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Abstract
Allegories were introduced by Freyd and Scedrov; they form a frag-

ment of Tarski’s calculus of relations. We show that their equational

theory is decidable by characterising it in terms of a specific class

of graph homomorphisms.

We actually do so for an extension of allegories which we prove

to be conservative: allegories with top. This makes it possible to

exploit a correspondence between terms and K4-free graphs, for
which isomorphisms were known to be finitely axiomatisable.

Keywords Allegories, Algebra, Graphs, Treewidth, Minors, De-

cidability, Homomorphisms

1 Introduction
In the nineties, Freyd and Scedrov proposed the notion of alle-

gory [12], an axiomatisation of categories with some additional

structure present in the category of relations (with sets as objects

and binary relations as morphisms). Allegories arise in regular cate-

gories [18, Chapter A3]; they were also applied to circuit design [4].

We show in this paper that their equational theory is decidable.

Forgetting the categorical structure, allegories form a finite and

purely equational axiomatisation of the positive calculus of rela-

tions [3]. Their syntax is the following:

u,v ::= a | u · v | u ∩ v | u◦ | 1

Letter a ranges over a set of variables. The first three operations

intuitively denote relational composition (·), intersection (∩) and

converse (_◦). The constant 1 corresponds to the identity relation.

We can associate to each term u a labelled, directed graph g(u)
with two designated vertices for input and output. In this construc-

tion, a is a directed edge labelled with a, · is series composition

of graphs, obtained by merging the output of the first graph and

the input of the second one, ∩ is parallel composition, merging

the inputs and the outputs of the two graphs respectively, (_◦) ex-

changes input and output, and 1 is the graph with no edge and a

single vertex. For instance, the graphs of the terms a·(b ∩ c◦) ∩ d
and 1 ∩ a·b are the following ones:

a

d

b

c
a

b
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A key result about allegories is that an inequation u ≥ v is

universally valid for binary relations (i.e., it holds for all instantia-

tion of its variables with binary relations) if and only if there is a

graph homomorphism from g(u) to g(v). For instance, the inequa-
tion a·b ∩ a·c◦ ≥ a· (b ∩ c◦) ∩ d can be proved by exhibiting the

following homomorphism:

a

d

b

c

a

a

b

c

This characterisation was sketched by Freyd and Scedrov [12, page

208] and later proved by Andréka and Bredikhin [2, Theorem 1].

It actually appeared earlier under a different and more general

form, to prove that the database problem of conjunctive queries

containment is decidable [5, Lemma 13].

This characterisation however only applies to representable alle-

gories, those allegories that are isomorphic to an algebra of concrete

binary relations. Indeed, the equational theory of allegories is in-

complete with respect to these models. Freyd and Scedrov give a

counter-example [12, p. 210]: there are homomorphisms that cor-

respond to inequations that are not derivable from the axioms of

allegories. Incompleteness also follows from a general negative

result by Andréka and Mikulás [3]: any finite first-order axiomati-

sation must be incomplete when the considered fragment contains

at least the operations of composition, intersection and converse.

When looking at counter-examples to completeness, one can see

that the problems always arise from homomorphisms that equate

more than two vertices at a time. In fact, Freyd and Scedrov suggest

that “the equations chosen as the definition of allegory happen to

be precisely those that account for all containments obtainable by

identifying the vertices two at a time” [12, p. 210].

We obtain decidability by proving this claim, which happens to

be more difficult than expected. An attempt at exhibiting a proof

was proposed in Gutierrez’s doctoral dissertation [16]. However,

his proof builds on a lemma which happens to be false and cannot

be fixed [1, 13]. Gutierrez also claimed decidability earlier, in a short

abstract [15] where he proposes an alternative characterisation, but

proofs are not available and some of his assertions seem highly non-

trivial to prove. (See Appendix E). To the best of our knowledge,

the problem is thus currently considered as open.

The key difficulty is that some graphs cannot be represented by a

term. Thus, even though every homomorphism can be decomposed

into a sequence of homomorphisms equating at most two vertices at

a time, there is no guarantee that the intermediate graphs appearing

in such a decomposition are the graphs of some terms. Consider for

instance the graphs in Figure 1. There are homomorphisms from

the outer graphs to the inner one, obtained by merging vertices

depicted with the same symbol.While those three graphs are graphs

of terms, we shall see that only the first one can be decomposed into

1
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⇀ ↼̸

Figure 1. Valid and invalid homomorphisms. (The edges of the

graph in the middle should be labelled with different letters and

oriented arbitrarily; the orientation and labelling of the edges of

the outer graphs are then determined by the two homomorphisms.)

a sequence where all intermediate graphs are graphs of terms (see

Appendix A for more details), and thus corresponds to an inequality

provable from allegories axioms.

We proceed in two steps.

1. First we solve the problem for allegories with top, that is,

allegories extended with a neutral element for intersection,

whose graph is the disconnect graph with no edges and two

vertices, input and output. Doing so gives us more flexibility:

there are more graphs that can be represented by a term (for

instance, the disconnected ones), and there is a clear charac-

terisation of the class of graphs of terms: they are precisely

the graphs of treewidth at most two, or equivalently, the

graphs excluding K4 as a minor. This move also makes it

possible to exploit a recent axiomatisation of isomorphisms

on such graphs [7]: we show that the corresponding axioms

are derivable in allegories with top (Proposition 19), and we

can then reason modulo isomorphisms. This latter possibility

is crucial in most of our proofs.

2. Then we prove that allegories with top are a conservative

extension of allegories: every equation over the signature of

allegories that holds in all allegories with top actually holds

in all allegories. We do so using model-theoretic means, by

showing how to embed any given allegory into an allegory

with top (Proposition 44). We solve in passing a problem

that was left open in [7]: we give a finite axiomatisation of

isomorphisms for connected K4-free graphs.

Outline and contributions We first recall the correspondence

between terms and K4-free graphs [7] (Section 2) and setup tools

to extract terms from graphs (Section 3). Then we define allegories

with top and we prove laws that are required in the sequel (Sec-

tion 4). Section 5 is devoted to our main contribution: there we

characterise the inequational theory of allegories in terms of se-

quences of appropriate homomorphisms (Theorem 16). This charac-

terisation leads to decidability (Section 6) and to a notion of normal

form (Section 7). We finally proceed with the conservativity re-

sults (Section 8), which make it possible to lift our characterisation

and decidability proof to pure allegories, and to provide a finite

axiomatisation of isomorphisms for connected K4-free graphs.
The conservativity results and the equational proofs needed in

the paper have been formally verified using the Coq proof assistant.

The development can be downloaded and browsed online [21].

2 Terms and graphs
We let a,b . . . range over the letters of a fixed alphabet A. We

consider labelled directed graphs with two designated vertices. We

just call them graphs in the sequel. Note that we allow multiple

edges between two vertices, as well as self-loops.

1 ≜ G · H ≜ G H

⊤ ≜ G ∩ H ≜
G

H

dom(G) ≜ G G◦ ≜ G

a ≜
a

Figure 2. Graph operations.

Definition 1. A graph is a tuple G = ⟨V ,E, s, t , l , ι,o⟩, where V is

a finite set of vertices, E is a finite set of edges, s, t : E → V are maps

indicating the source and target of each edge, l : E → A is a map

indicating the label of each edge, and ι,o ∈ V are the designated

vertices, respectively called input and output.

Definition 2. A homomorphism fromG = ⟨V ,E, s, t , l , ι,o⟩ toG ′ =

⟨V ′,E ′, s ′, t ′, l ′, ι′,o′⟩ is a pair h = ⟨f ,д⟩ of functions f : V → V ′

and д : E → E ′ that respect the various components: s ′ ◦ д = f ◦ s ,
t ′ ◦ д = f ◦ t , l = l ′ ◦ д, ι′ = f (ι), and o′ = f (o).

