Critical percolation in the slow cooling of the bi-dimensional ferromagnetic Ising model

Abstract : We study, with numerical methods, the fractal properties of the domain walls found in slow quenches of the kinetic Ising model to its critical temperature. We show that the equilibrium interfaces in the disordered phase have critical percolation fractal dimension over a wide range of length scales. We confirm that the system falls out of equilibrium at a temperature that depends on the cooling rate as predicted by the Kibble–Zurek argument and we prove that the dynamic growing length once the cooling reaches the critical point satisfies the same scaling. We determine the dynamic scaling properties of the interface winding angle variance and we show that the crossover between critical Ising and critical percolation properties is determined by the growing length reached when the system fell out of equilibrium.
Type de document :
Article dans une revue
J.Stat.Mech., 2018, 1801 (1), pp.013201. 〈10.1088/1742-5468/aa9bb4〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01703702
Contributeur : Inspire Hep <>
Soumis le : jeudi 8 février 2018 - 03:11:24
Dernière modification le : samedi 10 février 2018 - 01:18:12

Identifiants

Collections

Citation

Hugo Ricateau, Leticia Cugliandolo, Marco Picco. Critical percolation in the slow cooling of the bi-dimensional ferromagnetic Ising model. J.Stat.Mech., 2018, 1801 (1), pp.013201. 〈10.1088/1742-5468/aa9bb4〉. 〈hal-01703702〉

Partager

Métriques

Consultations de la notice

23