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Let G be the reduced Gröbner basis of a zero-dimensional ideal I ⊆ 𝕂[X, Y] of
bivariate polynomials over an effective field 𝕂. Modulo suitable regularity assump-
tions on G and suitable precomputations as a function of G, we prove the existence
of a quasi-optimal algorithm for the reduction of polynomials in 𝕂[X, Y] with respect
to G. Applications include fast algorithms for multiplication in the quotient algebra
𝔸=𝕂[X, Y]/I and for conversions due to changes of the term ordering.

1. INTRODUCTION

Let 𝕂 be an effective field and consider an algebra 𝔸=𝕂[X1,…,Xr]/ I where I is a finitely
generated ideal. For actual computations in 𝔸, we have three main tasks:

T1. define a non-ambiguous representation for elements in 𝔸;

T2. design a multiplication algorithm for 𝔸;

T3. show how to convert between different representations for elements in 𝔸.

Fast polynomial arithmetic based on FFT-multiplication allows for a quasi-optimal solu-
tion in the univariate case. However, reduction modulo an ideal of multivariate polyno-
mials is non-trivial.

The most common approach for computations modulo ideals of polynomials is based
on Gröbner bases. This immediately solves the first task, using the fact that any poly-
nomial admits a unique normal form modulo a given Gröbner basis [4]. The second
task is solved by reducing the product of two polynomials modulo the Gröbner basis.
Finally, given a Gröbner basis with respect to a first term ordering, one may use the
FGLM algorithm [9] to compute a reduced Gröbner basis with respect to a second term
ordering; algorithms for the corresponding conversions are obtained as a by-product.

There is an abundant literature on efficient algorithms for the computation of
Gröbner bases; see for example [7, 8, 9] and references therein. Although the worst
case complexity is known to be very bad [23], polynomial complexity bounds (for the
number of operations in 𝕂 in terms of the expected output size) exist for many important
cases of interest. For example, for fixed r, and using naive linear algebra on Macaulay
matrices, one may show [22, 14, 15] that a sufficiently regular system of r equations of
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degree 𝛿 can be solved in time O(𝛿𝜔r). Here 𝜔 < 2.3728639 is the exponent of matrix
multiplication [11]. For such a system, the Bezout bound 𝛿 r for the number D of solu-
tions is reached, so the running time O(D𝜔) is polynomial in the expected output size D.
The implicit dependency of this bound on r can be improved by using the “matrix-F5”
variant [2] of Faugère's F5 algorithm [8].

The F5 algorithm and all other currently known fast algorithms for Gröbner basis
computations rely on linear algebra. At this point, one may wonder whether there is an
intrinsic reason for this fact, or whether fast FFT-based arithmetic might be used to accel-
erate Gröbner basis computations. Instead of directly addressing this difficult problem,
one may investigate whether such accelerations are possible for simpler problems in this
area. One good candidate for such a problem is the reduction of a polynomial P with
respect to a fixed reduced Gröbner basis G = (G0, …, Gn). In that case, the algebra 𝔸 is
given once and for all, so it becomes a matter of precomputation to obtain G and any
other data that could be useful for efficient reductions modulo G.

One step in this direction was made in [20]. Using relaxed multiplication [19], it was
shown that the reduction of P with respect to G can be computed in quasi-linear time in
terms of the size of the equation P = Q0 G0 + ⋯ + Qn Gn + R. However, even in the case
of bivariate polynomials, this is not necessarily optimal. In order to see the reason for
this, consider 𝔸=𝕂[X,Y]/I, where I is the ideal generated by two generic polynomials
of total degree 𝛿. Then dim𝕂 𝔸 = 𝛿 2, but the Gröbner basis for I with respect the usual
total degree ordering contains 𝛿+1 polynomials with Θ(𝛿 2) coefficients. This means that
we need Θ(𝛿 3) space, merely to write down G. One crucial prerequisite for even faster
algorithms is therefore to design a terser representation for Gröbner bases.

The main aim of this paper is to show that it is actually possible to perform polyno-
mial reductions in quasi-linear time in some very specific cases. For simplicity, we will
restrict our attention to bivariate polynomials and to ideals that satisfy suitable regu-
larity conditions. Because of all these precautions, we do not expect our algorithms to
be very useful for practical purposes, but rather regard our work as a “proof of concept”
that quasi-linear complexities are not deemed impossible to achieve in this context.

More precisely, with 𝔸 = 𝕂[X, Y] / I as above, our main results are as follows.
We first introduce the concept of a “vanilla Gröbner basis” that captures the regularity
assumptions that are needed for our algorithms. Modulo potentially expensive precom-
putations, we then present a more compact description of such a Gröbner basis G that
holds all necessary information in Õ(𝛿 2) space. We next give an algorithm for reducing
a bivariate polynomial of total degree d with respect to G in quasi-linear time Õ(d2+𝛿 2).
In particular, multiplication in 𝔸 can be done in time Õ(𝛿 2), which is intrinsically quasi-
optimal. We also present an algorithm to convert between normal forms with respect
to vanilla Gröbner bases for different monomial orderings. This algorithm is based on
a Gröbner walk [6] with at most O(log 𝛿) intermediate monomial orderings; its com-
plexity Õ(𝛿 2) is again quasi-optimal.