A surjective (resp. injective) homomorphism is a homomorphism

whose two components are surjective (resp. injective) functions. A

(graph) isomorphism is a surjective and injective homomorphism

whose two components are bijective functions. We write G ≃ G ′

when there exists an isomorphism between graphs G and G ′
.

We consider the following signatures for terms and algebras:

Σ =
{
·2,∩2, _

◦
1
, 10

}
Σ⊤ = Σ ∪ {⊤0} Σ

dom
= Σ ∪ {dom1}

We usually omit the · symbol and we assign priorities so that the

term (a · (b◦)) ∩ c can be written just as ab◦ ∩ c .
Graphs form algebras for those signatures by considering the

operations depicted in Figure 2, where inputs and outputs are repre-

sented by unlabelled ingoing and outgoing arrows. The operations

composition (·) and intersection (∩) respectively correspond to

series and parallel composition, converse (_◦) just exchanges input

and output, and domain (dom(_)) relocates the output to the input.

By interpreting a letter a ∈ A as the graph a from Figure 2, one

can thus associate a graph g(u) to every term over the considered

signatures and with variables in A.
Observe that intersecting a graph with 1 amounts to merging

its input and its output. As a consequence, the domain operation

is derivable in the signature Σ⊤ thanks to the isomorphism below.

Intuitively, relocating the output to the input can be implemented

by first disconnecting the output (by multiplication with ⊤ on the

right), and then merging it with the input (by intersection with 1).

dom(G) ≃ 1 ∩ G⊤

Accordingly, we will use the following shorthand when working

with Σ⊤-terms: dom(u) ≜ 1 ∩ u⊤.
There are graphs which are not the graph of any term. For in-

stance, this is the case for the following graphs, whatever the ori-

entation and labelling of their edges.

(1)

We now recall some standard graph theory notions, to state the

characterisation of the graphs of Σ⊤-terms from [7].

2
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A simple graph is an unlabelled undirected graph with at most

one edge between two vertices and without self-loops. We use stan-

dard notation and terminology from graph theory [9]. In particular,

we denote by kj a potential edge between two vertices k and j; a
kj-path is a (possibly trivial) path whose ends are k and j;G + kj is
the simple graph obtained from G by adding the edge kj if k and j
were not already adjacent.

Definition 3. A minor of a simple graph G is a simple graph ob-

tained from G by a sequence of the following operations: delete

an edge or a vertex, contract an edge (i.e., delete it and merge its

endpoints). A simple graph is H -free if H is not one of its minors.

Robertson and Seymour’s graph minor theorem [22], states that

(simple) graphs are well-quasi-ordered by the minor relation. As a

consequence, the classes of graphs of bounded treewidth [9], which

are closed under taking minors, can be characterised by finite sets

of excluded minors. Two simple and standard instances are the

following ones: the graphs of treewidth at most one (the forests)

are precisely those excluding the cycle with three vertices (C3);

those of treewidth at most two are those excluding the complete

graph with four vertices (K4) [10].

(C3) (K4)

Definition 4. The skeleton of a graph G is the simple graph S ob-

tained fromG by forgetting input, output, labelling, edge directions,

edge multiplicities, and self-loops. The strong skeleton ofG is S + ιo
if ι , o, and S otherwise.

As an example, K4 is the strong skeleton of all instances of the

graphs in (1).

Proposition 5 ([7, Corollary 26]). Let G be a graph. The following

are equivalent.

1. There exists a Σ⊤-term u such that G ≃ g(u).
2. The strong skeleton of G has treewidth at most two.

3. The strong skeleton of G is K4-free.

In the sequel, we write TW2 for the set of graphs satisfying these

conditions. The results from [7] also entail that Proposition 5 adapts

to connected graphs just by restricting to Σ
dom

-terms. (Σ-terms

alone are not enough, consider for instance the graph dom(a).)

3 Parsing graphs
Many different terms can denote the same graph. First because of

associativity, commutativity, and neutral elements. But also, and

more importantly, because of graphs whose input and output are

equal. Consider for instance the graph in Figure 3, which is the

graph of the five terms given on the left. Note that the terms in the

second column do not exist in the syntax of pure allegories (the

signature Σ): we need either the domain operation or its encoding

through the constant ⊤. The ability to write such terms in the

syntax of allegories with top is crucial in Section 5.

We now prove a few results that allow us to extract terms from

a given graph in TW2. We first focus on connected graphs.

Definition 6 (Primes, tests, petals, eyes). A graph G is prime if it

is connected and for all graphs G1,G2, G ≃ G1 ·G2 entails G1 ≃ 1

orG2 ≃ 1. A graph is a test if its input is equal to its output. A petal

is a prime test. An eye is a prime with distinct input and output.

1∩a(bd∩e)(c∩c ′)◦

1∩ (a(bd∩e)∩c)c ′◦

1∩ (a(bd∩e)∩c ′)c◦

dom(a(bd∩e)∩c∩c ′)

dom(a∩(c∩c ′)(d◦b◦∩e◦)) a c, c ′
e

b d

Figure 3. Different terms denoting the same connected graph.

The graphs of 1, a, a◦, ab∩c , 1∩a, and 1 ∩ ab and dom(a) are all
prime. The graphs of ab, a(b∩c), 1∩a∩bc and dom((1∩a)(b∩c◦))
are not, the latter two being the graph of (1∩a)(1∩bc). A prime is

either a petal or an eye. Petals can be characterised as follows.

Lemma 7. A test G is a petal if either

• G ≃ 1, or G ≃ 1 ∩ a for some letter a, or
• G has no self-loop on its input, is connected, and remains

connected when removing the input.

As expected, every connected graph can be decomposed as a

series composition of primes. This can typically be depicted as fol-

lows, where eyes are green and petals are yellow. The four depicted

vertices are called checkpoints: they must be visited by any (undi-

rected) path from the input to the output. Proper checkpoints are

those different from input and output.

This decomposition is not unique however: there can be superfluous

occurrences of 1, and the order in which contiguous petals appear

does not matter. If the starting graph belongs to TW2, then so do

its prime components; this allows one to proceed recursively.

The following proposition makes it possible to decompose non-

trivial eyes. This is a consequence of [7, Proposition 21(i)].

Proposition 8. LetG ∈ TW2 be an eye. EitherG consists of a single

edge, or there are connected graphs G1,G2 ∈ TW2 s.t. G ≃ G1 ∩ G2.

We writeG[k ;j] for the graphG with input and output respectively

set to k and j. As illustrated in Figure 3, there can be several ways

of extracting a term from a test. We shall mostly use the following

observation, to resort to the case where input and output differ:

Observation 9. Let G be a test and let k be a vertex of G. We have

G ≃ dom(G[ι;k]).

To extract a term using this observation, one must however make

sure that G[ι;k] belongs to TW2. When G is already known to be

in TW2, one can use for k any neighbour of the input: G[ι;k] is
necessarily in TW2 in such a case, since its strong skeleton is the

same as that of G . This is how the two terms in the second column

of Figure 3 are extracted. Other options are often possible, consider

for instance the following graph:

a b

Choosing the neighbour of the input yields dom(adom(b)), while
choosing the other vertex yields dom(ab). Conversely, some options

are forbidden: the topmost vertex in the graph of Figure 3 cannot

be chosen, the strong skeleton of the resulting graph being K4.
Disconnected graphs can be parsed as follows:

Proposition 10. Let G ∈ TW2 be a disconnected graph.

