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Abstract

Distributed parameter systems modeled by hyperbolic partial differential equations are considered in this paper. The dynamic
models include a source term and heterodirectional velocities. A boundary control problem is introduced and it is first shown
that it is well-posed (in the sense of Tucsnak and Weiss), under appropriate assumptions coupling the boundary conditions and
the source term. Then a sufficient exponential stability condition is derived using operator theory. This condition is written
in terms of Linear Matrix Inequalities that are numerically tractable and that allow an optimization program. Connections
with another classical stability condition are given. This approach is applied to the Saint-Venant—Exner equation describing
the dynamics of the water level, of the water flow and of the sediment inside of a channel. The effect of the friction and of the

slope are taken into account in the application model.

1 Introduction

A class of distributed parameter systems including the
shallow water equations as an important application is
considered in this paper. There exists a large literature
dealing with nonlinear equations, as those developing
the analysis of characteristic curves or Lyapunov meth-
ods, see [3] for a recent textbook on this subject. In the
present paper, the system is described by a linear hy-
perbolic partial differential equation (PDE) which is as-
sumed to be nonhomogeneous with a control acting on
the boundary. This control problem arises in many differ-
ent contexts such as gas transport [14], traffic control [12]
or flow dynamics in open-channels [7]. For these kinds of
infinite dimensional systems, many different techniques
are available, such as an analysis of the time evolution of
the characteristic curves (as done in e.g., [I7, [21]), Lya-
punov methods (see e.g. [10, 9]) and abstract theory for
linear systems (as considered in [19]5,25]). In this paper,
we will develop some semigroup techniques for a control
problem of a system of balance laws with an application
to the dynamics of flow and sediments in an open chan-
nel, as considered in [8] where an exponentially stabiliz-
ing output feedback controller is computed, using a back-
stepping design. With respect to this recent reference, a
fully different method is suggested, since we first solve
a general boundary control problem, and then apply its
solution to the particular linear hyperbolic system ob-
tained by linearizing the Saint-Venant—Exner equation
around a given equilibrium.

Preprint submitted to Automatica

First the control problem is shown to be well-posed as a
boundary control system in the sense of the book [25].
In particular, it is shown that the dynamics operator
is the infinitesimal generator of a strongly continuous
(Co) semigroup of bounded linear operators, which is
(exponentially) stable and that the unbounded control
operator defining the boundary control action is admis-
sible for this semigroup. Next the stability analysis is
performed exploiting some sufficient conditions dealing
with the source term of the hyperbolic PDE and with
matrix inequalities combining the velocities matrix and
the boundary conditions. The advantage of these condi-
tions reside in the fact that they can be rewritten in a
numerically tractable form allowing an optimization of
the unknown variables. More precisely checking the as-
sumptions of the main result is shown to be equivalent to
solving Linear Matrix Inequalities (LMI’s) which are nu-
merically tractable conditions (see Remark 1 below just
before the first main result, namely Theorem 1). More-
over the obtained sufficient condition is linked with clas-
sical Lyapunov function based sufficient conditions for
stability analysis and boundary stabilization (as done in
particular in [7]).

The obtained sufficient exponential stability condition
is used to design output feedback boundary controllers
for hyperbolic systems of balance laws. Other techniques
are available for the design of boundary controllers, as
the backstepping techniques (see [26] and references
therein). The design method is shown to be numeri-
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cally tractable and it is applied on the linearization of
the Saint-Venant—Exner equation at an equilibrium.
Using numerical values that are already considered in
the literature [16], 20, 1] in a physical sense, we show
how to solve our numerically tractable conditions and
how to compute a stabilizing output feedback boundary
controller. A numerical simulation is also performed to
illustrate the obtained exponential stability by means
of time-evolution of the three components of the state.

The paper is organized as follows. In Section 2 the model
is introduced and some preliminary computations are
performed. Section 3 contains the main results on the
well-posedness of the control problem and on a sufficient
condition for the stability of the open-loop system. Sec-
tion 4 contains an application in hydraulics. The results
are illustrated and some simulations are performed. Sec-
tion 5 collects concluding remarks and points out some
possible research lines.

