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for accurate volume downsampling
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Figure 1: Comparison between naive downsampling of micro ake volumes and our méthiso ( Sec. 7). Naive dowsampling of dense
heterogeneous volumes often lead to inaccurate LoDs, due to the loss of masking and shadowing effects that occur between and insi
dense input voxels. Our downsampling approach is based on a new participating medium model and on local estimations of self-shadowin
probabilities. It generates LoDs with correct transparency and consistent appearance through scales. Rendered with volume path tracing
(the trunk of the cedar is a mesh).

Abstract

Naive linear methods for downsampling high-resolution micro ake volumes often produce inaccurate appearance, especially
when input voxels are very opaque. Preserving correct appearance at all resolutions requires taking into account masking-
shadowing effects that occur between and inside dense input voxels. We introduce a new micro ake model whose additional
parameters characterize self-shadowing effects at a microscopic scale. We provide an anisotropic self-shadowing function and
micro ake distributions for which the scattering coef cients and the phase functions of our model have closed-form expressions.
We use this model in a new downsampling approach in which scattering parameters are computed from local estimations of
self-shadowing probabilities in the input volume. Unlike previous work, our method handles datasets with spatially varying
scattering parameters, semi-transparent volumes and datasets with intricate silhouettes. We show that our method generates
LoDs with correct transparency and consistent appearance through scales for a wide range of challenging datasets, allowing
for huge memory savings and ef cient distant rendering without loss of quality.

CCS Concepts
Computing methodologie$ Ray tracing; Volumetric models;

1. Introduction data is challenging due to high I/O time [ZWDR16] and costly vol-
ume integration along rays, but contrary to mesh-based intricate ge-
Heterogeneous participating media based on voxel grids are a pow-ometry, voxel grids are convenient for level-of-details (LoDs) and
erful representation for rendering complex semi-transparent ap- allow for ef cient rendering and low memory usage when an ap-
pearance and intricate shapes. Rendering high-resolution volumepropriate resolution is used. Unfortunately, downsampling volume
data is not as straightforward at it seems since naive downsampling
methods based on linear pre- Itering often produce inconsistent ap-

Y guillaume.loubet@gmx.fr & fabrice.neyret@inria.fr
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Our downsampling algorithm computes scattering parameters in
low-res voxels from local estimations of self-shadowing probabil-
ities in input voxels. This approach overcomes some limitations
of previous work [ZWDR16]: it allows for downsampling with-

out artifacts spatially varying datasets, because it does not require
voxel clustering, and it supports semi-transparent datasets because
it avoids the optimization of parameters in image space (Sec. 2.3).

| ga) | (b) | (©) | (d) | Our downsampling approach is also faster because local estima-
nput voxels Low-res voxel Low-res voxel Low-res voxe i i _ i

(inear method)  (correct transp ) _ (using our model) tions are less expensive than large-scale rendering (Sec. 8.1).
Figure 2: In the case of a highly heterogeneous voluajenaive _Our new micro ake _moc_zlel aims at ad_justing anisotropic attenu-
downsampling algorithms can lead to inaccurate res(Bts). (b): ation and self-shadowing in low-resolution voxels. Our phase func-

linear pre- Itering densities results in incorrect transparency (blue ~ ions do not model accurately scattering that occurs in very dense
lines) in low-resolution voxelg(c): correct transparency can be voxels, w_hnch limits accuracy of our LoDs. Preserving both accu-
obtained by decreasing density in low-resolution voxels, but this fate opacity and phase functions for dense heterogeneous volumes
also decreases the probability of local self-shadowing and leads "éMains an open problem as discussed in Sec. 8.4. In this work, we
to overly bright LoDs(d): Our microscopic self-shadowing model ~ did not focus on fabrics: unlike Zhao, Wu et al. [ZWDR16], we do
can represent media with correlated micro akes and it preserves Ot address the case of multi-yarn datasets with strong correlations
both anisotropic transparency and self-shadowing effects. between albedos and micro ake distributions.