It is instructive to compare these complexity bounds with the complexities of naive
algorithms that are commonly implemented in computer algebra systems. For multipli-
cations in 𝔸, one may precompute the O(𝛿 2) ×O(𝛿 2) matrix that allows us to obtain the
reduction of a product of two normal forms using a matrix-vector product of cost O(𝛿 4).
Since the product of two normal forms can be computed in quasi-linear time Õ(𝛿 2), it
follows that multiplications in 𝔸 take time O(𝛿 4). Similarly, changes of monomial order-
ings lead to 𝛿 2 × 𝛿 2-matrices for representing the corresponding base changes. Naive
conversions can then be performed in time O(𝛿 4).
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As a final remark, we notice that geometric methods provide an alternative to
Gröbner basis techniques for the resolution of polynomial systems and computations
in quotient algebras 𝔸. Examples include the Kronecker solver [16] and Rouillier's
RUR [25]. Such algorithms are often faster from a complexity point of view, but essen-
tially only work for bases that correspond to lexicographical orders in the Gröbner basis
setting. A similar remark applies to the elimination method by Auzinger-Stetter [1]

Notations and terminology. We assume that the reader is familiar with the theory of
Gröbner basis and refer to [12, 3] for basic expositions. We denote the set of monomials
in r variables by ℳ ≔ X1

ℕ ⋯ Xr
ℕ = {X1

i1 ⋯ Xr
ir: i1, …, ir ∈ ℕ}. A monomial ordering ≺ on ℳ is

a total ordering that is compatible with multiplication. Given a polynomial in r variables
P = ∑M∈ℳ PM M ∈ 𝕂[X1, …, Xr], its support supp P is the set of monomials M ∈ ℳ with
PM ≠ 0. If P ≠ 0, then supp P admits a maximal element for ≺ that is called its leading
monomial and that we denote by lm(P). If M ∈ supp P, then we say that PM M is a term
in P. Given a tuple A = (A0, …, An) of polynomials in 𝕂[X1, …, Xr], we say that P is
reduced with respect to A if suppP contains no monomial that is a multiple of the leading
monomial of one of the Ai.

Unless stated otherwise, we will always work in the bivariate setting when r = 2,
and use X and Y as our main indeterminates instead of X1 and X2. In particular, ℳ ≔
Xℕ Yℕ={Xa Yb :a,b∈ℕ}.

Acknowledgements. We thank the anonymous referees for their detailed comments
and suggestions. We are aware that an example would be helpful for the intuition,
unfortunately we were not able to give one because of the space constraints. Moreover,
the reader should notice that a meaningful example cannot have a very small degree
(say, at least 10), and that our setting requires non-structured dense polynomials, so that
writing them down explicitly would hardly be readable.

2. VANILLA GRÖBNER BASES

Consider a zero-dimensional ideal I of 𝕂[X, Y] with Gröbner basis G = (G0, …, Gn) with
respect to a given monomial ordering ≺. We define the degree D of I to be the dimension
of the quotient 𝕂[X,Y]/I as a 𝕂-vector space. Our algorithms will only work for a spe-
cial class of Gröbner bases with suitable regularity properties. For a generic ideal in the
space of all zero-dimensional ideals with fixed degree D, we expect that these properties
are always satisfied, although we have not proved this yet. For the time being, we define
a vanilla Gröbner basis to be the Gröbner basis of an ideal of this type.

2.1. Monomial orderings

General monomial orderings that are suitable for Gröbner basis computations have been
classified in [24]. For the purpose of this paper, it is convenient to restrict our attention
to a specific type of bivariate monomial ordering that will allow us to explicitly describe
certain Gröbner stairs and to explicitly compute certain dimensions.

DEFINITION 1. Let k∈ℕ∖{0}. We define the k-degree of a monomial Xa Yb with a,b∈ℕ by

degk(Xa Yb)= a+ kb.
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Figure 1. A vanilla Gröbner stairs with respect to ≺4 (D=30, n=4, q=1, r =2).

We define the k-order to be the monomial order ≺k such that

Xa Yb ≺k XuYv ⇔{{{{{{{{{{{{{{{{{{{{{{{{ either a+ kb<u+kv
or a+ kb=u+kv and a<u

The k-order ≺k is also known as the weighed degree lexicographic order for the
weight vector (1,k). Similarly, ≺1 corresponds to the usual total degree order.

2.2. Vanilla Gröbner stairs
Consider a zero-dimensional ideal I of 𝕂[X, Y] of degree D with Gröbner basis G =
(G0, …, Gn) with respect to ≺k. Let 𝒩G be the set of monomials Xa Yb that are in normal
form with respect to G. In other words, 𝒩G corresponds to the set of D monomials
“under the Gröbner stairs”. For a sufficiently generic ideal of degree D, we expect 𝒩G
to consist exactly of the smallest D elements of ℳ with respect to ≺k.

DEFINITION 2. We say that the leading monomials of G form a vanilla Gröbner stairs if 𝒩G
coincides with the set ℳk,D of the D smallest elements of ℳ for ≺k.

Figure 1 shows an example of a Gröbner basis whose leading monomials form
a vanilla Gröbner stairs. We observe that the stair admits almost constant slope k. In
fact, the set ℳk,D can be described explicitly:

PROPOSITION 3. Let I be an ideal of degree D with Gröbner basis G for ≺k with k ⩾ 2. Assume
that the leading monomials of G form a vanilla Gröbner stairs and define

n ≔ ⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈
8D/k+1� −1

2 ⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉,

u ≔ D− k n (n−1)
2 ,

q ≔ uquon,
r ≔ u remn.

