noted that this last re-
sult was proved using a basic quadratic Lyapunov func-
tion (see [2] for a proper definition) independent of the
length of the water channel which is not trivial as, usu-
ally, the existence of a basic quadratic Lyapunov func-
tion for a nonhomogenous system depends on the size of
the domain [25].

Of course for realistic description of the behaviour of
rivers one can easily understand that adding a slope is
essential not only because it is the prime mover of the
flow but also because in some common cases the effect
of the slope can be much larger than the effect of the
friction, both being non-negligible: it is the steep-slope
regime (see for instance [6, Chapter 5-3]). To our knowl-
edge, no study so far takes into account a non-negligible
slope except in the special case mentioned previously
where the slope compensate exactly the friction and can-
cels the source term [5].

Our contribution in this paper is that we managed to
construct an explicit Lyapunov control function to an-
alyze the local exponential stability in H2-norm of the
nonlinear Saint-Venant equations in the case where both
the friction and the slope are taken into account and
are arbitrary (not necessarily small). Especially we deal
with the case where the slope may vary with respect to
the space variable. This is all the more important that
the slope is likely to vary in a river, even sometimes on
short distances. We first describe three regimes depend-
ing whether the influence of the slope is smaller, equal
or greater to the influence of the friction and we show
that the dynamics in two opposite regimes are inverted.
Then we construct a quadratic Lyapunov function for
the H2-norm whatever the friction and the slope are.

The organization of the paper is as follows. In Section
2, we give a description of the non-linear Saint-Venant
equations together with some definitions and we state
our main result (Theorem 3). In Section 3, the exponen-
tial stability of the linearized system is firstly studied
by constructing a quadratic Lyapunov function. Based
on the results of the linearized system, we then show
that a similar expanded Lyapunov function enables us
to get the exponential stability of the nonlinear system
by properly choosing the boundary feedback controls.

2 Description of the Saint-Venant equations
and the main result

The non-linear Saint-Venant equations with slope and
friction are given by the following system:

∂tH + ∂x(HV ) = 0, (1)

∂tV + ∂x

(
V 2

2
+ gH

)
+

(
kV 2

H
− gC

)
= 0. (2)

where H(t, x) is the water depth, V (t, x) is the horizon-
tal water velocity. The slope C(·) ∈ C2([0, L]) is defined

by C(x) = −dB
dx

with B(x) the elevation of the bottom,

g is the constant gravity acceleration and k is a constant
friction coefficient. Note from (1) and (2) that the equi-
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librium H∗ and V ∗ verifies:

H∗(x)V ∗(x) = Q∗, (3)

V ∗V ∗x + gH∗x +

(
kV ∗2

H∗
− gC

)
= 0. (4)

As we are interested in physical stationary states, we
suppose that H∗ > 0 and V ∗ > 0. Therefore Q∗ > 0 is
any given constant set point and corresponds to the flow
rate. Substituting (3) to (4), we get that V ∗ satisfies

V ∗x =
V ∗2(kV

∗3

Q∗ − gC)

gQ∗ − V ∗3
. (5)

Observe that the steady-states are therefore non neces-
sary uniform. As we are interested in navigable rivers we
also suppose that the flow is in the fluvial regime, i.e.,

gH∗ > V ∗2 (6)

or equivalently gQ∗ − V ∗3 > 0. Then the system (1)
and (2) has a positive and a negative eigenvalue and
for any flow rate Q∗, equation (5) has a unique C1 and
evenC∞ solution on [0, L] with any given boundary data
V ∗(0) = V ∗0 . Moreover, the steady-states have three pos-
sible dynamics depending on the slope as the following.

(1) When gC <
kV ∗2

H∗
, also known in hydraulic engi-

neering as “mild slope regime”. This covers also the
case without slope. Note from (3) and (5) that in
this case, H∗ decreases while V ∗ increases and con-
sequently the system becomes closer to the critical
point where gH∗ = V ∗2 which is the limit of the
fluvial regime.

(2) When gC =
kV ∗2

H∗
, which means that the fric-

tion and the slope “compensate” each other. When
the slope C is in additionally constant, the steady-
states are uniform. This special case has been stud-
ied in [5] and only for the linearized system.

(3) When gC >
kV ∗2

H∗
, also known in hydraulic engi-

neering as “steep slope regime”. Then the dynamics
of the steady-states are inverted: H∗ tends to in-
crease while V ∗ decreases and consequently the sys-
tem moves away from the limit of the fluvial regime
defined by the critical point where gH∗ = V ∗2.