2 Description and analysis of the model

Let us consider a distributed parameter system that
is described by the following linear partial differential
equation (PDE) model:

&+ A =ME, x2€(0,1),t>0, (1)

where A is a constant diagonal matrix in R™*"
) Ay 0O

of the following form A = N where

Ay =diag(\)i2, € R™*™ and A_ =

diag(—X;)7,, 41 € RO=MXM=m) are positive defi-
nite, i.e. A; > 0 for i = 1,---,m and A; < 0 for
i=m+1,--- ,n, where M is a constant matrix in R™*"
and

E_;,_(:E,t)

§-(z,t

E=¢(a,t) = [ ] where £, € R™and¢_ e R"™™

(2)

stands for the state. This model is complemented by the
boundary condition:

la(o,t)] _x l@(l,t)

Nu(t) , 3
e (11) ] A

where K is a constant matrix in R™*"™ of the following
0 Ky
K0
RM=m)Xm and N is a full rank matrix in R™*? of the
following form N = [Ny N{']T, where p < n, Ny €
R™*P Ny € R(=™)%P and u(t) € RP is the control at
time ¢ > 0, to be designed.

form K = [ ] , where Ky € R™*("=m) and K, €

With a view to studying the well-posedness of system
(1)-(3), let us introduce the following operator:

L& = —AN + M€,

where ’ stands for the space derivative. Consider also

the complex Hilbert spaces Z = H*((0,1); C") and X =
L?((0,1);C™). Recall that Z C X with continuous em-
bedding. Observe that L is a bounded linear operator
from Z to X, i.e. L € L(Z, X). In addition, consider the
time-invariant operator G € L£(Z,C") given by, for all

ez,
Ge — [@(0)1 x lsm)]
£-(1) £-(0)

and the Hilbert subspace X; of Z which is defined by

0 1
£ >] _x [m )” |
§-(1) §-(0)
Finally, in the analysis below, we will also need the re-
striction of the operator L to X1, denoted by A:

X5 ::kerG:{er :

A= L‘X1 . (4)
Observe that A € £(X;, X).

Preliminary remark: The stationary solution of the
PDE (1) with initial condition £(0), i.e. the solution of
the ordinary differential equation

d§
AL
dzx

is given by £(x) = exp(A~1Mz) £(0), for all x in [0, 1].
With this computation in mind, we may rewrite the
boundary condition (3). To be more specific, given ¢ =

C+
C_

+ME=0, z€0,1] (5)

in C™, the boundary condition

ler(O)] K l&(l)] . (6)
)

is satisfied if and only if

[@(0) ]
(exp(A™1M) £(0))-
- lo KO] l(exp(AlM) 5(0))+] _ lc+]
K10 €_(0) ’
or equivalently

l I, — K

- €(0)=c.
(K1 ILn_m] 'eXp(AlM)] ¢0



In order that the initial state £(0) be uniquely deter-
mined by the latter equation, i.e. in order to convert the
two-point boundary value problem (5)-(6) into a Cauchy
problem, the following auxiliary result is useful, result-
ing from a direct application of Schur complement:

Lemma 1 The matrix

[ I ~ K,

Ky o] A 1M)] is invertible  (7)
-l n—m| * €Xp(A~

if and only if so is the matriz

[t -omintan: [0

3 Well-posedness and stabilization
3.1 Well-posedness

As an intermediary step towards the well-posedness
property, let us consider the following auxiliary bound-
ary condition:

lmt)] . lmm

Na(t) , 9
e (1.1 e TN 0

where the matrix N := [N V] € R**" and the subma-

trix V € R™*("=m) ig chosen such that N is nonsingular
and where @(t) € R" is an auxiliary input. The well-
posedness of the control problem is solved in the next
proposition.

Proposition 1 If the matrix given by (8) is invertible,
then the system described by the PDE (1) with the bound-
ary condition (9) is a boundary control system, in the
sense of [25, Chap. 10], which is described by the pair of
operators (L, G), where G := N~1G, or equivalently by
the abstract differential equation & = L& with G€ = 4.