Then G has n+1 elements G0,…,Gn and for 0⩽ i⩽n, the leading monomial of Gi (denoted by Mi)
can be expressed in terms of n,k,q, r. Assuming the basis elements are ordered such that the Mi's
have increasing degree in the variable X, we have:

• M0=Yn.

• For all i∈{1,…, r}, Mi =Xq+k(i−1)+1 Yn−i.
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• For all i∈{r+1,…,n}, Mi =Xq+k(i−1) Yn−i.

Proof. With this expression of Mi, we first notice that this sequence M0,…,Mn can indeed
be the leading monomials for a reduced Gröbner basis, that is Mi does not divide Mj for
any i ≠ j. This is clear for (i, j) ≠ (1, 0), so let us prove that M1 does not divide M0. We
have D=kn′ (n′+1)/2 with n′≔� 8D/k+1� −1�/2, so that

kn (n−1)
2 <D⩽ kn(n+1)

2 .

In particular, this implies u>0, whence q>0 or r>0. Remains to prove that the sequence
M0, …, Mn form a vanilla Gröbner stairs (for a degree D ideal) as claimed. Indeed, there
are D monomials under the stairs M0,…,Mn (i.e. in normal form w.r.t. G), and we notice
that a monomial M is under the stairs if and only if M≺k Mr+1. □

COROLLARY 4. Let G = (G0, …, Gn) be as above, and let Mi be the leading monomial of Gi for
0⩽ i⩽n. With q, r as in Proposition 3, the k-degree of Mi is given by

degk Mi ={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{

kn if i=0
k(n−1)+q+1 if 0< i⩽r
k(n−1)+q if r< i⩽n

.

In particular, for all i∈{1,…,n}, we have

degk Mi ⩽degk Mi−1, and degk M1−1⩽degk Mi ⩽degk M1.

Remark 5. The results of Proposition 3 and Corollary 4 remain valid for ≺1 with some
precautions: if r⩾1, one has to leave out Gr since Mr is divisible by Mr+1 with the given
formulas. Then G consists of n elements G0,…,Gr−1,Gr+1,…,Gn.

2.3. Existence of relations
The main reduction algorithm in this paper relies on a rewriting strategy that allows us
to rewrite general linear combinations A0 G0+⋯+An Gn of elements in the Gröbner basis
as linear combinations of fewer elements. In particular, it should be possible to express
each Gi as a linear combination of elements in a suitable subset Σ of {G0,…,Gn} (this
subset then generates the ideal I), with degrees that can be controlled.

It turns out that such a subset S may need to contain three elements at least, but
that Σ ≔ {G0, G1, Gn} generically works. In order to control the degrees in the linear
combinations, we may also consider intermediate sets between {G0, G1, Gn} and the full
set {G0, …, Gn}, such as Σℓ ≔ {G0, G1, Gℓ, G2ℓ, …, G⌊n/ℓ⌋ℓ, Gn} for various integer “step
lengths” ℓ⩾2. This leads us to the following definition:

DEFINITION 6. Let ℓ⩾1 be an integer and consider the set of indices

Iℓ≔{0,1,n}∪{ℓ,2 ℓ,…, ⌊n/ℓ⌋ ℓ}. (1)

We say that a family of polynomials P0, …, Pn ∈ 𝕂[X, Y] is retractive for step length ℓ and
k-degree 𝛿 if for all i∈{0,…,n} we can write

Pi = �
j∈Iℓ

Aj Pj
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for some (Aj)j∈Iℓ ∈𝕂[X,Y]Iℓ with degk Aj ⩽𝛿.

Consider a Gröbner basis G0, …, Gn as in Proposition 3 and a linear combination
C= ∑j∈Iℓ

Aj Gj with degk Aj ⩽ 𝛿 for all j ∈ Iℓ. Making rough estimates, the number
of monomials in ℳ of k-degree ⩽d is d2 / (2 k), whence the number of monomials of
k-degree between d and d + 𝛿 is bounded by (d + 𝛿) 𝛿 / k. The set 𝒩G = ℳk,D roughly
corresponds to the set of monomials of k-degree ⩽n k, whence the support of C con-
tains at most (nk+𝛿)𝛿/k monomials that are not in 𝒩G. Notice that such a combination
C is uniquely determined by its terms not in 𝒩G: if all the terms of C − C′ ∈ I are in 𝒩G,
then C−C′=0 by definition of a Gröbner basis.

On the other hand the polynomials Aj with j ∈ Iℓ are determined by approximately
(n/ℓ)𝛿 2/(2k) coefficients. As soon as 𝛿 >2k ℓ, it follows that

(n/ℓ)𝛿 2/(2k)>(nk+𝛿)𝛿/k,

and it becomes likely that non-trivial relations of the type Gi =∑j∈Iℓ
Aj Gj indeed exist. A

refined analysis and practical experiments show that the precise threshold is located at
𝛿 ⩾k (2ℓ−1)−1, although we have no formal proof of this empirical fact.

2.4. Vanilla Gröbner bases
We are now in a position to describe the class of Gröbner bases with enough regularity
for our fast reduction algorithm to work.

