Non-wellfounded proof theory for (Kleene+action)(algebras+lattices)

Abstract : We prove cut-elimination for a sequent-style proof system which is sound and complete for the equational theory of Kleene algebra, and where proofs are potentially non-wellfounded infinite trees. We extend these results to systems with meets and residuals, capturing 'star-continuous' action lattices in a similar way. We recover the equational theory of all action lattices by restricting to regular proofs (with cut)—those proofs that are unfoldings of finite graphs.
Type de document :
Communication dans un congrès
Computer Science Logic (CSL), Sep 2018, Birmingham, United Kingdom. 〈10.4230/LIPIcs.CSL.2018.19〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01703942
Contributeur : Damien Pous <>
Soumis le : vendredi 29 juin 2018 - 10:54:11
Dernière modification le : lundi 26 novembre 2018 - 10:22:55
Document(s) archivé(s) le : jeudi 27 septembre 2018 - 07:31:32

Fichier

lka.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Anupam Das, Damien Pous. Non-wellfounded proof theory for (Kleene+action)(algebras+lattices). Computer Science Logic (CSL), Sep 2018, Birmingham, United Kingdom. 〈10.4230/LIPIcs.CSL.2018.19〉. 〈hal-01703942v3〉

Partager

Métriques

Consultations de la notice

105

Téléchargements de fichiers

44