Proof. First observe that without loss of generality N
is the identity matrix, whence G = G. Now recall that
L € £L(Z,X) and observe that G € L(Z,C"). More-
over these operators satisfy the properties characterizing
a boundary control system (see [25], Definition 10.1.1]
where the constant 3 is set to zero). Indeed:

a) By Lemma 1, thanks to invertibility of the matrix
in (8), for every ¢ in C™ the equation G¢ = ¢ admits a
(unique) solution ¢ € Z. It follows that G is onto.

b) It follows also from condition (7) that the operator L
restricted to X; = ker G is onto, since for every f € X,

the equation L& = f, £ € X; is equivalent to an
ordinary differential equation having a solution £ which
is uniquely determined by £(0) and f.

¢) Moreover ker L Nker G = {0} (this follows from the
arguments used in the previous item with f = 0).

d) Finally, X; = ker G is dense in X, since it con-
tains a dense subspace of X = L2((0,1); C"), namely
H5((0,1);C™). O

To get that the PDE (1) with the boundary condition
(3) is well-posed, recalling the definition (4) of A, it re-
mains to check that the control operator defined in the
boundary condition (3) defines an operator B which is
an admissible control operator (following the terminol-
ogy of [25 Definition 10.1.1]). To do that, let us first
compute B*. For all z in Z and for all ¥ in D(B*), it
holds (Lz,¥) — (z, A*¥) = (Gz, NB*¥). Thus

(2(0) — K2(1), NB*¥)
= (—A2' + Mz, 0) — (2, AU’ + M T )
= — (A2, ) — (2, AV) + (M2, ¥) — (2, MT )
= —(Az(1), ¥(1)) + (Az(0), ¥(0))
= (Kz(1), KAU(0)) + (2(0), AT(0))

by using an integration by parts, and by using that ¥ in
D(A*) (and thus A¥(1) = KTA¥(0)).

Therefore (z(0)—K z(0), AT(0)) = (2(0)—K=z(0), NB*¥)
and thus B*¥ = NTAU(0).

The control operator B : U — X_; is defined by, for
all £ in U, B¢ = §oANE where § is the Dirac function
at x = 0. B is an admissible control operator following
[25, Definition 4.2.1], since with M = 0, this control
operator is admissible (see e.g. [25], Example 4.2.7] for
the scalar case), and a bounded perturbation M # 0
does not render B not admissible.

Therefore the PDE (1) with the boundary condition (3)
is well-posed and with [25] Prop. 10.1.8], we get

Proposition 2 If the matriz given by (8) is invertible
then, for every T > 0, £(0) in Z and u € H'((0,T);U)
which satisfies the compatibility condition GE(0) =
Nu(0), the PDE (1) with the boundary condition (3) has
a unique solution & and &€ € C([0,T); Z) N C1([0,T]; X).

3.2 Stability analysis

In the sequel, it will be assumed that the following two
conditions hold and it will be shown that they ensure the
stability of the boundary control system introduced in
Proposition 1 above. Each of these conditions is twofold,



involving a "primal” condition on (the parameters defin-
ing) the operator A and a ”dual” condition on the ad-
joint operator A*. It turns out that the two parts of each
of these conditions are actually equivalent: see Remark
1c below.

Assumption 1 There exists a diagonal positive definite
matriz P in R™*™ such that

PM+M*P <0, (10)
where M* := M7 denotes the Hermitian conjugate of
the matrix M, and equivalently there exists a diagonal
positive definite matriz Q in R™*"™ such that

QM*+MQ<0. (11)

Assumption 2 The matrices A and K are such that

|aaip)? & (a2 <1 a2
and
H (QIAIT) T K (QIA]Y)? [2 Im] <1,
(13)

where P is a diagonal positive definite matriz which satis-
fies inequality (10), Q is a diagonal positive definite ma-
triz which satisfies inequality (11), ||.|| denotes the ma-
triz norm induced by the usual euclidean vector norm,
| M| denotes the absolute value of the matriz M, i.e. its
entries are the absolute values of those of M and, in par-

Ay 0

ticular, |A| =
0 A_

Remark 1 a) Conditions (12) and (13) are trivially sat-
isfied whenever the boundary feedback gain matrix K
is the null matrix. However this choice is clearly not al-
ways feasible in applications: this is the case notably for
the application that is studied in Section 4.

b) In Assumption 1, the existence of a diagonal positive
definite matrix P satisfying inequality (10) is guaran-
teed whenever the matrix M is Lyapunov stable with
entries having the same sign. This is the case for the ap-
plication that is studied in Section 4. In addition, the
matrix @ satisfying inequality (11) can be selected to be
Q = P~!'. However (many) other choices are possible.
See also Section 4.