DEFINITION 7. Let G = (G0, …, Gn) be the reduced Gröbner basis for an ideal I ⊂ 𝕂[X, Y] with
respect to ≺k. We say that G is a vanilla Gröbner basis if

a) the leading monomials of G form a vanilla Gröbner stairs;

b) the family G0,…,Gn is retractive for step length ℓ and k-degree k (2 ℓ−1)−1, for ℓ=2,…,n.

It appears that reduced Gröbner bases of sufficiently generic ideals are always of
vanilla type, although we have not been able to prove this so far. We even do not know
whether vanilla Gröbner bases exist for arbitrary fields 𝕂 (with sufficiently many ele-
ments) and degrees D. Nevertheless, practical computer experiments suggest that suffi-
ciently random ideals of degree D admit Gröbner bases of this kind. More precisely,
we have checked this (up to degrees in the range of a few hundreds) for ideals that are
generated as follows by two random polynomials:

• for I = (A(X), Y − B(X)), where A and B are random univariate polynomials of
degrees D and D−1, and for any ordernig ≺k;

• for I = (A, B), where A and B are random bivariate polynomials of total degree 𝛿
(in this case the degree of the ideal is D=𝛿 2), and for any ordering ≺k with k⩾2;

• for I =(A,B), where A and B are random bivariate polynomials of degree 𝛿 in both
variables (in this case the degree of the ideal is D=2𝛿 2), and for any ordering ≺k
with k⩾2.

In each of these cases, the threshold k (2 ℓ−1)−1 seems to be sharp. Nevertheless, for our
complexity bounds, a threshold of the type Kk ℓ would suffice, for any constant K >0.
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3. ALGORITHMIC PREREQUISITES

In this section, we quickly review some basic complexities for fundamental operations
on polynomials over a field 𝕂. Notice that results presented in this section are not
specific to the bivariate case. Running times will always be measured in terms of the
required number of field operations in 𝕂.

3.1. Polynomial multiplication
We denote byM(d) the cost of multiplying two dense univariate polynomials of degree d
in 𝕂[X]. Over general fields, one may take [27, 26, 5]

M(d)=O(d logd log logd).

In the case of fields of positive characteristic, one may even take M(d)=O�d logd 4log∗ d�,
where log∗ d denotes the iterated logarithm [17, 18]. We make the customary assump-
tions that Μ(d)/d is increasing and that M(2 d) = O(M(d)), with the usual implications,
such as Μ(d)+Μ(e)�Μ(d+ e).

For multivariate polynomials, the cost of multiplication depends on the geometry of
the support. The multiplication of dense bivariate “block” polynomials in 𝕂[X1,…,Xr]
of degree <di in each variable Xi can be reduced to multiplication of univariate poly-
nomials of degree <2r−1 d1⋯dr using the well known technique of Kronecker substitu-
tion [12]. More generally, for polynomials such that the support of the product is
included in an initial segment with d elements, it is possible to compute the product
in time O(M(d)). Here an initial segment of ℳ is a subset 𝒮 such that all divisors of
any monomial M∈𝒮 are again in 𝒮.

For the purpose of this paper, we need to consider dense polynomials P in 𝕂[X,Y]
whose supports are contained in sets of the form Sl,h ≔ {M ∈ ℳ: l ⩽ degk M < h}.
Modulo the change of variables Xa Yb → T a+kb Ub, such a polynomial can be rewritten
as P(X,Y)=T l P̃(T,U), where the support of P̃ is an initial segment with the same size
as Sl,h. For a product of two polynomials of this type with a support of size d, this means
that the product can again be computed in time O(M(d)).

3.2. Relaxed multiplication
For the above polynomial multiplication algorithms, we assume that the input polyno-
mials are entirely given from the outset. In specific settings, the input polynomials may
be only partially known at some point, and it can be interesting to anticipate the com-
putation of the partial output. This is particularly true when working with (truncated)
formal power series f = f0+ f1 z+⋯∈𝕂[[z]] instead of polynomials, where it is common
that the coefficients are given as a stream.

In this so-called “relaxed (or online) computation model”, the coefficient ( f g)d of
a product of two series f , g ∈ 𝕂[[z]] must be output as soon as f0, …, fd and g0, …, gd
are known. This model has the advantage that subsequent coefficients fd+1, fd+2, … and
gd+1,gd+2,… are allowed to depend on the result ( f g)d. This often allows us to solve
equations involving power series f by rewriting them into recursive equations of the form
f = Φ( f ), with the property that the coefficient Φ( f )d+1 only depends on earlier coeffi-
cients f0,…, fd for all d. For instance, in order to invert a power series of the form 1 + z g
with g ∈ 𝕂[[z]], we may take Φ( f ) = 1 − z f g. Similarly, if 𝕂 has characteristic zero,
then the exponential of a power series g∈𝕂[[z]] with g0=0 can be computed by taking
Φ( f )=1+∫ fg′.
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From a complexity point of view, let R(d) denote the cost of the relaxed multipli-
cation of two polynomials of degree <d. The relaxed model prevents us from directly
using fast “zealous” multiplication algorithms from the previous section that are typi-
cally based on FFT-multiplication. Fortunately, it was shown in [19, 10] that

R(d)=O(M(d) logd). (2)

This relaxed multiplication algorithm admits the advantage that it may use any zealous
multiplication as a black box. Through the direct use of FFT-based techniques, the fol-
lowing bound has also been established in [21]:

R(d)=d logdeO� log log d� �.