2. Related work

pearance through scales as shown in Fig. 1 (left), especially whenz_l_ Volume scattering models in computer graphics
input datasets have dense voxels. Indeed, linear pre- ltering does
not preserve accurate transparency as shown in Eig. 2b, and deost participating medium models in computer graphics are based
creasing density in low-resolution voxels necessarily reduces the on the standard radiative transfer framework [Cha50]. Several ex-
amount of localself shadowing and maskifgwWDR16], that is tensions have been proposed such as discrete media approxima-
the probability that light scattered from a point in the medium is tjons [MWMO7, MPH 15, MPG 16] and models for media with
scattered again in its close vicinity. This loss of self-shadowing is anisotropic attenuation and direction-dependent phase functions
illustrated in Fig. 2c. The lack of local multiple scattering leads to [Ney98, MWMO8, SKZ11, KSZ15]. Jakob et al. [JAM10] have
overly bright LoDs when naive downsampling methods are used generalized the radiative transfer equation to such anisotropic me-
(Fig. 1, left). dia and have introduced the physically-based micro ake model.
) L . . This model has been used for rendering and pre- Itering intricate

Amqng avallab_le participating medium models in Computer shapes such as foliage [HDCD15, LN17] and fabrics [ZIJMB11,

Graphics, the micro ake model [JAMLO] has been used for  7\ypR16) In our work, we have focused on downsampling mi-

rendering anisoFrop_ic ber-like and _foliage-like appearance. Re- cro ake volumes, and we believe that our approach can be adapted
cently, two publications overcame important problems raised by to other volume modelg,.g.simpler isotropic volume models.
micro ake volume downsampling. Heitz et al. [HDCD15] have in-

troduced the SGGX micro ake distribution which support ef cient

linear pre- Itering. Zhao, Wu et al. [ZWDR16] have built on this 5 5 Normal distributions in the micro akes framework

work and have introduced a downsampling approach that preserves

correct appearance in LoDs. As discussed in Section 2.3, their ap-The key ingredient of the micro ake model is the micro ake nor-
proach has some limitations due to the use of large-scale trainingmal distribution function, from which phase functions and attenua-
rendering for optimizing scattering parameters and voxel clustering tion coef cients are derived. Rendering with the micro ake model
that produces artifacts when datasets have spatially varying appearrequires ef cient evaluation of the projected area of micro akes
ance. In this paper, we introduce a new downsampling approach foras well as ef cient evaluation and sampling procedures for phase
generating appearance-preserving LoDs. Our main contributionsfunctions. We brie y review here existing micro ake normal dis-
include: tribution functions because choosing appropriate distributions has

been essential in our work for implementing our new micro ake
A new micro ake model whose parameters characterize self- model (Sections 5 and 6).

shadowing effects at a microscopic scale (Sec. 4).

A new downsampling algorithm that uses our model for pre-  In the seminal work of Jakob et al. [JAMO], the authors have
serving both correct transparency and self-shadowing effects proposed distributions based on powers of sine and cosine func-
in low-resolution volumes (Sec. 7). tions: Dgyrf(W) = cos'(v;w) andD per (W) = sin(v;w). They have

We derive closed-form expressions and sampling proce- not provided closed-form expressions for attenuation coef cients
dures for implementing our model and its simpli ed version and they have used spherical harmonic approximations for eval-
(Sec. 4.3), using appropriate self-shadowing functions and mi- uation and sampling. In our work, we combine similar distribu-
cro ake distributions (Sec. 5 and 6). tions because of their good mathematical properties (Sec. 5). We
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provide the missing closed-form expressions for attenuation coef-
cients and phase functions, as well as exact importance sampling
procedures.

Zhao et al. [ZIMB11] have used another distribution called the
Gaussian Fiber Distribution. Their implementation is more ef -
cient than the original implementation of Jakob et al. [JAN],
although they have not provided closed-form expression of the at-
tenuation coef cient — but they provided an ef cient approxima-
tion [Jak10]. They have used a rejection algorithm for sampling the
distribution of visible normals [HDCD15] based on the sampling of
the normal distribution, which is inef cient in some con gurations.
We also rely on rejection sampling for some of our phase functions
but we provide robust sampling procedures for the distributions of
visible normals.