¢) Conditions (10) and (12) are equivalent to the follow-
ing one:

p(K) = int [(AID) K (1AID)" || <1, (14)

where D is the set of all diagonal positive definite ma-
trices D such that DM + M*D < 0. This condition is
exactly the same as the one that is used in [7, Theorem
2, p.111] and that is obtained by means of a Lyapunov
function. Similarly, conditions (11) and (13) are equiva-
lent to

pK) =

on) e on) [0 ]|
<1,
(15)

inf.
DeD

where 25 is the set of all diagonal positive definite ma-
trices D such that DM* + MD < 0.

Conditions (14) and (15) can be seen as sub-optimization
problems, that can be solved numerically for D and D,
with a given fixed gain K, by using algorithmic methods
for the resolution of LMIs (as introduced e.g. in [4, 23]).
As shown in the proof of the next theorem, these condi-
tions can be stated under the form of LMI’s. More pre-
cisely, condition (12) is equivalent to

KIAT'WEK* < |A|7'W (16)
where W = P~1  and condition (13) is equivalent to
KQIAT'K* < QA . (17)

J

From the previous discussion, one may conclude that the
existence of a diagonal positive definite matrix P such
that conditions (10) and (16) hold is equivalent to the
existence of a diagonal positive definite matrix ) such
that conditions (11) and (17) hold. In other words, As-
sumptions 1 and 2 are equivalent to any of the following
assumptions.

Assumption 3 There exists a diagonal positive definite
matrixz P such that (10) and (16) hold.

Assumption 4 There exists a diagonal positive definite
matriz Q such that (11) and (17) hold.

Note that computing diagonal positive definite matrices
P and @, such that Assumptions 3 or 4 hold, are two con-
vex conditions in the unknown variables P and @ which
can be solved e.g. on Matlab using YALMIP [18]. This
convex problem in solved when designing a stabilizing
feedback in Section 4.3 below.

Theorem 1 If the matriz in (8) is invertible and un-
der Assumption 3 (or equivalently under Assumption
4), the operator A generates an exponentially stable Cy-
semigroup T(t) of bounded linear operators on X, and
there exists v > 0 such that, for all t > 0, | T(t)] <
exp(—vt).



Before proving Theorem 1, let us connect this result with
[22] as done in the following remark.

Remark 2 Combining Assumption 1 and condition
(14) yields a set of assumptions that is implied by [22]
Assumption 3.8, Page 664] when restricting to space-
invariant operators. Thus Theorem 1 can be seen as a
generalization of [22, Theorem 3.9, Page 665]. By item
¢) of Remark 1, Assumptions 1 and 2 are equivalent
to the conditions of [3, Proposition 5.2]. Therefore we
recover the stability conditions of A using a completely
different approach (namely a dissipativity approach
versus a Lyapunov function approach in [3]), which
generalizes the conditions of [22] Section 3]. N

Proof. The proof of Theorem 1 is split into 4 steps.
1) Closedness of the operator A.

First observe that, by the proof of Proposition 1, the lin-
ear operator A, whose domain is X; = ker G, is densely
defined on X, onto and invertible with a bounded linear
inverse A~!, which is given for every f € X by

-1

Im ~Ko ]

A7l f =exp(ATT
f=e p( M(IJ)[ [7K1 In—m] -exp(AflM)

lo ] —I(z)
I(1)_ — Ky I(1),
(18)

I(x) = /096 exp(A™'M(z — 2))A 1 f(2)dz , (19)

i.e. 0 is in the resolvent set p(A) of A. It follows by [25]
Remark 2.2.4, p. 24], or more specifically by [5, Theorem
A.3.46, p. 596], that the operator A is closed.