3
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u ∩ u = u (A0)

u ∩ (v ∩ w) = (u ∩ v) ∩ w (A1)

u ∩ v = v ∩ u (A2)

u ∩ ⊤ = u (A3)

u·(v ·w) = (u·v)·w (A4)

u·1 = u (A5)

u◦◦ = u (A6)

(u ∩ v)◦ = u◦ ∩ v◦ (A7)

(u·v)◦ = v◦·u◦ (A8)

uv ∩ uw ≥ u(v ∩ w) (AD)

(v ∩ wu◦)u ≥ vu ∩ w (AM)

Figure 4. Axioms of allegories with top (All⊤).

1. If G has a connected component H which contains neither the

input nor the output, then the graph G ′
obtained by removing

H fromG belongs to TW2 and for every vertex k inH , we have

H [k ;k] ∈ TW2 and G ≃ G ′ ∩ ⊤H [k ;k]⊤.
2. Otherwise, G has exactly two connected components G ′

and

G ′′
respectively containing the input and the output, we have

G ′[ι; ι],G ′′[o;o] ∈ TW2 and G ≃ G ′[ι; ι]⊤G ′′[o;o].

Proof. It suffices to show that the computed graphs are in TW2. This

follows from the observation that their strong skeleton is always a

subgraph of the strong skeleton of G, and the fact that the class of

K4-free graphs is closed under taking subgraphs. □

Remark 11. The occurrences of letters in a term are in one to one

correspondence with the edges of its graph. As a consequence, ifC[]
is a term context so thatC[a] is a term with a designated occurrence

of the letter a, then given a term u, the graph of C[u] is obtained
from the graph of C[a] by replacing the edge corresponding to the

selected occurrence of a with the graph of u.

4 Allegories
Definition 12. An allegory with top is a Σ⊤-algebra satisfying the

axioms in Figure 4, where an inequation of the form u ≥ v is

a shorthand for the equation u ∩ v = v . Given Σ⊤-terms with

variables inA, we write ⊢All⊤ u = v when this equation is derivable

from the axioms in Figure 4 (equivalently, when it holds in all

allegories with top, for all interpretation of the variables). Similarly

for inequations.

An allegory is a Σ-algebra satisfying those axioms but (A3). We

define ⊢All u = v accordingly.

Axioms (A0-A8) capture the most natural properties of the oper-

ators: intersection is idempotent, associative, commutative, and has

⊤ as a neutral element (so that the derived relation ≥ is a partial

order with ⊤ as maximum element and intersection as meet); com-

position is associative and has neutral element 1; converse is an

involution that reverses compositions. They entail 1
◦ = 1, ⊤◦ = ⊤,

monotonicity of intersection and converse, and a notion of duality:

every statement which holds universally also holds when reversing

all compositions. We use such laws freely in the sequel.

u
v
w

u

u

v

w

v u
w

v

w
u
u

Figure 5. Surjective homomorphisms for Axioms (AD) and (AM).

Axiom (AD), semi-distributivity, is equivalent to monotonicity

of composition on the right, and thus also on the left by duality, so

that all operations are monotone in the end.

Axiom (AM) is called modular identity. This is the only unusual

axiom. It generalises the notion of modularity for lattices [8]. Its

dual is the following law:

u(v ∩ u◦w) ≥ uv ∩ w (AM’)

A symmetrical consequence of modular identity is the following

inequation, known as Dedekind law:

(v ∩ wu◦)(u ∩ v◦w) ≥ vu ∩ w (DD)

The axioms of allegories are sound with respect to binary rela-

tions. As a consequence of the characterisation of representable

allegories mentioned in the Introduction, we have:

Proposition 13. If ⊢All⊤ u ≥ v then there exists a homomorphism

from g(u) to g(v).

Axioms (A1-A8) actually all correspond to graph isomorphisms.

Idempotency (A0) corresponds to an injective homomorphism from

right to left, and to a surjective homomorphism from left to right;

Axioms (AD) and (AM) correspond to the surjective homomor-

phisms depicted in Figure 5. Note that those three families of sur-

jective homomorphisms may equate arbitrarily many vertices: the

graph ofu might have many vertices in addition to input and output.

(This issue will be addressed in Section 5.4.)

As a consequence of Proposition 13, we have ⊢All⊤ 1 ≥ u if and

only if g(u) is a test. We thus call tests the terms satisfying this

condition. Equivalently, a test is a term that is provably equal to

some term of the shape 1 ∩ v . Following notations from Kleene

algebra with tests (KAT) [19], we let α , β range over tests.

Recall that dom(u) ≜ 1 ∩ u⊤ is a derived operation in allegories

with top. Such an operation is not definable in pure allegories, but

we can define a similar operation by setting dom
′(u) ≜ 1 ∩ uu◦.

Both domain operations are tests by definition, but the graphs of

dom(u) and dom
′(u) are not isomorphic; they are depicted below.

u uu

These operations are however interchangeable in allegories with

top: we will prove the equation below after Proposition 14.

⊢All⊤ dom(u) = dom
′(u) (2)

4
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Proposition 14. The following laws are derivable in allegories.

dom
′(u ∩ v) = 1 ∩ uv◦ (3)

α(v ∩ w) = αv ∩ w (4)

αβ = α ∩ β = βα (5)

α = α◦ = αα = dom
′(α) (6)

dom
′(uv) = dom

′(udom′(v)) (7)

Proof. We prove (3) by double inclusion. 1 ∩ uv◦ ≥ dom
′(u ∩ v)

follows by monotonicity from u ≥ u ∩ v and v◦ ≥ u◦ ∩ v◦. For
the other direction, we use Dedekind law (DD) withw = 1:

1 ∩ (u ∩ v)(u◦ ∩ v◦) ≥ 1 ∩ (uv◦ ∩ 1) = 1 ∩ uv◦

For Equation (4), we have

α(v ∩ w) ≥ α(v ∩ α◦w) (1 ≥ α◦)

≥ αv ∩ w (by (AM’))

≥ αv ∩ αw (1 ≥ α )

≥ α(v ∩ w) (by (AD))

It suffices to prove the first equation in (5), which follows from

idempotency and (4): αβ = α(1 ∩ β) = α1 ∩ β = α ∩ β .
For the first equation in (6), we have

(1 ∩ u)◦ = 1 ∩ 1u◦ = dom
′(1 ∩ u) (by (3))

= dom
′(u ∩ 1) = 1 ∩ u1◦ = 1 ∩ u (by (3))

The other equations in (6) follow using (5). We get (7) as follows.

dom
′(udom′(v)) ≥ dom

′(udom′(u◦uv ∩ v))

= dom
′(u(1 ∩ u◦uvv◦)) (by (3))

≥ dom
′(u ∩ uvv◦) (by (AM))

= 1 ∩ uvv◦u◦ = dom
′(uv) (by (3))

≥ 1 ∩ u(1 ∩ vv◦)u◦

= 1 ∩ u(1 ∩ vv◦)(1 ∩ vv◦)◦u◦ (by (6))

= dom
′(udom′(v)) □

The above laws also hold in allegories with top. Equation (2) follows

by instantiating v with ⊤ in (3).

5 Graph theoretical characterisation
We define a class of homomorphisms on TW2 graphs, that we will

prove to characterise inequations in All⊤. Such homomorphisms,

denoted by ⇀, are those that can be decomposed as a sequence

of homomorphisms whose source and target are both in TW2 and

equate at most two vertices. This is the case for the first homo-

morphism in Figure 1 (one must merge the black circles first, see

Appendix A), but not for the second one: merging any two ver-

tices with the same shape in the graph on the right yields a graph

containing K4 as a minor.)