Our goal is to ensure the exponential stability of the
steady-states of the nonlinear system (1) and (2) for all
the above three cases under some boundary conditions
of the form:

V (t, 0) = B(H(t, 0)), V (t, L) = B(H(t, L)), (7)

where B : R → R is of class C2. These kind of bound-
ary conditions are imposed by physical devices located

at the ends of the channel where the controls are imple-
mented, as for instance mobile spillways or tunable hy-
draulic gates as in irrigation canals and navigable rivers.
For these two examples, some more detail and explicit
expressions of the boundary conditions are given in [3].

We will first prove the exponential stability for the lin-
earized system for the L2-norm. Note that for nonlinear
systems, the stability depends on the topology consid-
ered as shown in [13]. In this paper, we will consider the
exponential stability in H2-norm.

For any given initial condition

H(0, x) = H0(x), V (0, x) = V0(x), x ∈ [0, L], (8)

we suppose that the following compatibility conditions
hold

V0(0) = B(H0(0)), V0(L) = B(H0(L)), (9)

∂x(
V 2
0

2
+ gH0)(0) +

kV 2
0

H0
(0)− gC(0)

= B′(H0(0))∂x(H0V0)(0), (10)

∂x(
V 2
0

2
+ gH0)(L) +

kV 2
0

H0
(L)− gC(L)

= B′(H0(L))∂x(H0V0)(L). (11)

These compatibility conditions guarantee the well-
posedness of the system (1), (2), (7) and (8) for suffi-
ciently small initial data. More precisely, we have (see
[3, Appendix B])

Theorem 1 There exists δ0 > 0 such that for every
(H0, V0)T ∈ H2((0, L);R2) satisfying

‖(H0 −H∗, V0 − V ∗)T ‖H2((0,L);R2) ≤ δ0

and compatibility conditions (9) to (11). The Cauchy
problem (1), (2), (7) and (8) has a unique maximal clas-
sical solution

(H,V )T ∈ C0([0, T );H2((0, L);R2))

with T ∈ (0,+∞).

We recall the definition of the exponential stability in
H2-norm:

Definition 2 The steady-state (H∗, V ∗)T of the system
(1), (2) and (7) is exponentially stable for the H2-norm
if there exist γ > 0, δ > 0 and C > 0 such that for every
(H0, V0)T ∈ H2((0, L);R2) satisfying ‖(H0 − H∗, V0 −
V ∗)T ‖H2((0,L);R2) ≤ δ and the compatibility conditions
(9) to (11), the Cauchy problem (1), (2), (7) and (8) has a

3



unique classical solution on [0,+∞)× [0, L] and satisfies

‖(H(t, ·)−H∗, V (t, ·)− V ∗)T ‖H2((0,L);R2) (12)

≤Ce−γt‖(H0 −H∗, V0 − V ∗)T ‖H2((0,L);R2), (13)

for all t ∈ [0,+∞).

Based on this definition, our main result is the following:

Theorem 3 The nonlinear Saint-Venant system (1),
(2) and (7) is exponentially stable for the H2-norm pro-
vided that the boundary conditions satisfy

B′(H∗(0)) ∈
(
− g

V ∗(0)
,−V

∗(0)

H∗(0)

)
,

and B′(H∗(L)) ∈ R \
[
− g

V ∗(L)
,−V

∗(L)

H∗(L)

]
.

(14)

The proof of this theorem is given in Section 3. To that
end, we will first prove the exponential stability result
(Proposition 4) for the linearized system for theL2-norm
by finding a suitable Lyapunov function. Then we show
that this Lyapunov function enables us to obtain the
exponential stability for the H2-norm for the nonlin-
ear system under boundary control conditions (7) with
properties (14).

3 Exponential stability for theH2-norm with ar-
bitrary friction and space-varing slope

3.1 Exponential stability of the linearized system

In this section, we study the exponential stability of the
linearized system about a steady-state (H∗, V ∗)T for the
L2-norm. We define the perturbation functions h and v
as

h(t, x) = H(t, x)−H∗(x), (15)

v(t, x) = V (t, x)− V ∗(x). (16)

The linearization of the system (1) and (2) about the
steady-state is(

h

v

)
t

+

(
V ∗ H∗

g V ∗

)(
h

v

)
x

+

(
V ∗x H∗x

f∗H V ∗x + f∗V

)(
h

v

)
= 0,

(17)

where f∗H and f∗V are defined by

f∗V =
2kV ∗

H∗
, (18)

f∗H = −kV
∗2

H∗2
. (19)