In the sequel, we will only use a suitable multivariate generalization of the algorithm
from [19, 10], so we will always assume thatR(d) is of the form (2). In particular, we have
R(d)+R(e)⩽R(d+ e).

3.3. Polynomial reduction
Let us now consider a Gröbner basis of an ideal in 𝕂[X1, …, Xr], or, more generally,
an auto-reduced tuple A = (A0, …, An) of polynomials in 𝕂[X1, …, Xr]. Then for any
P∈𝕂[X1,…,Xr], we may compute a relation

P=Q0A0+⋯+QnAn+R

such that R is reduced with respect to A. We call (Q0,…,Qn,R) an extended reduction of P
with respect to A.

The computation of such an extended reduction is a good example of a problem that
can be solved efficiently using relaxed multiplication and recursive equations. For a mul-
tivariate polynomial T with dense support of any of the types discussed in section 3.1,
let |T| denote a bound for the size of its support. With R(d) as in (2), it has been shown1

in [20] that the quotients Q0,…,Qn and the remainder R can be computed in time

R(|Q0 A0|)+⋯+R(|Qn An|)+O(|R|). (3)

This implies in particular that the extended reduction can be computed in quasi-linear
time in the size of the equation P=Q0 A0+⋯+Qn An+R. However, as pointed out in the
introduction, this equation is in general much larger than the input polynomial P.

Extended reductions (Q0, …, Qn, R) are far from being unique (only R is unique,
and only if A is a Gröbner basis). The algorithm from [20] for the computation of
an extended reduction relies on a selection strategy that selects a particular index
iM ∈ℐM ≔ {i∈{0, …, n}: lm(Ai) |M} for every monomial M ∈ ℳ such that ℐM is non-
empty. The initial formulation [20] used the simplest such strategy by taking iM =
min ℐM, but the complexity bound (3) holds for any selection strategy. Now the total
size of all quotients Q0,…,Qn may be much larger than the size of P for a general selec-
tion strategy. One of the key ingredients of the fast reduction algorithm in this paper
is the careful design of a “dichotomic selection strategy” that enables us to control the
degrees of the quotients.

Remark 8. The notion of selection strategy is somewhat similar to the concept of involu-
tive division introduced for the theory of involutive bases [13], although our definition is
more permissive.

1. The results from [20] actually apply for more general types of supports, but this will not be needed in this paper.
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4. TERSE REPRESENTATIONS OF VANILLA GRÖBNER BASES

Let G = (G0, …, Gn) be a vanilla Gröbner basis of some ideal I ⊆ 𝕂[X, Y] with respect
to ≺k and assume the notations from Proposition 3. We recall from the introduction
that a major obstruction for the design of reduction algorithms that run in quasi-linear
time Õ(k n2 + d2 / k) is that it requires space Θ(k n3) to explicitly write down the full
basis G. The aim of this section is to introduce a suitable “terse representation” that
can be stored in space O(k n2 log n), but that still contains all necessary information for
efficient computations modulo G.

4.1. Retraction coefficients
For each ℓ ⩾ 1, let Iℓ be as in (1). Also, for 𝜆 ∈ {0, …, ⌈log2 n⌉}, let J𝜆 be a shorthand for
I2𝜆. Since G = (G0, …, Gn) is a vanilla Gröbner basis, Definition 7 ensures in particular
the existence of coefficients C𝜆,i, j ∈𝕂[X,Y] for 𝜆∈{0,…, ⌈log2 n⌉−1} and i∈ J𝜆 ∖ J𝜆+1 and
j∈ J𝜆+1, such that

Gi = �
j∈J𝜆+1

C𝜆,i, j Gj,

degk C𝜆,i, j ⩽ k(2𝜆+2 −1)−1.

We call these C𝜆,i, j the retraction coefficients for G. For each given i, 𝜆, the computation of
the retraction coefficients C𝜆,i, j reduces to a linear system of size u×v with u,v=O(k n 2𝜆)
(for the image space, consider only the monomials that are above the Gröbner stairs),
which is easily solved by Gaussian elimination. Notice that the space needed to write the
retraction coefficients is much smaller than the Gröbner basis:

LEMMA 9. The family of all retraction coefficients for G takes space O(kn2 logn).

Proof. For every ℓ, there are ⌈n/ℓ⌉ + 1 indices in Iℓ, and we notice that I2ℓ ⊆ Iℓ. For any
given 𝜆, the retraction coefficients involve at most n/2𝜆+1 + 1 indices i and n/2𝜆+1 + 2
indices j, whence at most n2/4𝜆+1+3 n/2𝜆+1+2 pairs (i, j). Since the support of C𝜆,i, j has
size O(k4𝜆), it follows that all retraction coefficient together require space

O((((((((((((((k �
𝜆⩽log2 n

(n2 +n2𝜆+4𝜆)))))))))))))))=O(kn2 logn). □

We observe that the space needed to write all relations is about the same size as the
dimension of the quotient algebra 𝕂[X,Y]/I, up to a logarithmic factor.