We let R∗ denote the reflexive-transitive closure of a relation R.

Definition 15. Define the following relations on graphs:

• G � H if G,H ∈ TW2 and there is a surjective homomor-

phism h : G → H such that h collapses at most two vertices;

• G ↪→ H if there is an injective homomorphism h : G → H ;

• G ⇀ H if G (� ∪ ↪→)∗ H ;

• G ⇌ H when G ⇀ H and H ⇀ G.

1 ∩ 1 = 1 (A9)

dom(u ∩ v) = 1 ∩ u·v◦ (A10)

u·⊤ = dom(u)·⊤ (A11)

(1 ∩ u)·v = (1 ∩ u)·⊤ ∩ v (A12)

Figure 6. Axioms for 2p-algebras (with (A1-A8)).

The class TW2 is closed under subgraphs, soG ↪→ H andH ∈ TW2

implies G ∈ TW2. Since we require G and H to be K4-free when
G � H , we also have that G ⇀ H and H ∈ TW2 implies G ∈ TW2.

(Note that whenh : G → H is a surjective homomorphism equating

exactly two vertices, then neither G ∈ TW2 implies H ∈ TW2 nor

the converse. See Appendix B.)

Relation⇀ is a preorder and⇌ is an equivalence relation. The

remainder of this section is devoted to showing that the relation

⇌ is sound and complete w.r.t. provability in All⊤:

Theorem 16. We have ⊢All⊤ u = v if and only if д(u)⇌ д(v).

We start with the backward implication, for which it suffices to

show that д(u) ↪→ д(v) entails ⊢All⊤ u ≥ v (Section 5.2) and

д(u) � д(v) entails ⊢All⊤ u ≥ v (Section 5.3). For both implications,

a crucial preliminary step consists in dealing with isomorphisms

(Section 5.1). Then we prove the forward implication (Section 5.4).

5.1 Isomorphisms
Definition 17 ([7, Section 3]). A 2p-algebra is a Σ⊤-algebra satis-
fying the axioms (A1)-(A8) from Figure 4 and the axioms (A9)-(A12)

in Figure 6. We write ⊢2p u = v when two terms u and v are con-

gruent modulo those axioms, or equivalently, when the equation

holds in all 2p-algebras.

Note that idempotency (A0) is not included in the axioms of 2p-
algebra. TW2 is the free 2p-algebra; in particular, we have

Theorem 18 ([7, Corollary 34]). We have ⊢2p u = v iff g(u) ≃ g(v).

We now observe that every allegory with top is a 2p-algebra.

Proposition 19. If ⊢2p u = v then ⊢All⊤ u = v .

Proof. It suffices to prove axioms (A9)-(A12) from Figure 6. Ax-

iom (A9) is a trivial instance of idempotency. Axiom (A10) follows

from (3) and (2), and Axiom (A12) from (4). For Axiom (A11) we

have u⊤ ≥ 1 ∩ u⊤ and by (AM):

u⊤ = 1⊤ ∩ u⊤ ≤ (1 ∩ u⊤⊤◦)⊤ = dom(u)⊤ □

Corollary 20. If g(u) ≃ g(v) then ⊢All⊤ u = v .

This result is fundamental for the following proofs: it allows us to

reason up to isomorphisms, and to freely choose the way we want

to read a given graph. Recall for instance the five terms denoting

the same graph in Figure 3; thanks to the above corollary, we know

that those five terms are provably equal in allegories with top, so

that we can freely replace one by the other.

5.2 Injective homomorphisms
WriteG ↪→v H if there exists an injective homomorphism which is

bijective on edges and adds exactly one vertex (i.e., such that there

is exactly one vertex that is not in its range), and G ↪→e H if there

5
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exists an injective homomorphism which is bijective on vertices

and adds exactly one edge (idem). We have

↪→ = ↪→∗
v ↪→

∗
e

It thus suffices to show that ↪→v and ↪→e yield proofs in allegories

with top. We exploit the result about isomorphisms to do so.

Proposition 21. If g(u) ↪→v g(v) then ⊢All⊤ u ≥ v .

Proof. Observe that g(u) ↪→v g(v) entails g(u ∩ ⊤⊤) ≃ g(v), and
thus ⊢All⊤ u ∩ ⊤⊤ = v by Corollary 20. We finally get

All⊤ ⊢ u = u ∩ ⊤ ≥ u ∩ ⊤⊤ = v . □

Proposition 22. If g(u) ↪→e g(v) then ⊢All⊤ u ≥ v .

Proof. Suppose the added edge is labelled by a, and write v = C[a]
by selecting the corresponding occurrence of a in v (Remark 11).

We have д(u) ≃ д(C[⊤]), so ⊢All⊤ u = C[⊤] by Corollary 20. We get

All⊤ ⊢ u = C[⊤] ≥ C[a] = v by monotonicity of all operations. □

Note that in addition to Corollary 20, we are making a crucial use

of the presence of ⊤ in the syntax in the above two proofs. We

could get rid of it when working with connected graphs, but this

requires convoluted arguments (for instance, we can no longer

handle vertices and edges separately and in an arbitrary order).

5.3 Surjective homomorphisms
Like above for injective homomorphisms, for two graphs G,H ∈

TW2 write G �v H if there exists a surjective homomorphism

which is bijective on edges and equates exactly two vertices, and

G �e H if there exists a surjective homomorphismwhich is bijective

on vertices and equates exactly two edges. We have

� = �=v�∗
e

(Where �=v is the reflexive closure of �v .) We now show that �v
and �e yield proofs in allegories with top. This is easy for the latter,

but the former relation requires a much deeper analysis.

Proposition 23. If g(u) �e g(v) then ⊢All⊤ u ≥ v .

Proof. The only difference between g(u) and g(v) is that there are
two parallel edges with the same label a in g(u) that are replaced
by a single edge a in g(v). Let v ′

be the term obtained from v by

replacing by a ∩ a the occurrence of a corresponding to this single

edge in g(v). We have ⊢All⊤ v = v ′
by idempotency. Now observe

that g(u) ≃ g(v ′), so that ⊢All⊤ u = v ′
by Corollary 20. □

Proposition 24. If g(u) �v g(v) then ⊢All⊤ u ≥ v .

Proof. Let h be the surjective homomorphism from g(u) to g(v) col-
lapsing exactly two vertices. We prove the statement by induction

on |g(u)|, where |G | is the lexicographic product of:

• the number of edges and vertices of G,
• 1 if G is a test, and 0 otherwise.

We proceed by cases on the structure of g(u).