The corresponding linearization of the boundary condi-
tions (7) are given by

v(t, 0) = b0h(t, 0),

v(t, L) = b1h(t, L),
(20)

where

b0 = B′(H∗(0)), b1 = B′(H∗(L)). (21)

The initial condition is given as follows

h(0, x) = h0(x), v(0, x) = v0(x), (22)

where (h0, v0)T ∈ L2((0, L);R2). The Cauchy problem
(17), (20) and (22) is well-posed (see [3, Appendix A]).
Note that the exponential stability of the linearized sys-
tem is now a problem of null-stabilization for h and v.
We have the following result:

Proposition 4 For the linearized Saint-Venant system
(17), (20) and (22), if the boundary conditions satisfy

b0 ∈
(
− g

V ∗(0)
,−V

∗(0)

H∗(0)

)
, b1 ∈ R\

[
− g

V ∗(L)
,−V

∗(L)

H∗(L)

]
.

(23)
Then there exists a constantµ > 0, q1 ∈ C1([0, L]; (0,+∞)),
q2 ∈ C1([0, L]; (0,+∞)) and δ > 0 such that the follow-
ing control Lyapunov function candidate

V (h, v)=

∫ L

0

q1 + q2
H∗

(
gh2+2

q1 − q2
q1 + q2

√
gH∗hv+H∗v2

)
dx

(24)
verifies:

V (h, v)≥δ(‖h‖2L2(0,L) + ‖v‖2L2(0,L)) (25)

for any (h, v) ∈ L2((0, L);R2). If in addition, (h, v)T is
a solution of the system (17), (20) and (22), we have

d

dt
(V (h(t, ·), v(t, ·))) ≤ −µV (h(t, ·), v(t, ·)) (26)

in the distribution sense which implies the exponential
stability of the linearized system (17), (20) and (22) for
the L2-norm.

In order to prove Proposition 4, we introduce the follow-
ing lemma, the proof of which is given in the Appendix.

Lemma 5 The function η defined by

η =
λ2
λ1
ϕ (27)

is a solution to the equation

η′ =

∣∣∣∣ aλ1 +
b

λ2
η2
∣∣∣∣ , (28)
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where λ1 and λ2 are defined in (29), ϕ is given by (38),
a and b are given by (41) below.

PROOF. [Proof of Proposition 4] Let us denote

A(x) =

(
V ∗ H∗

g V ∗

)
.

Under the subcritical condition (6), the matrix A(x) has
two real distinct eigenvalues λ1 and −λ2 with

λ1(x) =
√
gH∗ + V ∗ > 0, λ2(x) =

√
gH∗ − V ∗ > 0.

(29)
We define the characteristic coordinates as follows(

ξ1

ξ2

)
=

( √
g
H∗ 1

−
√

g
H∗ 1

)(
h

v

)
. (30)

With these definitions and notations, the linearized
Saint-Venant equations (17) are written in characteris-
tic form:(

ξ1

ξ2

)
t

+

(
λ1 0

0 −λ2

)(
ξ1

ξ2

)
x

+

(
γ1 δ1

γ2 δ2

)(
ξ1

ξ2

)
= 0.

(31)

In (31),

γ1(x) =− 3f(H∗, V ∗)

4(
√
gH∗ + V ∗)

+
kV ∗

H∗
− kV ∗2

2H∗
√
gH∗

, (32)

δ1(x) =− f(H∗, V ∗)

4(
√
gH∗ + V ∗)

+
kV ∗

H∗
+

kV ∗2

2H∗
√
gH∗

, (33)

γ2(x) =
f(H∗, V ∗)

4(
√
gH∗ − V ∗)

+
kV ∗

H∗
− kV ∗2

2H∗
√
gH∗

, (34)

δ2(x) =
3f(H∗, V ∗)

4(
√
gH∗ − V ∗)

+
kV ∗

H∗
+

kV ∗2

2H∗
√
gH∗

, (35)

where f(H∗, V ∗) =
kV ∗2

H∗
− gC.