2) Adjoint A* of the operator A

The adjoint A* is given for all ¢ in its domain

¥+(0) Y4 (1)
DAY ={ypeZ:K*|A =|A ,
“ { . Y_(1) Al wan”
(20)
by
A% = A + M* . (21)

Indeed, it suffices to observe that the usual pairing iden-
tity (A*1, z) = (1, Az) holds for all z € D(A) and for all
1 € D(A*). To check this, let us consider the operator

A* given by (21) on its domain (20) and observe that,
for all z € D(A) and for all ¢ € D(A*),

1 1
(A*q/),z>:/ ¢'*A*zdx+/ (M*9)* zdx
01 0 1
= ’l,[)f:AJ,_Z_;,_dl’ —/ d)/_*A_Z_dQS
0 ) 0
+/ VM zdx
01 1
:—/ 1/1:»A+Z;d$+ ¢1A+Z+‘O
0
1
+/ YrA_Z de — YAz,
0

1
+/0 Y*Mzdx (22)

where an integration by part has been performed in the
first two integrals. Now, using the definitions of D(A*)
and K, we get, for all ¢ € D(A*),

[0 Kf] [A+¢+(0) _ A+1/)+(1)]
Ego J[Av-)] [Av ()]
which is equivalent to
leA_w_u)]: A+w+<1>1_ (23
K§A+94(0) A_yp_(0)

Combining the boundary conditions (23) with (22) and
the definitions of A and its domain D(A) yields the fol-
lowing identity, for all z € D(A) and for all ¢ € D(A*):

(A%, 2) = (1, Az) + 9% (1)A;z4 (1)
—Y1 (0)A+ Koz—(0) — ¢4 (1A 24 (1)
4% (0)A 4 Koz (0)
= (Y, Az) .

Thus the adjoint of A is given by (20) and (21).

In addition, let us now check that it follows from As-
sumptions 1 and 2, i.e. from the inequalities (10), (11),
(12) and (13), that

(i) there exists v; > 0, such that, for all z in X,
R(Az, Pz) < —uv1|2|%, hence the operator A is dissipa-
tive, and

(ii) the operator A* is also dissipative, such that there ex-
ists vy > 0 satisfying, for all ¢ in D(A*), R{(A*Y, Q¢) <
—12 |¢|§(



3) Dissipativity of the operator A

In order to check the fact (i), note that, for all z in X,

R(Az, Pz) = 3%/ (A2)) Pzda:+§R/ Mz)*Pzdx

< §R/ —2*APzdx ,

where (11) from Assumption 1 has been used. Observe
that, thanks to the fact that the matrices A and P are

diagonal, AP = PA and di(z*APz) = 22"*APz. Tt fol-
x
lows that

R(Az, Pz) < 1 z*APz\é
< *5(21(1)A+P+Z+(U*Zi(l)/\—P—Z—(1)
25 (0)A4 Pyz4 (0)+2* (0)A_P_z_(0)).

By using the definition of D(A), we obtain that, for all
z in D(A), z4+(0) = Koz_(0) and z_(1) = Ky124(1). By
plugging these boundary conditions in the second and
third terms of the right-hand side of the inequality above,
we get

R(Az, Pz)
(2L (1)A4Pyzy (1) — 25 (1) KT A_P_Ky2,.(1)
—2_(0)*K§ A4 Py Koz—(0) + 25 (0)A_P_2_(0))

S_

DN | =

and thus R(Az, Pz) < Tv*Ev with v’ = [21.(1), 2_(0)]
and the matrix

—AL P+ KfA_P K, 0
0 KA P Ky— A_P_

FE =

Now note that (12) in Assumption 2 is equivalent to the
LMI
K|AT'PTIK* < |A|7PP7! (24)

and using the definition of K and the coordinate decom-
position (2), it is also equivalent to

KiA_P_K; <A, P,
K{A P Ky <A_P_.