1. g(u) is a disconnected graph. Then by Proposition 10 we

have two cases:

a. g(u) has a connected component which contains neither

the input nor the output. Hence, there arew and α such

that g(u) ≃ g(w ∩ ⊤α⊤). Let k,k ′ be the two collapsed

vertices. If k,k ′ are either both in g(w) or both in g(α),
we derive the result by the inductive hypothesis. Suppose

k ∈ g(w) and k ′ ∈ g(α). By isomorphism, we can assume

that k ′ is the input of g(α). Then g(u) ≃ g(C[1 ∩ ⊤α⊤]),
where 1 corresponds to vertex k , and g(v) ≃ g(C[1 ∩ α]).
The result follows from ⊢All⊤ ⊤α⊤ ≥ α .

b. g(u) has exactly two connected components respectively

containing the input and the output, and there are α and β
such that g(u) ≃ g(α⊤β). Like in the previous case, we can

conclude by induction if the collapsed vertices k,k ′ are
either both in g(α) or both in g(β). Suppose k ∈ g(α) and
k ′ ∈ g(β). By hypothesis, collapsing k and k ′ gives us a
graph g(v) in TW2. Since vertexk is connected to the input

of g(α) and k ′ is connected to the output of g(β), we derive
that graphs g(α)[ι,k] and g(β)[k ′,o] are in TW2. Hence,

there exist w,x s.t. g(α)[ι,k] ≃ g(w), g(β)[k ′,o] ≃ g(x).
We have g(u) ≃ g(w⊤x) and g(v) ≃ g(wx), and the result

follows by ⊢All⊤ w⊤x ≥ wx .
2. g(u) is a connected test. Since g(u) has at least two ver-

tices, there is some vertex k adjacent to the input, but dif-

ferent from it. Then there is some termw such that g(u) ≃
g(dom(w)) and g(u)[ι;k] ≃ g(w). The existence of a homo-

morphism from g(u) to g(v) implies that g(v) is a test as

well. Moreover, by the definition of homomorphism, h(k) is
either adjacent to the input in g(v) or the input itself (in case

the vertices identified by the homomorphism are exactly k
and the input of g(v)). In both cases, there is a term x such

that g(v) ≃ g(dom(x)) and g(v)[ι;h(k)] ≃ g(x). The func-

tion h is still a surjective homomorphism from g(w) to g(x)
collapsing two vertices, since the only difference between

g(dom(w)) and g(w) is that the output has been relocated to

k , and analogously the only difference between g(dom(x))
and g(x) is that the output has been relocated to h(k). The
graph g(w) has the same number of vertices and edges as

g(u), but has input different from output, so we can apply

the inductive hypothesis to g(w) and derive ⊢All⊤ w ≥ x .
Hence, ⊢All⊤ dom(w) ≥ dom(x).

3. g(u) is a connected graph with input different from output,

and is not prime, i.e., there areu1,u2 both not equivalent to 1

such that g(u) = g(u1)·g(u2). Let k,k ′ be the vertices merged

by the homomorphism. If either k,k ′ are both in g(u1) or
they are both in g(u2) (possibly including the case when one

of k,k ′ is the checkpoint between g(u1) and g(u2) in g(u)),
we can apply the inductive hypothesis. Otherwise, k is in

g(u1) and k ′ is in g(u2), and neither of them is the check-

point between g(u1) and g(u2). As discussed in Section 3,

g(u) can be decomposed as a sequence of prime components

g(u1) · · · · · g(un ), where each component is either a petal or

an eye. W.l.o.g., we can assume that k is in the first prime

component, and that k ′ is in the last prime component (mod-

ulo the presence of petals equivalent to 1). If it were not the

case, the inductive hypothesis could be applied as above. We

consider different cases depending on whether k,k ′ are in a

petal or in an eye.

a. Both k and k ′ are in petals. Since k and k ′ can be merged,

and since k ′ is connected to the output, the output of the

first petal can be relocated to k . Analogously, the input
of the last petal can be relocated to k ′. Then there are

w,x , z s.t. g(u) ≃ g(w⊤x ∩ z), as represented below, with

k the output of g(w) and k ′ the input of g(x), and g(v) ≃
g(wx ∩ z). We conclude by ⊢All⊤ ⊤ ≥ 1.
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• •

b. Both k and k ′ are in an eye. Then (the strong skeleton of)

g(u) has the following graph as a minor (the lower edge

being the one added by the definition of strong skeleton).

k k ′

We thus get K4 by collapsing k and k ′, which contradicts

the fact that g(v) is the graph of a term.

c. k is in a petal and k ′ is in a eye. We consider two cases:

i. Suppose the petal and the eye are contiguous, i.e., that

there are no prime components between them (modulo

the presence of 1). Then the petal is not equivalent to

1, otherwise k and k ′ would be in the same component.

We have g(u) ≃ g(αw ∩ x), with k ∈ g(α) and g(w ∩ x)
the eye containing k ′, with k ′ strictly inside g(w) and

g(x) containing at least one edge (this decomposition

of an eye always exists by Proposition 8).

•
•

Then we have g(v) ≃ g(z ∩ x) with g(αw) �v g(z) and
we conclude by the inductive hypothesis.

ii. Suppose the petal and the eye are not contiguous. If

there are only petals (of which at least one not equiv-

alent to 1) between them, we can move them by iso-

morphism before the petal containing k , and apply the

inductive hypothesis. Hence, suppose there is at least

one eye between the first and last prime component of

g(u). We get different cases depending on where k and

k ′ are respectively located in the petal and in the eye.

A. If k does not coincide with the input, then g(u) has
as a minor

k k ′

and by collapsing k and k ′ we would have that g(v)
has K4 as a minor, which is a contradiction.

B. k is the input and the eye containing k ′ has two par-

allel componentsw, z, for k ′ ∈ g(w) and g(w) with at

least one proper checkpoint. We have three cases:

•

•

• k ′ is a proper checkpoint of g(w). Then g(u) ≃

g(x(w1w2 ∩ z)) with k the input of x and with k ′

the output ofw1, for g(w) ≃ g(w1w2). By collapsing

k,k ′ we obtain g(v) ≃ g((x ∩ w1

◦)z ∩ w2) and we

derive in All⊤:

x(w1w2 ∩ z) ≥ (x ∩ w1

◦)((x ∩ w1

◦)
◦w2 ∩ z)

≥ (x ∩ w1

◦)z ∩ w2 (by (AM’))

• k ′ is strictly in a petal of g(w) with input a proper

checkpoint of g(w). Then g(u) has as a minor

k
k ′

and by collapsing k and k ′ we would have that g(v)
has K4 as a minor.

• k ′ is strictly in an eye of g(w) having as output or

input a proper checkpoint of g(w). Then g(u) has
as a minor one of the following graphs:

k

k ′

k

k ′

and, as in the previous case, by collapsing k and k ′

we obtain K4.
4. g(u) is an eye not reduced to an edge. Then g(u) ≃ g(u1) ∩

g(u2) with both g(u1) and g(u2) containing at least one edge.
If k,k ′ are in the same parallel component g(ui ), then we

can apply the inductive hypothesis. Otherwise, suppose that

they are respectively in g(u1) and g(u2). We can assume that

both g(u1) and g(u2) have at least one proper checkpoint,
since otherwise there would be a way to decompose g(u)
into parallel components such that k,k ′ are in the same one.

We have three cases:

•

•

•

• k,k ′ are respectively proper checkpoints of g(u1) and
g(u2). Then there arew,w ′,x ,x ′ s.t. g(u) ≃ g(ww ′ ∩ xx ′)
and g(v) ≃ g((w ∩ x)(w ′ ∩ x ′)), and we use Axiom (AD).

• k is strictly in the petal of a proper checkpoint of g(u) (or
symmetrically for k ′). Then g(u) has as a minor

k

k ′

and by collapsing k and k ′ we obtain K4.
• k is strictly in an eye of g(u1) having as output or input a

proper checkpoint of g(u1) (or symmetrically for k ′). Then
g(u) has as a minor one of the following graphs

k

k ′

k

k ′

and, as above, by collapsing k and k ′ we obtain K4.
5. It remains to consider the case when g(u) is an eye reduced

to an edge. Then g(u) ≃ g(a), g(v) ≃ g(a ∩ 1) and the result

follows by ⊢All⊤ u ≥ u ∩ 1. □

Combining Corollary 20 and Propositions 21, 22, 23, and 24, we

obtain that the relation⇀ is sound for allegories with top:

Theorem 25. If g(u)⇀ g(v) then ⊢All⊤ u ≥ v .

