R. Lories, Joint homeostasis, restoration, and remodeling in osteoarthritis, Best Practice & Research Clinical Rheumatology, vol.22, issue.2, pp.209-220, 2008.
DOI : 10.1016/j.berh.2007.12.001

R. Lories and F. Luyten, The bone???cartilage unit in osteoarthritis, Nature Reviews Rheumatology, vol.69, issue.1, pp.43-49, 2011.
DOI : 10.1002/art.27397

L. Lodewyckx and R. Lories, WNT signaling in osteoarthritis and osteoporosis: What is the biological significance for the clinician?, Current Rheumatology Reports, vol.56, issue.Suppl1, pp.23-30, 2009.
DOI : 10.1007/BF03327364

A. Blom, P. Van-lent, P. Van-der-kraan, . Van-den, and W. Berg, To Seek Shelter from the Wnt in Osteoarthritis? Wnt-Signaling as a Target for Osteoarthritis Therapy, Current Drug Targets, vol.11, issue.5, pp.620-629, 2010.
DOI : 10.2174/138945010791011901

B. Macdonald and K. Tamai, Wnt/??-Catenin Signaling: Components, Mechanisms, and Diseases, Developmental Cell, vol.17, issue.1, pp.9-26, 2009.
DOI : 10.1016/j.devcel.2009.06.016

. Lodewyckx, http://arthritis-research.com/content/14/1/R16 linked PKCdelta activation promotes bone formation, Arthritis Research & Therapy Dev Cell, vol.14, issue.12, pp.16113-127, 2007.

R. Lories, J. Peeters, A. Bakker, P. Tylzanowski, I. Derese et al., -knockout mice, Arthritis & Rheumatism, vol.20, issue.12, pp.4095-4103, 2007.
DOI : 10.1007/BF03327364

M. Zhu, M. Chen, M. Zuscik, Q. Wu, Y. Wang et al., Inhibition of ?????catenin signaling in articular chondrocytes results in articular cartilage destruction, Arthritis & Rheumatism, vol.16, issue.7, pp.2053-2064, 2008.
DOI : 10.1016/S1476-5586(04)80048-4

M. Zhu, D. Tang, Q. Wu, S. Hao, M. Chen et al., Activation of ??-Catenin Signaling in Articular Chondrocytes Leads to Osteoarthritis-Like Phenotype in Adult ??-Catenin Conditional Activation Mice, Journal of Bone and Mineral Research, vol.908, issue.1, pp.12-21, 2009.
DOI : 10.1002/art.23614

F. Dell-'accio, D. Bari, C. Eltawil, N. Vanhummelen, P. Pitzalis et al., Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis, Arthritis & Rheumatism, vol.37, issue.4, pp.1410-1421, 2008.
DOI : 10.2106/00004623-200106000-00003

L. Weng, C. Wang, J. Ko, Y. Sun, and F. Wang, Control of Dkk-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees, Arthritis & Rheumatism, vol.113, issue.5, pp.1393-1402, 2010.
DOI : 10.1182/blood-2008-03-145169

F. Dell-'accio, D. Bari, C. , E. Tawil, N. Barone et al., Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury, Arthritis Research & Therapy, vol.8, issue.5, p.139, 2006.
DOI : 10.1186/ar2029

N. Lane, M. Nevitt, L. Lui, P. De-leon, and M. Corr, Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women, Arthritis & Rheumatism, vol.32, issue.10, pp.3319-3325, 2007.
DOI : 10.7326/0003-4819-133-8-200010170-00016

X. Guo, T. Day, X. Jiang, L. Garrett-beal, L. Topol et al., Wnt/??-catenin signaling is sufficient and necessary for synovial joint formation, Genes & Development, vol.18, issue.19, pp.2404-2417, 2004.
DOI : 10.1101/gad.1230704

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC522990/pdf

T. Day, X. Guo, L. Garrett-beal, and Y. Yang, Wnt/??-Catenin Signaling in Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation during Vertebrate Skeletogenesis, Developmental Cell, vol.8, issue.5, pp.739-750, 2005.
DOI : 10.1016/j.devcel.2005.03.016

F. Dell-'accio, D. Bari, C. Luyten, and F. , Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo, Arthritis & Rheumatism, vol.28, issue.7, pp.1608-1619, 2001.
DOI : 10.1007/BF02634049

B. Hoang, M. Moos, . Jr, S. Vukicevic, and F. Luyten, Frizzled, Suggest a Role in Skeletal Morphogenesis, Journal of Biological Chemistry, vol.266, issue.42, pp.26131-26137, 1996.
DOI : 10.1038/227680a0