Therefore, under (12) in Assumption 2, reinterpreted as
(24), there exists a positive value v; such that, for all
z in D(A), R(Az, Pz) < —v1(|z-(1)|* + |2-(0)]?) and,
by the boundedness of the trace operator from Z to R
with norm equal to 1, it follows that, for all z in D(A),
R(Az, Pz) < —11]2|% . Moreover, since P is symmetric
positive definite, there exists 77 > 0 such that, for all z

in D(A), R(Az, z) < inR(Az, Pz). Thus, with a suitable
1 > 0, for all z in D(A),

R(Az, z) < —ﬁ1|z|§( . (25)

In other words, A is a dissipative operator.

4) Dissipativity of the operator A*

To check the fact (ii), let us compute, for all ¢ in D(A*),

(A, Qu) —éﬁ/ (A) deﬂéﬁ/ (M*9)*Qy
<R / W AQupda

where (10) from Assumption 1 has been used. Note that,
thanks to the commutativity property AQ = QA, there

holds %(@[J*AQw) = 2¢"*AQ and thus

R(A", Qu) < £ v AQu;
< 5 (WHOA Q44 (1) — 92 (DA Q4 (1)
—0% (0)A4 Qb (0) + 4 (0)A_ Q1 (0))
(Y2 (A-K QAT KAy (1)
DA_Q-v—(1) = ¢71(0)A+Q+1+(0)
+3 (0)A L KoQ-AZ'K§A 4. (0))

_1
=3
9= (

where (23) has been used in the first and the last terms.
Therefore

R(A", Q) < s Fu (26)
with w! = [14(0),%_(1)] and the matrix

Fe Ay KoQ-AT'KEAL —AyQy 0

Now note that (13) in Assumption 2 is equivalent to

(Q|A|1>‘”2K(Q|A|1)”2l0 I’”]

Iy—m O
0 I,
Ly_m O

and, by using the commutativity of A and @, it is also
equivalent to

1/2 —1/2

<I,

(QIAITY) K (QIAITY)

—1/2 —-1/2

(@A)

Finally by pre- and post-multiplying the last inequality
by (QA])?, one gets the LMI: [A|KQ|A|~1K*|A| <

KQIA7'K* (QIA]™) <I,.

0 A_K1QiAT KfA- —A_Q_

] |



Q|Al, i.e., by using the definition of K and the coordinate
decomposition (2),

Ay KoQ AT'KGAL <AL Qy
AK1QiAT'KIA_ <A_Q_ .

Therefore, under (13) in Assumption 2, reinterpreted as
(26), the following inequality holds, for all ¢ in D(A*):
R(A*, Qu) < —va([tb4 (0)]2 + 1o (1)[?), for some pos-
itive constant o, and, by the continuity of the trace op-
erator from Z to R, it follows that, for all ¢ in D(A*),
R(A*p, Qv) < —1s|9|% . Moreover, since Q is symmet-
ric positive definite, there exists 75 > 0 such that, for all
¥ in D(A*), R{A*, ) < DaR(A*P, Qvp). Thus, with a
suitable 25 > 0, for all ¢ in D(A*),

R(A P, ) < —inl% . (27)

Then one can conclude that A* is a dissipative operator.

In view of the facts (i) and (ii), applying Lumer-Phillips
Theorem, the operator A is the infinitesimal generator of
an Cp-semigroup T'(t) on X . Moreover, by (25) and (27),
applying [0, Corollary 2.2.3, p. 33], there exists v > 0
satisfying, for all t > 0, ||T(t)]] < exp(—vt). O

Corollary 1 Under the conditions of Theorem 1, the
operator A has a pure point spectrum o(A) = o,(A) that
is included in the closed left half-plane Cy,— = {s € C:
R s < wo} contained in the open left half-plane, where
the spectral bound wy := supR o (A) < 0 is the growth
constant of the Cy-semigroup generated by A. Moreover,
any complex number X is an eigenvalue of A iff it is a
solution of the characteristic equation:

I, ~K, ] 0
(K1 In_m] - exp(A~1(M — AI)) '
(28)

X(A) := det [

Proof. 1t suffices to observe that any complex number
A is in the resolvent set p(A) of the operator A iff the
matrix

[EAERTSE
(K1 ILn—m] - exp(A~1(M — X))

is invertible. In addition, in this case, the resolvent op-
erator is given by

(A= XD)7 f = exp(A~H(M = \I)z)
-1

(SRR
(K1 ILn—m] - exp(A~1(M — X))

lo ] —I(x,\)
I(1,N\)_ — K I(1, M)+

where

I(z,\) = /Ow exp(A™H (M = A)(z — 2))A" 1 f(2)dz ,

(29)
and is therefore compact. The pure point spectrum prop-
erty follows by [B, Lemma A.4.19, p. 616].