5.4 Completeness
For the converse of Theorem 25, we introduce an intermediate in-

equational presentation of allegories with top. This idea was already

sketched in [12]; we give details here for the sake of completeness.

The inequational theory All ≥⊤ is generated by the axioms (A1)-

(A8) in Figure 4, where u = v is a derived operator defined as u ≤ v
andv ≤ u, and the axioms in Figure 7. Atomic idempotency is an ax-

iom scheme parameterised by letters a∈A. The point of this system
is that its axioms all correspond to simple graph homomorphisms,

that can easily be seen to belong to the relation⇀:

Lemma 26. For all axioms u ≥ v of All ≥⊤ , we have g(u)⇀ g(v).
7
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u ≥ u ∩ v (left inequality)

u ≥ v ∩ u (right inequality)

1 ∩ 1 ≥ 1 (1 idempotency)

a ∩ a ≥ a (atomic idempotency, for all a ∈ A)

u·v ∩ x ·w ≥ (u ∩ x)·(v ∩ w) (separated semi-distributivity)

(u ∩ w ·x◦)·v ≥ u·(v ∩ x) ∩ w (separated modularity)

Figure 7. Inequational presentation of allegories with top (All ≥⊤ ).

Proof. Axioms (A1)-(A8) from Figure 4 as well as idempotency for 1

correspond to graph isomorphisms. Inequality axioms correspond

to injective homomorphisms, unless v is a test and u is not. In

such a case, e.g., for left inequality, we have g(u) �v g(u) ∩ 1 ↪→

g(u ∩ v). Atomic idempotency corresponds to �e . Separated semi-

distributivity and separated modularity correspond either to �v or

to ≃. E.g., for separated semi-distributivity we have ≃ if both u and

x are tests or bothv andw are tests, and we have �v otherwise. □

Note that unrestricted idempotency, semi-distributivity and modu-

lar identity (Axioms (A0), (AD) and (AM) in Figure 4) could not be

handled in such a way since they correspond to homomorphisms

potentially equating many vertices and edges. That they are never-

theless captured by the relation⇀ is obtained only a posteriori.

By further showing that⇀ is ‘closed under contexts’, we deduce

that the system All ≥⊤ is sound for⇀.

Lemma 27. For all term-contexts C , we have

1. if g(u) � g(v) then g(C[u]) � g(C[v]);
2. if g(u) ↪→ g(v) then g(C[u]) ↪→ g(C[v]).

Proof. By induction on C . For the first item, when C = [·] ∩ w , if

the merged vertices are the input and output of u and ifw is a test

then we have g(C[u]) ≃ g(C[v]), which is a special case of �. □

Theorem 28. If ⊢All≥⊤
u ≥ v then g(u)⇀ g(v).

It remains to show that the inequational presentation All ≥⊤ is com-

plete for allegories with top. We start by proving that (unrestricted)

idempotency is derivable in All ≥⊤ :

Lemma 29. For all terms u, we have ⊢All≥⊤
u ∩ u = u.

Proof. We prove ⊢All≥⊤
u ∩ u ≥ u by induction on u. (The converse

inequality trivially holds by the inequality axioms). The base cases

are given by the axioms of All ≥⊤ . For series composition we have

⊢All≥⊤
uv ∩ uv ≥ (u ∩ u)(v ∩ v) by separated semi-distributivity,

and then we conclude by the inductive hypothesis. □

Theorem 30. If ⊢All⊤ u ≥ v then ⊢All≥⊤
u ≥ v

Proof. It suffices to derive modularity and semi-distributivity from

their separated versions; this follows from Lemma 29. □

Combining Theorems 25, 28, and 30 we finally obtain Theorem 16.

6 Decidability
We now show that the relation⇀ is decidable, and that there is a

notion of normal form for allegories with top. The key observation

is that surjective homomorphisms can always be applied first.

Lemma 31. We have the following inclusion: ↪→� ⊆ � ↪→.

Proof. Let i : G ↪→ G ′
and h : G ′ � H . The graph hi(G) is K4-free,

being a subgraph of H , and the function д : G → hi(G), defined as

hi , is a surjective homomorphism collapsing at most two vertices.

Indeed, function д is trivially surjective, and either the vertices

collapsed by h are both in i(G), in which case д collapses them, or at

least one of the collapsed vertices is not in i(G), which implies that

д is an isomorphism. Therefore, we have G � hi(G). Since hi(G)
injects in H , we conclude that G �↪→ H . □

As a consequence, we obtain the following characterisation, which

gives decidability:

Proposition 32. We have G ⇀ H iff G �∗↪→ H .

Corollary 33. The relation⇀ is decidable.

Proof. It suffices to decide whether G �∗↪→ H . We have that the

sets {G ′ | G �∗ G ′} and {H ′ | H ′ ↪→ H } are finite and computable

(up to isomorphism); it suffices to test whether they intersect. □

One can actually get a non-deterministic polynomial algorithm:

guess a sequence G0, . . . ,Gn of graphs obtained from G = G0 by

merging two vertices at a time, check that these graphs belong

to TW2, compute the graph H ′
obtained from Gn by merging all

parallel edges with the same label (so that Gn �∗
e H ′

) and check

that H ′ ↪→ H . The latter test can be done in polynomial time once

Gn and thus H ′
are known to have bounded treewidth [6, 11, 14].

Corollary 34. The equational theory of All⊤ is in NP.

7 Normal forms
When studying homomorphism equivalence on graphs, one often

uses the notion of core, those graphs where every endomorphism is

an isomorphism. Every graph has a core, which is a minimal graph

in its equivalence class modulo homomorphism equivalence [17].

One defines a similar notion here for allegories, using our restricted

form of homomorphism equivalence (⇌).

The normal form of a graphG , written nf(G) is a graph which is

minimal w.r.t. the number of vertices and edges in its equivalence

class modulo⇌. Normal forms are unique up to isomorphism:

Proposition 35. We have G ⇌ H iff nf(G) ≃ nf(H ).

Define the following (computable) relation:

G { H ≜ G �∗ H ↪→ G

Proposition 36. The relation { is a confluent and terminating

preorder and for all graphs G we have G { nf(G).

Proof. That { is a preorder follows from �∗
and ↪→ being pre-

orders. Termination follows from the observation that the size of a

graph decreases along � (one must of course forbid trivial steps).

Confluence is proved by induction on the sum of the sizes of the

considered graphs, using Proposition 32 (see Appendix C). □
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Gutierrez proves a similar result in the context of finite categories

with an epi-mono factorisation system [16, Chapter 4.2]. One cannot

reuse his result directly: the injective (resp. surjective) homomor-

phisms we use here are not exactly the mono (resp. epi) morphisms

of the natural category associated to the relation⇀.

To illustrate this rewriting system, consider the four graphs

depicted below. We highlight pairs of vertices that can potentially

be merged by representing them with the same symbol, using the

same convention as in Figure 1 for labels and orientation of edges.

G4 is the normal form of the four graphs, and there are three ways

of reaching it from G1: directly, or by going through G2 or G3.

= G1 G2 =

= G3 G4 =

{ {

{

{

In this example, every attempt to collapse two vertices results in a

graph in TW2. This is not always the case, as shown below.

H1 H2 H3� �

H3 is the normal form of those three graphs. The unique homomor-

phism fromH1 toH3 can be factorised through the graphH2 ∈ TW2

obtained by first merging the vertices depicted with triangles. Since

H3 ↪→ H1, we deduce H1 { H3. We also have H2 { H3, but

not H1 { H2, since H2 does not embed in H1. If instead we try

to collapse first the vertices depicted with black circles in H1, we

obtain a graph that does not belong to TW2.