M. Enomoto-iwamoto, J. Kitagaki, E. Koyama, Y. Tamamura, C. Wu et al., The Wnt Antagonist Frzb-1 Regulates Chondrocyte Maturation and Long Bone Development during Limb Skeletogenesis, Developmental Biology, vol.251, issue.1, pp.142-156, 2002.
DOI : 10.1006/dbio.2002.0802

A. Giulietti, L. Overbergh, D. Valckx, B. Decallonne, R. Bouillon et al., An Overview of Real-Time Quantitative PCR: Applications to Quantify Cytokine Gene Expression, Methods, vol.25, issue.4, pp.386-401, 2001.
DOI : 10.1006/meth.2001.1261

M. Gosset, F. Berenbaum, S. Thirion, and C. Jacques, Primary culture and phenotyping of murine chondrocytes, Nature Protocols, vol.176, issue.8, pp.1253-1260, 2008.
DOI : 10.1016/S0167-4781(98)00044-X

D. Huang, B. Sherman, and R. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nature Protocols, vol.99, issue.1, pp.44-57, 2009.
DOI : 10.6026/97320630002428

D. Huang, B. Sherman, and R. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Research, vol.8, issue.1, pp.1-13, 2009.
DOI : 10.1186/1471-2105-8-9

H. Mi, Q. Dong, A. Muruganujan, P. Gaudet, S. Lewis et al., PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium, Nucleic Acids Research, vol.27, issue.suppl_1, pp.204-210, 2010.
DOI : 10.1038/nbt.1558

V. Mootha, C. Lindgren, K. Eriksson, A. Subramanian, S. Sihag et al., PGC-1??-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nature Genetics, vol.95, issue.3, pp.267-273, 2003.
DOI : 10.1073/pnas.95.25.14863

A. Subramanian, P. Tamayo, V. Mootha, S. Mukherjee, B. Ebert et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proceedings of the National Academy of Sciences, vol.19, issue.18, pp.15545-15550, 2005.
DOI : 10.1093/bioinformatics/btg363

P. Thomas, M. Campbell, A. Kejariwal, H. Mi, B. Karlak et al., PANTHER: A Library of Protein Families and Subfamilies Indexed by Function, Genome Research, vol.13, issue.9, pp.2129-2141, 2003.
DOI : 10.1101/gr.772403

T. Heinemeyer, E. Wingender, I. Reuter, H. Hermjakob, A. Kel et al., Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL, Nucleic Acids Research, vol.26, issue.1, pp.362-367, 1998.
DOI : 10.1093/nar/26.1.362

URL : https://academic.oup.com/nar/article-pdf/26/1/362/7049107/26-1-362.pdf

V. Matys, O. Kel-margoulis, E. Fricke, I. Liebich, S. Land et al., TRANSFAC(R) and its module TRANSCompel(R): transcriptional gene regulation in eukaryotes, Nucleic Acids Research, vol.34, issue.90001, pp.108-110, 2006.
DOI : 10.1093/nar/gkj143

E. Jho, T. Zhang, C. Domon, C. Joo, J. Freund et al., Wnt/??-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway, Molecular and Cellular Biology, vol.22, issue.4, pp.1172-1183, 2002.
DOI : 10.1128/MCB.22.4.1172-1183.2002

M. Hoekstra, C. Van-der-lans, B. Halvorsen, L. Gullestad, J. Kuiper et al., The peripheral blood mononuclear cell microRNA signature of coronary artery disease, Biochemical and Biophysical Research Communications, vol.394, issue.3, pp.792-797, 2010.
DOI : 10.1016/j.bbrc.2010.03.075

H. Takahashi, H. Sakuta, T. Shintani, and M. Noda, Functional mode of FoxD1/CBF2 for the establishment of temporal retinal specificity in the developing chick retina, Developmental Biology, vol.331, issue.2, pp.300-310, 2009.
DOI : 10.1016/j.ydbio.2009.05.549

Z. Wu, S. Zheng, Z. Li, J. Tan, and Q. Yu, E2F1 suppresses Wnt/??-catenin activity through transactivation of ??-catenin interacting protein ICAT, Oncogene, vol.19, issue.37, pp.3979-3984, 2011.
DOI : 10.1073/pnas.0505585102

E. Evangelou, K. Chapman, I. Meulenbelt, F. Karassa, J. Loughlin et al., variants and osteoarthritis of the hip, knee, and hand, Arthritis & Rheumatism, vol.67, issue.6, pp.1710-1721, 2009.
DOI : 10.7326/0003-4819-127-9-199711010-00008

P. Bovolenta, P. Esteve, J. Ruiz, E. Cisneros, and J. Lopez-rios, Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease, Journal of Cell Science, vol.121, issue.6, pp.737-746, 2008.
DOI : 10.1242/jcs.026096