Heitz et al. [HDCD15] have introduced the SGGX distribution.
It has overcome limitations of previous distributions since it sup-
ports fast and exact evaluation of attenuation coef cients, as well
as ef cient evaluation and sampling of specular phase functions.
We have used the SGGX distribution for implementing our simpli-
ed self-shadowing model (Section 6).

2.3. Downsampling volume data

Symbol Meaning Unit
D(w) Micro ake normal distribution st T
A(wW) Microscopic self-shadowing -
r Total area of akes per unit volume m &
St Attenuation coef cient m !
Ss, Sss Sms  Scattering coef. (wavelength dep.. m !
fifss fms  Normalized phase functions st 1
a,ass ams Albedos (wavelength dep.) -
() Dot product -
h i Clamped dot product -

Table 1: Main symbols used in this paper.

errors, using local estimations of self-shadowing probabilities in-
stead of large-scale training rendering.

3. Background: the standard micro ake model

Jakob et al. [JAM10] have introduced a physically-based model in
which the medium is, at a microscopic scale, a homogeneous cloud
of micro akes whose orientations are statistically described by
a micro ake normal distribution function. Anisotropic micro ake
normal distributions result in anisotropic attenuation coef cients
and direction-dependent phase functions.

Several authors have proposed volume downsampling methods

in various contexts including simple RGBA data [KB08] and
anisotropic voxels for real-time global illumination [CNSL].
Heitz et al. have addressed the problem of downsampling mi-
cro akes normal distributions [HDCD15] and Zhao, Wu et al.
[ZWDR16] have built on this work for downsampling micro akes
volumes taking into account shadowing effects. They have pro-
posed an iterative optimization of scattering parameters using

large-scale training rendering. The optimization stops when appear-

Our self-shadowing model (Sec. 4) is an extension of the stan-
dard micro ake model, in which we added correlations of mi-
cro akes position at a microscopic scale (Fig. 2d). In this section,
we brie y review the anisotropic radiative transfer equation intro-
duced by Jakob et al. [JAM.O] and their micro ake model, which
will be referred to as thetandard micro ake modeh this paper.

Anisotropic RTE. The anisotropic radiative transfer equation

ance of LoDs matches the reference volume. This approach hasrTE) proposed by Jakob et al. [JANIO] writes:

proven to produce accurate LoDs for several challenging datasets

including complex multi- bers fabrics. However, the enormous
amount of parameters requiring optimization makes the problem

intractable unless low-resolution voxels are assigned to a few clus-

Z
(W r LW+ st(W)L(w) = ss(w)  Fw! wOLWO) dw’+ Q(w)
7

ters that share some scattering parameters. Voxel clustering reduce¥ith st(w) the anisotropic attenuation coef cienss(w) the
dimensionality but leads to artifacts when input dataset have spa-anisotropic scattering coef cient (which is usually wavelength de-

tially varying scattering parameters. Another limitation of their

pendent), and the anisotropic phase function (in the sense that it

work is that their optimization using image space errors assumesdepends ow andw’, and not only on the angle betwearandw?).

that each pixel value depends mostly on the rst non-empty vox-
els that are seen directly. It is unclear how their algorithm could

be adapted to semi-transparent datasets, or datasets that have both

transparent and very dense voxels.

In this paper, we use phase functions that are normalized over the
second parameter:
z

f(w! WO)dWOZ 1, 8w:
<

In this paper, we address the same problem as Zhao, Wu et

al. [ZWDR16], that is generating low-resolution micro ake vol-

ume while preserving the appearance at all scales. We add the con
straint that our LoDs must have correct transparency and silhou-

ettes, and we do not rely on linear downsampling for density pa-

Helmholtz's reciprocity principle for anisotropic media. In
general, phase functions in the anisotropic RTE framework do not
satisfyf(w! w%= f(w®! w). The Helmholtz's reciprocity prin-

ciple, which states that radiative transfer remains the same when

rameters. Correct transparency is important when downsamp”nginterchanging sources and receivers. writes
intricate datasets such as the cedar in Fig. 1. We overcome prob- '

lems raised by voxel clustering and optimization with image space

ss(w) f(w! W%:SS(WO)f(WO! w):
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This is the reason why using arbitrary phase functions for medium
with anisotropic attenuation coef cient often break reciprocity.