8 Conservativity arguments
We now show that the results presented in the previous sections

extend to pure allegories (without top). We do so by proving that

All⊤ is a conservative extension of All , i.e., that for all terms u,v
in the syntax of allegories (i.e., for all ⊤-free terms), ⊢All⊤ u = v
if and only if ⊢All u = v . Consequently, the equational theory of

allegories is decidable and Theorem 16 also holds for All .
We prove conservativity by showing that every allegory em-

beds into an allegory with top (Proposition 44). It happens that we

can factorise this construction to show in passing how to handle

isomorphisms of connected K4-free graphs. This is what we do first.
Proofs in this section are mostly equational and often involve

many cases. We present sketches to give intuitions; more details

can been found in Appendix D; full proofs formalised in Coq can

be browsed online [21].

8.1 Isomorphisms of connected graphs in TW2

As explained in [7], connected K4-free graphs correspond to terms

over the signature Σ
dom

, where ⊤ is no longer present, and dom()

becomes a primitive operation. It was however left open whether

isomorphisms of such graphs could be finitely axiomatised over

this syntax. We answer this question by the affirmative.

Definition 37. A 2pdom-algebra is a Σ
dom

-algebra satisfying the

axioms (A1-A8) from Figure 4 except (A3), and the axioms in Fig-

ure 8. We write ⊢
2pdom u = v when two terms u and v are congru-

ent modulo those axioms.

1 ∩ 1 = 1 (A9)

dom(u ∩ v) = 1 ∩ u·v◦ (A10)

dom(u·v) = dom(u·dom(v)) (A13)

dom(u)·(v ∩ w) = dom(u)·v ∩ w (A14)

Figure 8. Axioms for 2pdom-algebras (with (A1,A2,A4-A8)).

Graphs form a 2pdom-algebra: the axioms are sound. To prove

that they are complete for graph isomorphisms, we rely on Theo-

rem 18 and we prove that every 2pdom algebra can be embedded

in a 2p algebra. Combined with the other results from [7], this also

yields that connected K4-free graphs form the free 2pdom-algebra.

We fix a Σ
dom

-algebra ⟨X , ·,∩, _◦, dom(_), 1⟩ in the remainder

of this section. We write T for the set of tests in X . We construct

the following Σ⊤-algebra:

Definition 38. Let X be the set X ⊎T 2
. For u ∈ X , we write u for

u as an element of X . For α , β ∈ T , we write α ⋄β for the pair ⟨α , β⟩

as an element of X . We turn X into a Σ⊤-algebra by setting:

u · v ≜ u · v u ∩ v ≜ u ∩ v

(α ⋄ β) · (γ ⋄ δ ) ≜ α ⋄ δ (α ⋄ β) ∩ (γ ⋄ δ ) ≜ αγ ⋄ βδ

(α ⋄ β) · v ≜ α ⋄ dom(v◦β) (α ⋄ β) ∩ v ≜ αvβ

u · (γ ⋄ δ ) ≜ dom(uγ ) ⋄ δ u ∩ (γ ⋄ δ ) ≜ γuδ

(α ⋄ β)◦ ≜ β ⋄ α 1 ≜ 1

u◦ ≜ u◦ ⊤ ≜ 1 ⋄ 1

When X is the algebra of connected graphs, X intuitively repre-

sent graphs where all vertices are connected either to the input or

to the output: an element u denotes a connected graph, while an

element α ⋄ β denotes the disconnected graph α⊤β .
When composing two ‘disconnected elements’ α ⋄ β and γ ⋄ δ

in series, we throw away a component that should intuitively be

created and which is not connected to the input or to the output:

βγ . This means that X cannot be the free 2p-algebra: whatever the

starting 2pdom-algebra X , X always satisfies the law ⊤u⊤ = ⊤.

Note however that the function mapping an element u ∈ X to u

is an injective Σ-homomorphism from X to X .

Lemma 39. In 2pdom, an element u is a test iff dom(u) = u.

Proposition 40. If X is a 2pdom-algebra then X is a 2p-algebra.

Proof. We must show that X satisfies all the 2p axioms (Figure 6).

Consider the associativity of product (A4). Each of the three vari-

ables occurring in this axiom can be either in X or inT 2
. The proof

is trivial when all elements are in X . We show two relevant cases.

((α ⋄ β) · u) · (γ ⋄ δ ) = (α ⋄ dom(u◦β)) · (γ ⋄ δ )

= α ⋄ δ

(α ⋄ β) · (u · (γ ⋄ δ )) = (α ⋄ β) · (dom(uγ ) ⋄ δ )

((α ⋄ β) · u) · v = (α ⋄ dom(u◦β)) · v

= α ⋄ dom(v◦dom(u◦β))

= α ⋄ dom(v◦u◦β) (by (A13))

(α ⋄ β) · (u · v) = (α ⋄ β) · uv □

9
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Corollary 41. For all Σ
dom

-terms u,v we have

⊢
2pdom u = v iff ⊢2p u = v iff g(u) ≃ g(v) .

8.2 Pure allegories
We now prove that All⊤ is a conservative extension of All , using
the same construction as in Definition 38.

A difficulty here is that we need a domain operation in order

to use this construction, and this operation is not in the syntax of

allegories, nor derivable due to the absence of ⊤. Fortunately, we

can use the alternative operation dom
′(·) (defined by dom

′(u) ≜
1 ∩ uu◦). Indeed, these terms are equivalent in allegories with ⊤

(Equation (2) from Section 4).

The following lemma makes it possible to reuse Proposition 40

in the proof of Proposition 44 below.

Lemma42. If ⟨X , ·,∩, _◦, 1⟩ is an allegory, then ⟨X , ·,∩, _◦, dom′(·), 1⟩

is a 2pdom-algebra.

Proof. It suffices to show that the axioms in Figure 8 are deriv-

able in All . (A9) is an instance of idempotency; (A10) and (A13)

have been proved in Proposition 14; (A14) follows from law (4) in

Proposition 14 since dom
′(u) is by definition a test in All . □

Lemma 43. Let X be an allegory; the partial order derived on X is

characterised in terms of the partial order on X as follows.

u ≥ v iff u ≥ v
α ⋄ β ≥ γ ⋄ δ iff α ≥ γ and β ≥ δ
α ⋄ β ≥ v iff αvβ ≥ v
u ≥ γ ⋄ δ never holds

Proposition 44. If X is an allegory then X is an allegory with top.

Proof. By Lemma 42 and Proposition 40, it suffices to prove idempo-

tency, semi-distributivity, and modularity. We show two interesting

cases for modularity.

• ((α ⋄ β) ∩ wv◦)v ≥ (α ⋄ β)v ∩ w : we have

((α ⋄ β) ∩ wv◦)v = αwv◦βv

(α ⋄ β)v ∩ w = αwdom
′(v◦β), and

αwv◦βv ≥ αw(1 ∩ v◦βv) = αw(1 ∩ v◦β◦βv) (by (6))

= αw(dom′(v◦β))

• (u ∩ w(α ⋄ β)◦)(α ⋄ β) ≥ u(α ⋄ β) ∩ w : we have

(u ∩ w(α ⋄ β)◦)(α ⋄ β) = dom
′(dom′(wβ◦)uα◦α) ⋄ β

u(α ⋄ β) ∩ w = dom
′(uα)wβ

We use Lemma 43 and prove

dom
′(dom′(wβ◦)uα◦α)dom′(uα)wββ

= dom
′(uα)dom′(wβ)wβ (by (7), (5), (6))

≥ dom
′(uα)wβ

where the last step follows by ⊢All dom
′(u)u ≥ u:

dom
′(u)u = (1 ∩ uu◦)u ≥ 1u ∩ u = u (by (AM)) □

Corollary 45. For all Σ-terms u,v we have ⊢All u = v if and only

if ⊢All⊤ u = v .