Moreover, observe that, for every A = s 4+ w, where w >
wo, (A—XI)~1is in the Hardy space H>(L(X)). Recall
also that A is the generator of an exponentially stable
Co-semigroup, hence, by [B, Theorem 5.1.6, p. 223], A
satisfies the spectrum determined growth assumption
with wg < 0. [l

3.8 Design of a stabilizing controller

Theorem 1 is instrumental to design stabilizing output
feedback laws. To be more precise define the output ob-
servations as the following part of the state, for all t > 0,

y(t) = [§+(15t)7 5—(O7t)]—r :

Then the next corollary follows readily from Proposition
2 and Theorem 1:

Corollary 2 For any matriz O = [Og, O1] in CP*™ such
that Im Og C Ker Ny and Im O, C Ker Ny, define the
following output feedback controller by, for allt > 0,

u(t) = Oy(t) .

If the matriz in (8) is invertible, and under Assumptions
1 and 2, where the matriz K has been replaced by K+ NO
in (8), (12) and (13), there exist a positive value v such
that it holds, for allt > 0,

1€ x < exp(=v1)[|€(0)]|x

along the solutions to (1) with the boundary condition

(3).
4 Application in hydraulics
4.1 Nonlinear and linearized dynamics

In this section, we are using a system of balance
laws by taking into account the potential distributed
loss/increase of energy, of momentum... Several exam-
ples may come in mind such as the Euler equations. Here
we consider the shallow water equations describing the
dynamics of the water level, of the water flow and of the
sediment inside of a channel. The effect of the friction
and of the slope modifies the dynamics and makes a sys-
tem of balance laws (instead of a system of conservation
laws without friction and slope). In this paper we focus
on space-invariant equilibrium of Saint-Venant—Exner



model. For further results on non-constant stationary
state of the Saint-Venant—Exner model, see [15].

More specifically, following [I3][16] (see also [7,[20,]]), a
linearization around a space invariant equilibrium could
be performed to obtain the following model in Riemann
coordinates

& + A& = ME (30)

where g - (fla 527 53) 5 ( ) = diag()‘h)‘??AS)a and,
for all z € [0,1], ¢ > 0,

a1 Qg (3

M@E)=| a1 as as | , (31)

ap Qg a3

with o = (3V* —2)\;)0 for suitable 0, € R, k=1, 2, 3.
It is proved in [I6] that, for all k =1, 2, 3, a, < 0 (and
thus the matrix in (31) is stable, and a possible diagonal
definite positive matrix P such that M TP + PM < 0
is P = diag(—ay, —ag, —ag)). Therefore Assumption 1
holds.

Moreover in the same references, assuming positive flow,
it is noted the three eigenvalues of A satisfy

O<)\1<)\2,>\3<0, (32)

Our approach could be adapted to the case of a negative
flow.

4.2 Boundary conditions

The boundary conditions of (30) are defined by hydraulic
control devices such as pumps and valves. Here it is as-
sumed that the water levels are measured at both ends of
the open channel, and that the control action can be di-
rectly prescribed by the control devices. More precisely,
in the Riemann coordinates, we consider the following
set of boundary conditions, given three tuning parame-
ters ki3, k31, k32 to be defined (they are tuning control
variables)

£1(0,1) &i(1,1)
£(0,t) | = K| &(1,0) (33)
€3(1,) €3(0,1)
where
0 0 ki3
K=1 0 0 n(ks) |
k31 k32 0

and 7 is a nonlinear function, depending on the equi-
librium under consideration, see [20] for an expression.
See the same reference to check that these controllers
depend only on the outputs that are observed.