As the diagonal coefficients of the source term in (31)
may bring complexity on the analysis of the stability,
we then make a coordinate transformation inspired by
[29] (see also [4]) to remove the diagonal coefficients. We
introduce the notations

ϕ1(x) = exp
(∫ x

0

γ1(s)

λ1(s)
ds
)
, (36)

ϕ2(x) = exp
(
−
∫ x

0

δ2(s)

λ2(s)
ds
)
, (37)

ϕ(x) =
ϕ1(x)

ϕ2(x)
, (38)

and the new coordinates(
y1

y2

)
=

(
ϕ1 0

0 ϕ2

)(
ξ1

ξ2

)
. (39)

Then system (31) is transformed into the following sys-
tem expressed in the new coordinates(
y1

y2

)
t

+

(
λ1 0

0 −λ2

)(
y1

y2

)
x

+

(
0 a(x)

b(x) 0

)(
y1

y2

)
= 0

(40)

with

a(x) = ϕ(x)δ1(x), b(x) = ϕ−1(x)γ2(x). (41)

From (20), (30) and (39), we obtain the following bound-
ary conditions for system (40)

y1(t, 0) =k0
ϕ1(0)

ϕ2(0)
y2(t, 0),

y2(t, L) =k1
ϕ2(L)

ϕ1(L)
y1(t, L), (42)

where

k0 =
b0H

∗(0) +
√
gH∗(0)

b0H∗(0)−
√
gH∗(0)

, k1 =
b1H

∗(L)−
√
gH∗(L)

b1H∗(L) +
√
gH∗(L)

.

(43)
Note that from (43), it is easy to check that condition
(23), using our notation (29), is equivalent to

k20 <
(λ2(0)

λ1(0)

)2
, k21 <

(λ1(L)

λ2(L)

)2
. (44)

Let us define

V : L2(0, L)× L2(0, L)→ R+

V (ψ1, ψ2)=

∫ L

0

(
f1(x)ψ2

1(x)e−
µ
λ1
x+f2(x)ψ2

2(x)e
µ
λ2
x
)
dx

(45)

where the parameter µ > 0 and two functions f1 ∈
C1([0, L]; (0,+∞)) and f2 ∈ C1([0, L]; (0,+∞)) are to
be determined. Obviously, there exists δ̄ > 0 such that
for any (ψ1, ψ2) ∈ L2((0, L);R2)

V (ψ1, ψ2) ≥ δ̄(‖ψ1‖2L2(0,L) + ‖ψ2‖2L2(0,L)). (46)

For any arbitrary C1-solution y1 and y2 to system (40)
and (42), we denote V (t) by

V (t) = V (y1(t, ·), y2(t, ·)). (47)
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From (45) and differentiating V with respect to time t
we get

dV

dt
=− µV −

[
λ1f1e

− µ
λ1
xy21 − λ2f2e

µ
λ2
xy22

]L
0

−
∫ L

0

[
− (λ1f1)xe

− µ
λ1
xy21 + (λ2f2)xe

µ
λ2
xy22

+ 2(f1e
− µ

λ1
xa(x) + f2e

µ
λ2
xb(x))y1y2

]
dx.

(48)

We observe that in (48), there is a term relying on the
boundary controls that will be chosen to make this term
negative along the system trajectories. Moreover, there
also appears to have an interior term which is intrinsic
to the system. Let us deal firstly with the interior term,
we denote by

I1 :=

∫ L

0

[
− (λ1f1)xe

− µ
λ1
xy21 + (λ2f2)xe

µ
λ2
xy22

+ 2(f1e
− µ

λ1
xa(x) + f2e

µ
λ2
xb(x))y1y2

]
dx.

(49)

To ensure that there exists µ1 > 0 such that for all
µ ∈ (0, µ1], I1 is positive for any t > 0 and any solution
(y1, y2), one only needs to construct f1 and f2 to guar-
antee that for any x ∈ [0, L]

−(λ1f1)x > 0, (λ2f2)x > 0, (50)

−(λ1f1)x(λ2f2)x − (f1(x)a(x) + f2(x)b(x))2 > 0.
(51)

Indeed in this case from the strict inequality in (50) and
(51), there exists µ1 > 0 such that for all µ ∈ (0, µ1],

−(λ1f1)xe
− µ

λ1
x > 0, (λ2f2)xe

µ
λ2
x > 0, (52)

− (λ1f1)xe
− µ

λ1
x(λ2f2)xe

µ
λ2
x

−
(
f1(x)e−

µ
λ1
xa(x) + f2(x)e

µ
λ2
xb(x)

)2
> 0.