4.2. Upper truncations
For vanilla Gröbner bases, it is a priori possible to recover G from G0,G1andGn using the
retraction coefficients: with h=⌈log2n⌉, first compute G2h−1, next G2h−2 and G3⋅2h−2, and so
on. In order to compute reductions of the form P =Q0 G0 +⋯ +Qn Gn +R efficiently, we
will need slightly more information. In particular, we wish to access some of the head
terms of the Gi. More precisely, if the quotient Qi has degree d, then we need to know
the terms of Gi with degree at least deg Gi − d in order to compute the quotient Qi using
a relaxed reduction algorithm.
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DEFINITION 10. Given a polynomial P∈𝕂[X,Y], we define its upper truncation with k-pre-
cision p as the polynomial P# such that

• all terms of P# of k-degree less than degk P−p are zero;

• all terms of P# of k-degree at least degk P−p are equal to the corresponding terms in P.

Notice that this upper truncation P# can be written using space O((degk P)p/k). For
the reduction strategy that we plan to use, we will have

degk Qi <2k2val2 i (4)

for all i = 1, …, n − 1, where val2 i denotes the 2-adic valuation of i. This motivates the
following definition:

DEFINITION 11. Let G = (G0, …, Gn) be a vanilla Gröbner basis for an ideal I ⊆ 𝕂[X, Y] with
respect to ≺k. The terse representation of G consists of the following data:

• the sequence of truncated elements G0
#,…,Gn

#, where

∘ Gi
#≔Gi for i∈{0,1,n};

∘ Gi
# is the upper truncation of Gi at precision 2k2val2 i for all other i;

• the collection of all retraction coefficients C𝜆,i, j as in section 4.1.

PROPOSITION 12. The terse representation of G fits in space O(kn2 logn).

Proof. The upper truncation Gi
# requires space O(k n 2val2 i) for all 1 < i < n. For each

𝜆 < log2 n, there are at most n / 2𝜆 indices i such that val2 i = 𝜆; therefore, G2
#, …, Gn−1

#

take O(k n2 log n) space. The elements G0
#, G1

# and Gn
# require O(k n2) additional space,

whereas the coefficients C𝜆,i, j account for O(kn2 logn) more space, by Lemma 9. □

5. FAST REDUCTION

Let G = (G0, …, Gn) be a vanilla Gröbner basis for an ideal I ⊆ 𝕂[X, Y] as in the pre-
vious section and assume that its terse representation has been precomputed. The goal
of this section is to present our main algorithm that computes the extended reduction
P = Q0 G0 + ⋯ + Qn Gn + R of a polynomial P ∈ 𝕂[X, Y]/ I of k-degree d in quasi-linear
time Õ(kn2+d2/k). This is quasi-optimal with respect to the dimension of the quotient
algebra dim𝕂 𝕂[X,Y]/I =Θ(kn2) and the size of the support |P|=Θ(d2/k).

The reduction algorithm proceeds in two steps: in a first stage, we compute the quo-
tients Q0, …, Qn; we next evaluate the remainder R ≔ P − Q0 G0 − ⋯ − Qn Gn by rewriting
the linear combination Q0G0 +⋯+QnGn using fewer and fewer terms.

5.1. Computing the quotients
To compute the quotients, we reduce P as in section 3.3 against the tuple (A0,…,An) ≔
(G0

#, …, Gn
#), in such a way that the degrees of the quotients are bounded as in equa-

tion (4). This is done using the algorithm from [20], but with the following dichotomic
selection strategy. Given a monomial M ∈ ℳ , we reduce M against AiM, where
iM∈ℐM ≔{i∈{0,…,n}: lm(Ai) |M} is determined as follows:

• if lm(A0) divides M, then take iM ≔0;
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Figure 2. The dichotomic selection strategy: monomials falling in each area are reduced against the
corresponding basis element.

• else if lm(An) divides M, then take iM ≔n;

• else we take iM to be the unique element in ℐM with val2 iM =max{val2 i : i∈ℐM}.

This selection strategy is illustrated in Figure 2.

LEMMA 13. Let Q0, …, Qn be the quotients obtained for the reduction of P with respect to
(G0

#,…,Gn
#) using the dichotomic selection strategy. Then the bound

degk(Qi)<2k2val2(i)

holds for all 0 < i < n, so that |Q0| + ⋯ + |Qn| = O(k n2 + d2/k), and the extended reduction
P=Q0G0

#+⋯+QnGn
# +R# can be computed in time

O(R(kn2) logn+R(d2/k)).

Proof. Let Xa Yb ∈ supp Qi with 0 < i < n, so that i = iM for M = Xa Yb lm(Ai), and
denote ℓ ≔ 2val2 i. Then we observe that b < ℓ: if not, then lm(Ai−ℓ) would divide M,
whereas val2 (i − ℓ) > val2 i. A similar reasoning with Ai+ℓ (or An, whenever i + ℓ > n)
shows that a<k ℓ. It follows that degk (Xa Yb)<2k ℓ.

This also proves that |Qi| < 2 ℓ (2 k ℓ + 1) = O(k ℓ2) and |Qi Gi
#| = O(k n ℓ), for any

0< i<n. Since the number of indices 0< i<n with ℓ=2val2 i is bounded by n/ℓ, we get

|Q1|+⋯+|Qn−1| = O(2kn+4kn+⋯+2⌊log2n⌋ kn) = O(kn2)
R(|Q1G1

#|)+⋯+R(|Qn−1Gn−1
# |) = O(R(kn2) logn).