G. Nalesso, J. Sherwood, J. Bertrand, T. Pap, M. Ramachandran et al., WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways, The Journal of Cell Biology, vol.126, issue.3, pp.551-564, 2011.
DOI : 10.1083/jcb.201011051.dv

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087013/pdf

J. Wu, M. Weis, L. Kim, and D. Eyre, Type III Collagen, a Fibril Network Modifier in Articular Cartilage, Journal of Biological Chemistry, vol.4, issue.24, pp.18537-18544, 2010.
DOI : 10.1007/BF01854894

J. Wu, M. Weis, L. Kim, B. Carter, and D. Eyre, Differences in Chain Usage and Cross-linking Specificities of Cartilage Type V/XI Collagen Isoforms with Age and Tissue, Journal of Biological Chemistry, vol.19, issue.9, pp.5539-5545, 2009.
DOI : 10.1042/bj2990497

S. Wotton and V. Duance, Type III collagen in normal human articular cartilage, The Histochemical Journal, vol.23, issue.5, pp.412-416, 1994.
DOI : 10.1007/BF00160053

R. Young, P. Lawrence, V. Duance, T. Aigner, and P. Monaghan, Immunolocalization of Collagen Types II and III in Single Fibrils of Human Articular Cartilage, Journal of Histochemistry & Cytochemistry, vol.42, issue.3, pp.423-432, 2000.
DOI : 10.1177/43.4.7897183

C. Kiani, L. Chen, Y. Wu, A. Yee, and B. Yang, Structure and function of aggrecan, Cell Research, vol.276, issue.17, pp.19-32, 2002.
DOI : 10.1074/jbc.M100618200

S. Kahai, C. Vary, Y. Gao, and A. Seth, Collagen, type V, ??1 (COL5A1) is regulated by TGF-?? in osteoblasts, Matrix Biology, vol.23, issue.7, pp.445-455, 2004.
DOI : 10.1016/j.matbio.2004.09.004

J. Bonaventure, L. Zylberberg, L. Cohen-solal, J. Allain, C. Lasselin et al., A new lethal brittle bone syndrome with increased amount of type V collagen in a patient, American Journal of Medical Genetics, vol.254, issue.3, pp.299-310, 1989.
DOI : 10.1515/bchm2.1958.311.1.41

J. Bateman, D. Chan, T. Mascara, J. Rogers, and W. Cole, Collagen defects in lethal perinatal osteogenesis imperfecta, Biochemical Journal, vol.240, issue.3, pp.699-708, 1986.
DOI : 10.1042/bj2400699

D. Herbage, F. Borsali, C. Buffevant, F. Flandin, and M. Aguercif, Composition, cross-linking and thermal stability of bone and skin collagens in patients with osteogenesis imperfecta, Metabolic Bone Disease and Related Research, vol.4, issue.2, pp.95-101, 1982.
DOI : 10.1016/0221-8747(82)90022-4

URL : https://hal.archives-ouvertes.fr/hal-00313372

C. Jones, C. Cummings, J. Ball, and P. Beighton, Collagen defect of bone in osteogenesis imperfecta (Type I). An electron microscopic study, Clin Orthop Relat Res, pp.208-214, 1984.

P. Muller, K. Raisch, K. Matzen, and S. Gay, Presence of type III collagen in bone from a patient with osteogenesis imperfecta, European Journal of Pediatrics, vol.17, issue.1, pp.29-37, 1977.
DOI : 10.1007/BF00470603

F. Pope, A. Nicholls, C. Eggleton, P. Narcissi, E. Hey et al., Osteogenesis imperfecta (lethal) bones contain types III and V collagens., Journal of Clinical Pathology, vol.33, issue.6, pp.534-538, 1980.
DOI : 10.1136/jcp.33.6.534

URL : http://jcp.bmj.com/content/jclinpath/33/6/534.full.pdf

T. Mahmoudi, S. Boj, P. Hatzis, V. Li, N. Taouatas et al., The Leukemia-Associated Mllt10/Af10-Dot1l Are Tcf4/??-Catenin Coactivators Essential for Intestinal Homeostasis, PLoS Biology, vol.3, issue.11, p.1000539, 2010.
DOI : 10.1371/journal.pbio.1000539.s012

G. Davidson and C. Niehrs, Emerging links between CDK cell cycle regulators and Wnt signaling, Trends in Cell Biology, vol.20, issue.8, pp.453-460, 2010.
DOI : 10.1016/j.tcb.2010.05.002

A. Ruettger, S. Neumann, B. Wiederanders, and R. Huber, Comparison of different methods for preparation and characterization of total RNA from cartilage samples to uncover osteoarthritis in vivo, BMC Research Notes, vol.3, issue.1, p.7, 2010.
DOI : 10.1186/1756-0500-3-7