(53)

Let us point out that there exist f1 and f2 such that
(50) and (51) hold as soon as there exists a positive func-
tion η well defined on [0, L] and satisfying the following
equation (see [2])

η′ =

∣∣∣∣ aλ1 +
b

λ2
η2
∣∣∣∣ . (54)

Therefore, one of the key points to prove Proposition 4
is to find a positive solution to (54). And from Lemma
5 we know that such solution does exist. Hence, we can
define a map

f : (η, ε)→
∣∣∣∣ aλ1 +

b

λ2
η2
∣∣∣∣+ ε,

which is locally Lipschitz (and even C1) in ε around 0.
From Lemma 5 we know thatη

′ = f(η, 0),

η(0) =
λ2(0)

λ1(0)
ϕ(0)

(55)

admits a unique solution on [0, L] which is given by (27).
Therefore, there exists ε0 > 0 such that for all ε ∈ [0, ε0],
the Cauchy problem


η′ε =

∣∣∣∣ aλ1 +
b

λ2
η2ε

∣∣∣∣+ ε,

ηε(0) =
λ2(0)

λ1(0)
ϕ(0)

(56)

admits a unique solution ηε on [0, L]. Moreover as
ηε(0) > 0, we have ηε(x) > 0 for all x ∈ [0, L]. Now
proceeding as in [2], we choose f1 and f2 as

f1 = f1,ε :=
1

λ1ηε
, f2 = f2,ε :=

ηε
λ2
, (57)

then we have for any ε ∈ (0, ε0] that

−(λ1f1,ε)x > 0, (λ2f2,ε)x > 0, (58)

−(λ1f1,ε)x(λ2f2,ε)x − (f1,εa+ f2,εb)
2

=
ε2 + 2ε| aλ1

+ b
λ2
η2ε |

η2ε
> 0. (59)

Thus, from (50), (51) and noticing the definition of f1
and f2 in (57), there exists µ1 > 0 such that for all
µ ∈ (0, µ1], I1 defined by (49) is positive for all t ≥ 0.

Now, let us consider the boundary term in (48), we de-
note by

I2 := −
[
λ1f1e

− µ
λ1
xy21 − λ2f2e

µ
λ2
xy22

]L
0
. (60)

Suppose that (23) is satisfied, from (27), (44), (56) and
(57), we have

k20<
(λ2(0)

λ1(0)

)2
=
λ2(0)f2,0(0)

λ1(0)f1,0(0)
ϕ−2(0)=

λ2(0)f2,ε(0)

λ1(0)f1,ε(0)
ϕ−2(0),

(61)

k21 <
(λ1(L)

λ2(L)

)2
=
λ1(L)f1,0(L)

λ2(L)f2,0(L)
ϕ2(L). (62)

By the continuity of f1,ε(L) and f2,ε(L) with ε, there
exists 0 < ε1 < ε0 such that for any ε ∈ (0, ε1]

k21 <
λ1(L)f1,ε(L)

λ2(L)f2,ε(L)
ϕ2(L), (63)
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thus, there exists 0 < µ2 < µ1 such that for any µ ∈
(0, µ2]

k21 <
λ1(L)f1,ε(L)e−

µ
λ1
L

λ2(L)f2,ε(L)e
µ
λ2
L
ϕ2(L). (64)

Combining (61) and (64), we get

I2 =−
[
λ1f1e

− µ
λ1
xy21 − λ2f2e

µ
λ2
xy22

]L
0

=
(
k21λ2f2,ε(L)ϕ−2(L)e

µ
λ2
L − λ1f1,ε(L)e−

µ
λ1
L
)
y21(t, L)

+
(
k20λ1f1,ε(0)ϕ2(0)− λ2f2,ε(0)

)
y22(t, 0) < 0.

(65)

From (48), (58), (59) and (65), we obtain

dV

dt
< −µV (66)

along the C1-solutions of the system (40) and (42) for
any µ ∈ (0, µ2]. Since the C1-solutions are dense in the
set of L2-solutions, inequality (66) also holds in the sense
of distributions for the L2-solutions (see [3, Section 2.1]
for the details).

Let us define

q1 := f1ϕ
2
1e
− µ

λ1
x and q2 := f2ϕ

2
2e

µ
λ2
x. (67)

For any (h, v) ∈ L2((0, L);R2), let (ψ1, ψ2) be the result
of the change of variable as in (30) and (39), we get im-
mediately from (45) and (67) the expression of Lyapunov
function candidate as in (24). Moreover, from (46), we
have (25). From (66), we get (26) as well. The proof of
Proposition 4 is completed.

Remark 6 Although the functions f1 and f2 defined in
(57) are implicit, we can nevertheless construct explicit
functions satisfying (50) and (51) based on the solution
η to (54) we have found, thus to get an explicit Lyapunov
function. To be more precise, we consider the following
two cases respectively:

(1) For the “mild slope regime” case, i.e., gC <
kV ∗2

H∗
,

let

f1 =
1

λ1(η − ε)
, f2 =

η − ε
λ2

, (68)

where we recall that η =
λ2
λ1
ϕ is a solution to (54).