Decidability of allegories follows, as well as the expected graph-

theoretical characterisation:

Corollary 46. We have ⊢All u = v if and only if g(u)⇌ g(v).

9 Future work
We proved decidability (in NP) of the equational theories of alle-

gories and allegories with top, and we designed a graph rewriting

system making it possible to compute normal forms. The precise

complexity of these equational theories remains open.

There is a simple polynomial algorithm to find whether there

is a (arbitrary) homomorphism from g(u) to g(v): fixG = g(v) and
consider the following formula over subtermsw of u and pairs j,k
of vertices in G:

ϕ(w, j,k) ≜ there is a homomorphism from g(w) to G[j,k]

Consider the truth table of this formula, i.e., the table indexed by

subterms of u and pairs of vertices in G, whose cells contain true

or false depending on the validity of the formula ϕ. This table can
be computed recursively for all arguments, in polynomial time

(dynamic programming). However, it is not clear whether this al-

gorithm could be adapted to compute the restricted relation ⇀

efficiently.
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A Example in Figure 1
The homomorphism from the first to the second graph in Figure 1

corresponds to an inequality provable in All , i.e., it is of the form
⇀. We show that indeed the homomorphism can be decomposed

as a sequence of homomorphisms on graphs in TW2 merging two

vertices at a time. Among the vertices having the same shape and

colour in the first graph

(G1)

the only two vertices that we can collapse are the ones depicted

with a black circle. Otherwise, we would obtain a graph whose

strong skeleton has K4 as a minor. If we do so, we obtain

Then we can merge in sequence the following pairs of vertices:

the two green squares on the left, the two blue pentagons on the

left, the two green squares on the right, the two blue pentagons

on the right. At each step, the reached graph is a subgraph of the

previous one, and thus is in TW2 (it actually does not matter the

order in which we merge these pairs). After applying these four

homomorphisms, we have

We can now collapse the two remaining green squares and obtain

a graph in TW2 (symmetrically, we could have first collapsed the

blue pentagons)

Finally, we collapse the green squares and obtain the target graph

(G2)

This concludes the proof that G1 ⇀ G2.

By contrast, the third graph in Figure 1

(G3)

has a homomorphism to G2, but the graphs are not related by⇀.

Since⇀ = �∗↪→ (Proposition 32), in order to prove G3 ⇀̸ G2 it

suffices to note that whenever we collapse two nodes with the same

shape in G3 we obtain a graph not in TW2; the following one for

instance.

We conclude that G3 ⇀̸ G2: there is no injection from G3 to G2.

B Leaving/entering TW2 by merging vertices
LetG be the graph depicted below, and letG ′

be the graph obtained

by collapsing the nodes connected by the dotted line.

a a

a a a a

The function д : G → G ′
that assigns the vertices connected by the

dotted line to the merged node and that is injective on the other

nodes is a surjective homomorphism equating only two vertices.

Graph G in TW2, but G
′
is not.

Let H be the following graph

a a

a a

a

and letH ′
be the graph obtained by collapsing the nodes connected

by the dotted line. As in the previous example, there is a surjective

homomorphism h : H → H ′
equating only two vertices. In this

case, graph H is not in TW2, but H
′
is.

C Confluence of the relation{
We prove confluence of relation { (Proposition 36). The proof

relies on the following lemma.

Lemma 47. Let G1,G2 be graphs in TW2. If G1 ⇌ G2 then there is

an H such that G1 { H and G2 { H .

Proof. We prove the statement by induction on sz(G1) + sz(G2),

where sz(G) is the sum of the number of nodes and edges in G. By
the definition ofG1 ⇌ G2 we have that there existG

′
1
,G ′

2
such that

G1 �∗ G ′
1
↪→ G2 �∗ G ′

2
↪→ G1

ByG ′
1
↪→ G2 �∗ G ′

2
we derive, by Proposition 32, that there is aG3

such that G ′
1

�∗ G3 ↪→ G ′
2
. Hence, G1 { G3, which also implies

sz(G1) ≥ sz(G3). If sz(G1) > sz(G3), by G3 ⇌ G2 we can apply

the inductive hypothesis and derive that there is an H such that

G3 { H and G2 { H . Since{ is transitive, we have G1 { H .

Otherwise, suppose sz(G1) = sz(G3). ThenG1 ≃ G ′
1
≃ G3, which

implies G1 ↪→ G2. Hence, G2 { G ′
2
and either sz(G2) > sz(G ′

2
), in

which case we conclude by the inductive hypothesis and by the

transitivity of{, or sz(G2) = sz(G
′
2
), in which case G1 ≃ G2. □

We deduce confluence of { as follows: if G { G1 and G { G2

then G1 ⇌ G2, and by Lemma 47 we have that there is an H such

that G1 { H and G2 { H .

D Additional proofs for Section 8
Proof of Lemma 39. If u = 1 ∩ u then we have

dom(u) = dom(u ∩ 1) = 1 ∩ u1◦ = 1 ∩ u = u (by (A13))

Conversely, we have

dom(u) = dom(u)(1 ∩ 1)

= dom(u)1 ∩ 1 (by (A14))

= 1 ∩ dom(u) □

11
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Proof of Lemma 43. The first item follows from the definition. We

have

α ⋄ β ≥ γ ⋄ δ iff α ⋄ β ∩ γ ⋄ δ = γ ⋄ δ

iff αγ ⋄ βδ = γ ⋄ δ

iff αγ = γ and βδ = δ

iff α ∩ γ = γ and β ∩ δ = δ (by (5))

iff α ≥ γ and β ≥ δ

α ⋄ β ≥ v iff α ⋄ β ∩ v = v

iff αvβ ∩ v = v

iff αvβ ∩ v = v

iff αvβ ≥ v

Finally, u ≥ γ ⋄ δ holds iff γuδ = γ ⋄ δ , which never holds. □

E Problems with the approach in [15]
We list the difficulties we encountered when trying to follow the

strategy proposed in [15].

1. [15, Theorem 1] claims that a certain axiomatisation over the

signature Σ is sound and complete for graph isomorphisms.

No proof is given and we do not know how to obtain this

result. We needed a full paper [7] to prove a similar claim

for the signature Σ⊤ (Theorem 18), and the conservativity

technique we used in Section 8.1 to get one for the signature

Σ
dom

. It is not clear whether this technique could scale to

prove [15, Theorem 1] using the result in [7]: our construc-

tion requires a domain operator.

2. It is not clear how the conditions of [15, Definition 6] should

be applied to graphs that are tests.

3. [15, Theorem 2] (soundness and completeness of a graph-

theoretical notion w.r.t allegories) comes with a five-line

proof sketch. We do not know how to complete this sketch

for the following reasons:

• For the ‘only if’ direction, it is not clear that the notion of

walk in a graph is closed under contexts (i.e., whether a

counter-part to Lemma 27 holds).

• The ‘if’ part relies on [15, Proposition 1], which is an-

nounced to hold by induction. We do not see how to deal

with the case of composition in this induction: the induc-

tion hypothesis does not seem to be strong enough.

4. [15, Lemma 2] is used to define a notion of normal forms,

which should then lead to decidability. It is however not

clear that those normal forms are computable. While the

set mentioned in this Lemma is indeed finite (it consists of

subgraphs of a given graph), one has to consider infinitely

many sequences (the arrows of the category G(X )) in order

to decide membership in this set.

12
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