4.8 Design of a stabilizing feedback

Following the notations of Section 2, welet m = 2, n = 3,
Ko = (ki3 n(k13)) " and K| = (k31 ks2). In the boundary
conditions, we do not consider any control actions (thus
the control operator is admissible), but we now aim at
computing the tuning gains ki3, k31 and k3o so that
Corollary 2 applies, yielding a boundary controller such
that the closed-loop system is exponentially convergent.

To do that, let us consider the following numerical values
Al = 7.72 x 1074, Ay = 13 and A3 = —10 with the
equilibrium considered in [T6], 20} [TT].

We may check that by letting ki3 = 0.05, k31 =
and k’gg = —0.8, P = diag(—al,—az,—ag), and Q
diag(asas, ajas, aas) it holds

det[(—K; 1) exp(A~"M)(Ky 1)] # 0, (34)
and Equations (12) and (13) hold where [A] =
diag(A1, A2, |A3]). Moreover it holds PM + M TP < 0

and MQ + QM7 < 0. Thus, the matrix given by (8)
is invertible and Assumptions 1 and 2 hold. Therefore
Corollary 2 applies with O = 0.

0

Other choices are possible for P and @, as already dis-
cussed in Remark 1. As an example, we may let @ =

P! and check that PM +MTP <0 as soon as MQ+
QMT <0.

Let us illustrate the asymptotic stability by means of
numerical simulations)* | The time evolutions of the first,
second and third components of the solution to (30) and
(33) starting from the initial conditions &(x,t = 0) =
(cos(4dmx) — 1,cos(2mx) — 1, — cos(4dmx) + 1) for all z
in (0,1) are shown in Figures 1-3 where it is checked
that the solution converges to the origin. The boundary
conditions (33) with the tuned gains ki3, k31 and k3o are
given in Figure 4.

Note that, due to the very small value of | A1 | with respect
to the absolute values of the other velocities | A2| and |As],
it is checked that the first component converges to the
origin more slowly than the other components. Compare
Figure 1 with Figures 2 and 3 where a different scale
for the time ¢ is used. This is consistent with the theory
of singularly perturbed hyperbolic systems as studied in
[24].

5 Conclusion

Hyperbolic systems described by balance laws have been
considered in this paper. A boundary control problem

! The simulation codes can be downloaded from
http://www.gipsa-lab.fr/~christophe.prieur/Codes/
automatical7.zip.


http://www.gipsa-lab.fr/~christophe.prieur/Codes/automatica17.zip
http://www.gipsa-lab.fr/~christophe.prieur/Codes/automatica17.zip
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Figure 1. Time evolution of the first component of the
&-solution.
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Figure 3. Time evolution of the third component of the
&-solution.

has been studied using semigroup theory. The main re-
sults suggest a new sufficient condition for the well-
posedness of the boundary control problem and for the
stability of the closed-loop system. The sufficient con-
ditions are written in terms of matrix inequalities that
are related to by-now classical Lyapunov theory for hy-

Boundary condltlons

—51( t)|]
__52( ) ) -
_°_€3(17t) -

Figure 4. Time evolution of the boundary conditions (33)
when applying the tuned gains k13, k31 and kso.

perbolic systems as developed in e.g., [I0, @]. As an il-
lustration of the main results, the Saint-Venant—Exner
equation describing the dynamics of the flow and of the
sediments inside of an open-channel were considered.
Some simulations have been performed to approximate
the time evolution of the solutions.

This study leaves many open questions open. In partic-
ular, the linear-quadratic (LQ) optimal control problem
is a natural extension of this work, using the framework
of [27]. Tt could be fruitful to adapt the techniques of [25]
to derive the Riccati equation and to design an LQ opti-
mal control. An analogous (but different) control prob-
lem has been already solved in [I] and [2], where a linear-
quadratic optimal control is computed for a class of first-
order hyperbolic nonlinear partial differential equations.
See also [6] where approximate boundary observation
is used to compute an LQ optimal controller. Finally
it could be interesting to study the effect of the dis-
turbances in the Saint-Venant—Exner equation on the
closed-loop system performance.
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