It is easy to check that for ε > 0 small enough, we
have

−(λ1f1)x > 0, (λ2f2)x > 0,

and − (λ1f1)x(λ2f2)x > (f1a+ f2b)
2. (69)

Noticing the definition of η in (27), the negative-
ness of the boundary term (60) can be guaranteed by
choosing ε small enough.

(2) For the “steep slope regime” case, i.e., gC >
kV ∗2

H∗
,

let

f1 =
A

λ1η
, f2 =

Bη

λ2
, (70)

where A and B are two positive constants to be de-
termined. Noticing (54), we have

−(λ1f1)x =
Aη′

η2
> 0, (λ2f2)x = Bη′ > 0,

and

−(λ1f1)x(λ2f2)x =
AB(η′)2

η2
=

AB

(
a

λ1
+

b

λ2
η2
)2

η2
.

(71)
Moreover, we have

(f1a+f2b)
2 =

(
Aa

λ1η
+
bBη

λ2

)2

=

(
Aa

λ1
+
bB

λ2
η2
)2

η2
.

(72)
We consider the difference

AB

(
a

λ1
+

b

λ2
η2
)2

−
(
Aa

λ1
+
bB

λ2
η2
)2

=(B −A) ·
[
A

(
a

λ1

)2

−B
(
b

λ2
η2
)2 ]

. (73)

From (41), we have

a

λ1
=
δ1
λ1

ϕ1

ϕ2
,

b

λ2
η2 =

γ2
λ1

λ2
λ1

ϕ1

ϕ2
.

In the case where f(H∗, V ∗) = kV ∗2

H∗ − gC < 0,
from the expression of δ1 in (33), we have δ1 > 0,
thus a > 0. Moreover, we consider the following two
cases for γ2
(a) For any fixed x ∈ [0, L], if γ2(x) > 0, then we

have b > 0. From (33) and (34), we have

γ2(x) < δ1(x).

Noticing λ2 < λ1, we conclude that

b

λ2
η2 =

γ2
λ1

λ2
λ1

ϕ1

ϕ2
<
δ1
λ1

ϕ1

ϕ2
=

a

λ1
. (74)

(b) For any fixed x ∈ [0, L], if γ2(x) < 0, i.e., b < 0.
From the fact that

a

λ1
+

b

λ2
η2 > 0,
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we get ∣∣∣ b
λ2
η2
∣∣∣ < a

λ1
. (75)

Above all, we get from (74) and (75) that∣∣∣ b
λ2
η2
∣∣∣ < a

λ1
, ∀x ∈ [0, L]. (76)

Hence, we can choose A and B such that

max
x∈[0,L]

(( b

λ2
η2
)2(

λ1
a

)2 )
·B < A < B. (77)

From (70) to (73) and noticing (77), we obtain

−(λ1f1)x(λ2f2)x > (f1a+ f2b)
2, ∀x ∈ [0, L].

Moreover, noticing the definition of η in (27), we can
choose A and B such that A/B is sufficiently close
to 1 to guarantee the negativeness of the boundary
term (60).

3.2 Exponential stability of the steady-state of the non-
linear system in H2-norm

We will now prove our main result, Theorem 3. Firstly,
we recall the following theorem which gives sufficient
conditions for the exponential stability of the steady-
state of the nonlinear system (1), (2) and (7).

Theorem 7 The steady-state (H∗, V ∗)T of the system
(1), (2) and (7) is exponentially stable for theH2-norm if

• There exists two functions f1, f2 ∈ C1([0, L]; (0,+∞))
such that

−(λ1f1)x > 0, (λ2f2)x > 0 (78)

and

−(λ1f1)x(λ2f2)x >

(
a(x)

λ1(x)
f1(x) +

b(x)

λ2(x)
f2(x)

)2

(79)
for any x ∈ [0, L], where a and b are given by (41).

• The following inequalities are satisfied:

(b0H∗(0) +
√
gH∗(0)

b0H∗(0)−
√
gH∗(0)

)2
<
λ2(0)f2(0)

λ1(0)f1(0)
ϕ−2(0),

(b1H∗(L)−
√
gH∗(L)

b1H∗(L) +
√
gH∗(L)

)2
<
λ1(L)f1(L)

λ2(L)f2(L)
ϕ2(L),

(80)

where b0, b1 and ϕ are given by (21) and (38) respec-
tively.