On the other hand, degk (Q0 G0
#)⩽degk P and degk (Qn Gn

#) ⩽degk P, whence |Q0|+ |Qn|=
O(d2 / k) and R(|Q0 G0

#|) + R(|Qn Gn
#|) = O(R(d2 / k)). We conclude by applying the

bound (3) for the complexity of polynomial reduction. □

The next important observation is that the quotients Q0, …, Qn obtained in the above
way can actually be used as quotients for the extended reduction of P with respect to G:

PROPOSITION 14. Let Q0,…,Qn be as in Lemma 13 and consider

R≔P−Q0G0 −⋯−QnGn.

Then R is reduced with respect to G.
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Proof. Let R# ≔ P − Q0 G0
# − ⋯ − Qn Gn

#. By construction, R# is reduced with respect to
G# = (G0

#, …, Gn
#) and whence with respect to G since lm(Gi) = lm(Gi

#) for all i. For any
0< i<n, we also have degk (Gi −Gi

#)<degk Gi −2k2val2 i, whence

degk (Qi Gi −Qi Gi
#)<degk Gi −1⩽ min

0⩽ j⩽n
degk Gj

by Lemma 13 and Corollary 4. Since G0 =G0
# and Gn=Gn

#, this means that

degk (R−R#)<degk Gi for all 0⩽ i⩽n.

In other words, the polynomials R#, R− R#, and therefore R are all reduced with respect
to G. □

5.2. Computing the remainder
Once the quotients Q0, …, Qn are known, we need to compute the remainder
R≔P−Q0G0 −⋯−QnGn. We do this by rewriting (or retracting) the linear combination
Q0 G0 + ⋯ + Qn Gn into a linear combination S0 G0 + S1 G1 + Sn Gn using the following
algorithm:

Algorithm 1
Input: the quotients Q0,…,Qn∈𝕂[X,Y] of the dichotomic extended reduction of P by G
Output: S0,S1,Sn ∈𝕂[X,Y] with Q0G0+⋯+QnGn=S0G0+S1G1+SnGn

For j=0,…,n, set Q0, j ≔Qj
For 𝜆=1,…, ⌈log2 n⌉−1 do

For j=0,…,n do
If 1< j<n and val2 j⩽𝜆, then set Q𝜆+1, j ≔0
Otherwise, set Q𝜆+1, j ≔Q𝜆, j +∑i∈J𝜆∖J𝜆+1

Q𝜆,i C𝜆,i, j
For j=0,1,n, define Sj ≔Q⌈log2 n⌉, j, and return S0,S1,Sn

LEMMA 15. Algorithm 1 is correct and runs in time O(M(kn2) logn).

Proof. By construction, we notice that Q𝜆, j =0 if 1< j<n and val2 j<𝜆 (that is j∉ J𝜆). Let
us now show by induction over 𝜆 that

Q𝜆,0G0 +⋯+Q𝜆,nGn=Q0G0+⋯+QnGn.

This is clearly true for 𝜆=0. We have

�
j∈J𝜆+1

Q𝜆+1, j Gj = �
j∈J𝜆+1 ((((((((((((((Q𝜆, j + �

i∈J𝜆∖J𝜆+1

Q𝜆,i C𝜆,i, j))))))))))))))Gj

= �
j∈J𝜆+1

Q𝜆, j Gj + �
i∈J𝜆∖J𝜆+1

Q𝜆,i �
j∈J𝜆+1

C𝜆,i, j Gj

= �
j∈J𝜆+1

Q𝜆,i Gi + �
i∈J𝜆∖J𝜆+1

Q𝜆,i Gi

= �
j∈J𝜆

Q𝜆,i Gi,

which proves the correctness of Algorithm 1. Again by induction over 𝜆, it is not hard to
see that the bound degk C𝜆,i, j <4k2𝜆 implies

degk(Q𝜆,i)⩽max(4k2𝜆, 2k2val2(i)) for 1< i<n. (5)
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Now, for i ∈ J𝜆 ∖ J𝜆+1 and j ∈ J𝜆, the product Q𝜆,i C𝜆,i, j is computed in time O(k 4𝜆), and
there are O(n2/4𝜆) such products (see the proof of Lemma 9). Using that M(d)/d is non-
decreasing, we conclude that each step can be computed in time O(Μ(kn2)). □

Combining our subalgorithms, we obtain our algorithm for extended reduction.

Algorithm 2
Input: A tersely represented vanilla Gröbner basis G=(G0,…,Gn) and P∈𝕂[X,Y]
Output: An extended reduction (Q0,…,Qn,R) of P modulo G

Compute the extended reduction (Q0,…,Qn,R#) with respect to G#

Compute S0,S1,S2∈𝕂[X,Y] as a function of Q0,…,Qn using Algorithm 1
Compute R≔P−S0 G0

# −S1 G1
# −SnGn

# =P−S0G0 −S1G1 −SnGn
Return (Q0,…,Qn,R).

THEOREM 16. Algorithm 2 is correct and runs in time

O(R(kn2) logn+R(d2/k)).

Proof. Because of Lemma 13, the extended reduction with respect to G0
#, …, Gn

# is com-
puted in time

O(R(kn2) logn+R(d2/k)).

Proposition 14 ensures that the quotients are also valid with respect to G0,…,Gn. The next
step is to evaluate the remainder R≔P−Q0 G0−⋯−Qn Gn. The Si's are computed in time
O(M(kn2) logn) using Lemma 15 and we have

Q0 G0+⋯+Qn Gn=S0 G0+S1 G1+Sn Gn.

