J. Baixeries, L. Szathmary, P. Valtchev, and R. Godin, Yet a Faster Algorithm for Building the Hasse Diagram of a Concept Lattice, Formal Concept Analysis, 7th International Conference Proceedings, pp.162-177, 2009.
DOI : 10.1007/978-3-540-45091-7_20

K. Bertet and B. Monjardet, The multiple facets of the canonical direct unit implicational basis, Theoretical Computer Science, vol.411, issue.22-24, pp.22-242155, 2010.
DOI : 10.1016/j.tcs.2009.12.021

URL : https://hal.archives-ouvertes.fr/halshs-00308798

J. M. Bilbao and P. H. Edelman, The Shapley value on convex geometries, Discrete Applied Mathematics, vol.103, issue.1-3, pp.33-40, 2000.
DOI : 10.1016/S0166-218X(99)00218-8

J. Bordat, Calcul pratique du treillis de galois d'une correspondance, Math. Sci. Hum, vol.96, pp.5-631, 1986.

G. Brightwell and P. Winkler, Counting linear extensions, Order, vol.39, issue.2, pp.225-242, 1991.
DOI : 10.1137/1.9781611970203

R. Bubley and M. Dyer, Faster random generation of linear extensions, Discrete Mathematics, vol.201, issue.1-3, pp.81-88, 1999.
DOI : 10.1016/S0012-365X(98)00333-1

L. Comtet, Advanced Combinatorics. The art of finite and infinite expansions, P.O. Box, vol.17, 1974.

X. Deng and C. H. Papadimitriou, On the Complexity of Cooperative Solution Concepts, Mathematics of Operations Research, vol.19, issue.2, pp.257-266, 1994.
DOI : 10.1287/moor.19.2.257

J. Derks and R. Gilles, Hierarchical organization structures and constraints on coalition formation, International Journal of Game Theory, vol.18, issue.2, pp.147-163, 1995.
DOI : 10.1007/BF01240039

K. Ewacha, I. Rival, and N. Zaguia, Approximating the number of linear extensions, Theoretical Computer Science, vol.175, issue.2, pp.271-282, 1997.
DOI : 10.1016/S0304-3975(96)00203-4

U. Faigle, M. Grabisch, A. Jiménez-losada, and M. Ordóñez, Games on concept lattices: Shapley value and core, Discrete Applied Mathematics, vol.198, pp.29-47, 2016.
DOI : 10.1016/j.dam.2015.08.004

URL : https://hal.archives-ouvertes.fr/hal-01379699

U. Faigle and W. Kern, The Shapley value for cooperative games under precedence constraints, International Journal of Game Theory, vol.25, issue.3, pp.249-266, 1992.
DOI : 10.1007/BF01258278

S. Felsner and T. Manneville, Linear Extensions of N-free Orders, Order, vol.19, issue.2, pp.147-155, 2014.
DOI : 10.1007/BF00396269

V. K. Garg, Y. Narahari, N. Murty, and M. , Novel biobjective clustering (bigc) based on cooperative game theory. Knowledge and Data Engineering, IEEE Transactions on, vol.25, issue.5, pp.1070-1082, 2013.

R. P. Gilles, G. Owen, and R. Brink, Games with permission structures: The conjunctive approach, International Journal of Game Theory, vol.7, issue.3, pp.277-293, 1992.
DOI : 10.1007/BF01253782

M. Grabisch, The core of games on ordered structures and graphs, Annals of Operations Research, vol.20, issue.3, pp.33-64, 2013.
DOI : 10.1007/978-1-4613-8431-1

URL : https://hal.archives-ouvertes.fr/hal-00803233

C. Hsiao and T. Raghavan, Shapley Value for Multichoice Cooperative Games, I, Games and Economic Behavior, vol.5, issue.2, pp.240-256, 1993.
DOI : 10.1006/game.1993.1014

K. Kollias and T. Roughgarden, Restoring pure equilibria to weighted congestion games. Automata, Languages and Programming: 38th International Colloquium, pp.539-551, 2011.
DOI : 10.1007/978-3-642-22012-8_43

URL : http://theory.stanford.edu/~tim/papers/shap.pdf

S. O. Kuznetsov and S. A. Obiedkov, Algorithms for the Construction of Concept Lattices and Their Diagram Graphs, Principles of Data Mining and Knowledge Discovery, 5th European Conference Proceedings, pp.289-300, 2001.
DOI : 10.1007/3-540-44794-6_24

H. Mannila and K. Räihä, On the complexity of inferring functional dependencies, Discrete Applied Mathematics, vol.40, issue.2, pp.237-243, 1992.
DOI : 10.1016/0166-218X(92)90031-5

T. P. Michalak, K. V. Aadithya, P. L. Szczepanski, B. Ravindran, J. et al., Efficient computation of the shapley value for game-theoretic network centrality, Journal of Artificial Intelligence Research, vol.46, pp.607-650, 2013.

R. H. Möhring, Computationally Tractable Classes of Ordered Sets, Algorithms and Order, pp.105-193, 1989.
DOI : 10.1007/978-94-009-2639-4_4

L. Nourine and O. Raynaud, A fast algorithm for building lattices, Information Processing Letters, vol.71, issue.5-6, pp.5-6199, 1999.
DOI : 10.1016/S0020-0190(99)00108-8

A. Nouweland, S. Tijs, J. Potters, and J. Zarzuelo, Cores and related solution concepts for multi-choice games, ZOR Zeitschrift f???r Operations Research Mathematical Methods of Operations Research, vol.1, issue.3, pp.289-311, 1995.
DOI : 10.1007/BF01432361

S. Rudolph, Succinctness and tractability of closure operator representations, Theoretical Computer Science, vol.658, pp.327-345, 2017.
DOI : 10.1016/j.tcs.2015.12.028

T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé, Coalition structure generation with worst case guarantees, Artificial Intelligence, vol.111, issue.1-2, pp.209-238, 1999.
DOI : 10.1016/S0004-3702(99)00036-3

L. S. Shapley, A value for n-person games, Contributions to the Theory of Games (AM 28), pp.307-317, 1953.

R. P. Stanley, Enumerative Combinatorics, 2011.
DOI : 10.1007/978-1-4615-9763-6

M. Wild, Computations with finite closure systems and implications, Computing and Combinatorics, First Annual International Conference, COCOON '95, Xi'an, China Proceedings, pp.111-120, 1995.
DOI : 10.1007/BFb0030825

M. Wild, The joy of implications, aka pure Horn formulas: Mainly a survey, Theoretical Computer Science, vol.658, pp.264-292, 2017.
DOI : 10.1016/j.tcs.2016.03.018