Remark 8 This theorem comes directly from [3, The-
orem 6.6 and 6.10]. Note that finding such f1 and f2
corresponds to finding a quadratic Lyapunov function V
for the H2-norm of the perturbations (15) and (16) such
that:

1

β
‖(h, v)T ‖H2 ≤ V ≤ β‖(h, v)T ‖H2 and

dV

dt
≤ −αV

(81)
for some α > 0 and β > 0. In particular, such Lyapunov
function has some robustness with respect to small per-
turbations of the system dynamics. More details about
the construction of such Lyapunov function as well as the
proof of this theorem can be found in the Appendix.

Using Theorem 7, we shall finally prove Theorem 3 that
is now straightforward.

PROOF. [Proof of Theorem 3] Note that the condition
(78) and (79) are exactly the same with conditions (50)
and (51). Therefore from the proof of Proposition 4 for
all ε ∈ (0, ε0], there exist f1 = f1,ε and f2 = f2,ε defined
by (57), continuous with respect to ε, such that (78) and
(79) are verified and

f1,0λ1
f2,0λ2

ϕ2 =

(
λ1
λ2

)2

, (82)

where ϕ is given by (38). Under hypothesis (14) of The-
orem 3, we have (44), which together with (82) gives
(61). Recall that by the continuity of f1,ε and f2,ε with
respect to ε, (63) holds for any ε ∈ (0, ε1]. Combining
(61), (63) and noticing (43), we obtain that

(b0H∗(0) + gH∗(0)

b0H∗(0)− gH∗(0)

)2
<
λ2(0)f2,ε(0)

λ1(0)f1,ε(0)
ϕ−2(0),(b1H∗(L)− gH∗(L)

b1H∗(L) + gH∗(L)

)2
<
λ1(L)f1,ε(L)

λ2(L)f2,ε(L)
ϕ2(L).

(83)

Thus, we get from Theorem 7 that the steady-state
(H∗, V ∗)T of the system (1), (2) and (7) is exponen-
tially stable for the H2-norm. This ends the proof of
Theorem 3.

Remark 9 We emphasize that the exponential stability
in Hp-norm holds in fact for any p ∈ N\{0, 1} under the
same condition (14) given in Theorem 3 when the map
B is of class Cp and the definition of the exponential sta-
bility involves an appropriate extension of the compati-
bility conditions of order p− 1 (see [3, Page.153] for the
definition). This is a consequence of [3, Theorem 6.10].
Roughly speaking, this can be obtained by considering the
augmented systems and then using the same method as
in the proof of Theorem 7.
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4 Conclusion

In this paper we addressed the problem of the expo-
nential stability of the Saint-Venant equations with
arbitrary friction and space-varying slope. An explicit
boundary condition was given which guarantees the ex-
ponential stability of the nonlinear system in H2-norm.
To that end, we first studied a corresponding linearized
system and proved the exponential stability result in
L2-norm by constructing a quadratic Lyapunov func-
tion. Then by expanding the Lyapunov function, we
obtained the exponential stability of the nonlinear sys-
tem in H2-norm by requiring proper conditions on the
boundaries. These boundary conditions are related to
physical devices located at the ends of the channel where
the controls acting as feedback are implemented.

A Appendix

A.1 Proof of Lemma 5

PROOF. From (3), (5), (32) to (38) and (41), we get
that

(
λ2
λ1
ϕ

)′
=
λ′2λ1 − λ′1λ2

λ21
ϕ+

λ2
λ1

(
γ1
λ1

+
δ2
λ2

)
ϕ

=

3
√
gH∗V ∗

(
gC − kV ∗2

H∗

)
λ21(gH∗ − V ∗2)

+
λ2γ1 + δ2λ1

λ21

ϕ

=

3
√
gH∗V ∗

(
gC − kV ∗2

H∗

)
λ21(gH∗ − V ∗2)

+
1

λ21

[
−3

4

(
gC − kV ∗2

H∗

)[√
gH∗ − V√
gH∗ + V

−
√
gH∗ + V√
gH∗ − V

]

+
kV ∗2

H∗

(
2
√
gH∗

V ∗
+

V ∗√
gH∗

)]ϕ

=

3
√
gH∗V ∗

(
gC − kV ∗2

H∗

)
λ21(gH∗ − V ∗2)

− 1

λ21

3
(
gC − kV ∗2

H∗

)√
gH∗V ∗

gH∗ − V ∗2

−kV
∗2

H∗

(
2
√
gH∗

V ∗
+

V ∗√
gH∗

)ϕ

=
kV ∗2

H∗

(
2
√
gH∗

V ∗
+

V ∗√
gH∗

)
ϕ

λ21
.