For i ∈ {0, 1, n}, it follows from (5) that degk(Si Gi) ⩽ max (d, 5 k n). Consequently, the
evaluation of R takes time

O(M(d2/k)+M(kn2)). □

6. APPLICATIONS

6.1. Multiplications in the quotient algebra
Let G= (G0, …,Gn) be a vanilla Gröbner basis for an ideal I ⊆𝕂[X, Y] with respect to ≺k
and assume that we we have precomputed a terse representation for G. Elements in
the quotient algebra 𝔸 = 𝕂[X, Y] / I can naturally be represented as polynomials in
𝕂[X, Y] that are reduced with respect to G. An immediate application of Theorem 16 is
a multiplication algorithm for 𝔸 that runs in quasi-linear time.

More precisely, with the notations from Proposition 3, given two polynomials P,Q∈
𝕂[X,Y] that are reduced with respect to G, we have degkP⩽k n and degkQ⩽k n, whence
degk P Q ⩽ 2 k n and |P Q| = O(k n2) = O(D). It follows that P Q can be computed in time
O(M(D)), whereas the reduction of P Q with respect to G takes time O(R(D) log D).
This yields:

THEOREM 17. For I as above, multiplication in the quotient algebra 𝔸 = 𝕂[X, Y] / I can be
performed in time

O(R(D) logD).
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6.2. Changing the monomial ordering
Let us now assume that our ideal I ⊆ 𝕂[X, Y] admits a vanilla Gröbner basis G[k] with
respect to the ordering ≺k for all k. We will write 𝔸[k]=K[X,Y]/I for the quotient algebra
when representing elements using normal forms with respect to G[k]. If k>D=dim𝕂𝔸,
then we notice that G[k] is also a Gröbner basis with respect to the lexicographical mono-
mial ordering ≺∞. In order to efficiently convert between 𝔸[k] and 𝔸[ℓ] with k<ℓ, we first
consider the case when ℓ⩽2k:

LEMMA 18. With the above notations and k < ℓ ⩽ 2 k, assume that we have precomputed terse
representations for G[k] and G[ℓ]. Then back and forth conversions between 𝔸[k] and 𝔸[ℓ] can be
computed in time

O(R(D) logD).

Proof. Assume that G[k] has n + 1 elements G0
[k], …, Gn

[k] and G[ℓ] has m + 1 elements
G0

[ℓ], …, Gm
[ℓ]. We know from Proposition 3 that k n (n − 1) <2 D⩽ k n (n + 1) and similarly

ℓ (m − 1) m < 2 D ⩽ ℓ m (m + 1). Now given P ∈ 𝕂[X, Y] that is reduced with respect
to G[k], we have degk P ⩽ k n, whence degℓ P ⩽ ℓ n and (degℓ P)2/ℓ ⩽ ℓ n2 ⩽ 2 k n2 = O(D).
Theorem 16 therefore implies that normal form of P w.r.t. G[ℓ] can be computed in time

O(R(ℓm2) logm+R(D))

and we conclude using ℓ m2=O(D). The proof for the backward conversion is similar. □

For general k < ℓ, let a ⩽ b be such that 2a−1 < k ⩽ 2a and 2b−1<ℓ⩽2b. Then we may
perform conversions between 𝔸[k] and 𝔸[ℓ] using a Gröbner walk

𝔸[k] ↔𝔸[2a] ↔⋯↔𝔸[2b−1]↔𝔸[ℓ].

All G[k] coincide for k>D, so we can assume that 1⩽k<ℓ⩽D+1. Then there are at most
logD conversions as above, so that:

THEOREM 19. With the above notations and k < ℓ ⩽ D + 1, assume that we have precomputed
terse representations for G[k],G[2a],…,G[2b],G[ℓ]. Then back and forth conversions between 𝔸[k]

and 𝔸[ℓ] can be computed in time
O(R(D) log2D).

7. CONCLUSION AND PERSPECTIVES

As explained in the introduction, we deliberately chose to present our results in the
simplest possible setting. As a future work, it would be interesting to generalize our
algorithms. The following two extensions should be rather straightforward:

• The consideration of general monomial orderings, starting with ≺k for k∈ℚ>.
• Generalizations to multivariate polynomials in 𝕂[X1,…,Xr]. We expect no essen-

tial problems for fixed r. However, the dependence of the complexity on r is likely
to be polynomial in r!.

Some of the more challenging problems are as follows:
• Is it true that a “sufficiently generic” zero-dimensional ideal I of fixed degree

D=dim𝕂 𝕂[X,Y]/I necessarily admits a vanilla Gröbner basis?
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• Given a vanilla Gröbner basis, what is the actual complexity of computing its terse
representation? Our first analysis suggests a bound Õ(D𝜔), but we suspect that
the computation of the retraction coefficients C𝜆,i, j can be accelerated by using the
sygyzies that result from reducing the S-polynomials of basis elements to zero.

• Can our results be generalized to the degenerate case of non-vanilla Gröbner
bases G?

On the long run, one might also wonder whether some of the new techniques can be used
for the efficient computation of Gröbner bases themselves. For the moment, this seems
far beyond reach. Nevertheless, a quasi-optimal algorithm does exist for the particular
case of an ideal I generated by two generic polynomials P,Q∈𝕂[X,Y] of total degree 𝛿,
when working with respect to the monomial ordering ≺1. We intend to report on the
details in a forthcoming paper.
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