(A.1)

Besides, we have

a

λ1
+

b

λ2
η2 =

(
δ1λ1 + γ2λ2

λ21

)
ϕ

=
kV ∗2

H∗

(
2
√
gH∗

V ∗
+

V ∗√
gH∗

)
ϕ

λ21
> 0.

(A.2)

Therefore

η′ =
a

λ1
+

b

λ2
η2 =

∣∣∣∣ aλ1 +
b

λ2
η2
∣∣∣∣ . (A.3)

This ends the proof of Lemma 5.

A.2 Proof of Theorem 7

PROOF. This theorem is a particular case of [3, The-
orem 6.10]. One just need to check that the system (1),
(2) and (8) with boundary conditions (7) satisfying the
dissipative conditions (14) can be written in the form
of [3, (6.54)-(6.57)]. Note that this also implies the well-
posedness of the system as well. Indeed, we perform the
change of variable(

z1

z2

)
=

(
ϕ1

√
g
H∗ ϕ1

−ϕ2

√
g
H∗ ϕ2

)(
h

v

)
, (A.4)

where h and v are the perturbations given by (15) and
(16) and ϕ1 and ϕ2 are given by (36) and (37) respec-
tively. If we denote by z = (z1, z2)T , the nonlinear sys-
tem (1), (2) and (7) is equivalent to:

zt +A(z, x)zx +B(z, x) = 0 (A.5)(
z1(t, 0)

z2(t, L)

)
= G

(
z1(t, L)

z2(t, 0)

)
, (A.6)

where

A(0, x) =

(
λ1 0

0 −λ2

)
, B(0, x) = 0

and
∂B

∂z
(0, x) =

(
0 a(x)

b(x) 0

)

and

G(0) = 0, G′(0) =

(
0 k0ϕ(0)

k1ϕ
−1(L) 0

)
(A.7)
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with k0 and k1 defined in (43). Note that the boundary
condition (A.6) obtained from (7) is true at least locally,
thus is in the form used in [3, Theorem 6.10]. To be more
precise, noticing ϕ1(0) = 1, we get from (A.4) that

z1(t, 0) = v(t, 0) +

√
g

H∗(0)
h(t, 0)

= V (t, 0)− V ∗(0) +

√
g

H∗(0)
h(t, 0)

= B(H(t, 0))− V ∗(0) +

√
g

H∗(0)
h(t, 0)

= B(h(t, 0) +H∗(0))− V ∗(0) +

√
g

H∗(0)
h(t, 0)

:= l1(h(t, 0)). (A.8)

Similarly note that ϕ2(0) = 1, we obtain

z2(t, 0) = v(t, 0)−
√

g

H∗(0)
h(t, 0)

= B(h(t, 0) +H∗(0))− V ∗(0)−
√

g

H∗(0)
h(t, 0)

:= l2(h(t, 0)). (A.9)

From (21) and (A.9), we have

l′2(0) = B′(H∗(0))−
√

g

H∗(0)
= b0 −

√
g

H∗(0)
,

(A.10)

which together with the definition of b0 in (23) gives that

l′2(0) < 0. (A.11)

Thanks to the implicit function theorem, we get from
(A.8), (A.9) and (A.11) that in a neighborhood of 0

z1(t, 0) = m1(z2(t, 0)). (A.12)

Similarly, we can obtain in a neighborhood of 0 that

z2(t, L) = m2(z1(t, L)). (A.13)

Note that (A.12) and (A.13) are indeed in the form of
(A.6). Then [3, Theorem 6.6 and 6.10] can be directly
applied to this particular case and gives the sufficient
conditions (78), (79) and (80). We remark here that the
essential element of the proof for [3, Theorem 6.6 and
6.10] is that finding such f1 and f2 corresponds to finding
a quadratic Lyapunov function for the H2-norm of the

form:

V =

∫ L

0

(
f1(x)z21(t, x) + f2(x)z22(t, x)

)
dx

+

∫ L

0

(
f1(x)z21t(t, x) + f2(x)z22t(t, x)

)
dx

+

∫ L

0

(
f1(x)z21tt(t, x) + f2(x)z22tt(t, x)

)
dx.

(A.14)

One can look at in particular Lemma 6.8 and (6.19) to
(6.22) in [3]. This completes the statement of Remark 8.

Acknowledgements

The authors would like to thank Jean-Michel Coron,
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Bastin. A lyapunov approach to control irrigation canals
modeled by Saint-Venant equations. In CD-Rom Proceedings,
Paper F1008-5, ECC99, Karlsruhe, Germany, pages 3178–
3183, 1999.

[11] Jean-Michel Coron, Brigitte d’Andréa Novel, and Georges
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