Micro ake model. Based on their anisotropic RTE, Jakob et al.
[JAM 10] have studied the case of medium made of micro akes,
given a micro ake normal distributiorD. They derived attenu-
ation coef cients and phase functions for such media and the
Helmholtz's reciprocity principle is satis ed by construction. The
micro ake BRDF is often considered perfectly specular because
this greatly simpli es evaluation and sampling.

In this work, we assume like Heitz et al. [HDCD15] that mi-
cro akes re ect on both side and we only consider normal distri-
butionsD that satisfy

D(w)= D( w):

GivenD, the attenuation coef cient is derived from the integral of
projected areas over micro ake orientations:
z

st(w)y=r  D(wWm)hw wmi dwm 3.1)

wherer, which will be referred to aslensityin this paper, is the
amount of micro ake surface per unit volume (Table 1). Assum-
ing that the micro ake albedo is not view-dependent, the scattering
coef cient for awa\galength is given by

ss(wy=ra(l) DWmhw wmi dwm= a(l )st(w) (3.2)

with a(l') the albedo of the micro akes. In the case of specular
micro akes, the phase function writes

ra (I )D(wp)
Powd= SR
fw! w 4s4(W) (3.3)
0
with wy, = 7& WO the half-vector.

4. The microscopic self-shadowing micro ake model

In this section, we introduce a new participating medium model
based on the micro ake model. We call it thmicroscopic self-
shadowing modddecause it models media whose micro akes have
correlated positions at a microscopic scale, leading to microscopic
shadowing and masking. Microscopic self-shadowing impacts at-
tenuation coef cients, as shown in Fig. 2, as well as scattering co-
ef cients and phase functions.

4.1. Motivations for a new model

Volume downsampling raises the problem of how to best represent
a set of heterogeneous input voxels with a single low-resolution
voxel. The approach of Zhao, Wu et al. consists in using standard
micro ake volumes and optimizing micro ake albedos in low-res
voxels in order to take into account self-shadowing. Instead, we
introduce a new micro ake model whose parameters allow:

the control of the anisotropic attenuation due to anisotropic
correlations, independently of the micro ake normal distribu-
tion (Fig. 2d),

the control of the amount of microscopic self-shadowing, us-
ing different phase functions and albedos for single scattering
and multiple scattering at the microscopic scale.

4.2. Our model

Let's consider a volume whose micro akes are spatially correlated
at a microscopic scale, as shown in Fig. 2d. We characterize mi-
cro akes correlations with the probability that a micro ake is shad-
owed or masked by a neighboring micro ake, in a given direction.
We introduce a dimensionless scalar functfoan the sphere such
that 1 A(w) gives the probability of shadowing by other neigh-
boring micro akes in the directiow. A satis es:

8w2 S 0< Aw) 1 andAw)= A( w):  (4.1)

The caseA(w) = 1 corresponds to the standard micro ake model
in which micro akes are well separated at a microscopic scale and
not correlated [JAM10]. Given this shadowing behavior at a mi-
croscopic scale, we derive new expressions for attenuation coef -
cients, scattering coef cients and phase functions.

Attenuation coef cient (st). The attenuation coef cient is given
by the standard micro ake model times the self-shadowing func-

tion A characterizing micro ake correlations:
z

st(w)= AW)r  D(wWm)hw wmi dwm: 4.2)

Single scattering coef cient 6sg). We consider the amount &i-

cal single scattering ss(w) at microscopic scale, from an incoming
directionw. Single scattering occurs when micro akes are both un-
masked and un-shadowe(%:

Ss(w) = ra sgl )A(w) A(W%D(Wm)h/v Wmi dwWm (4.3)
wherew? = 2wm(wm W) w is the re ected direction given an
input directionw and a micro ake normam. This can be written

as an integral over outgoing directions, using the Jacobian of the
transformation from normals to specular re ections provided by

Walter et al. [WMLTO7]:

ra ss(l )A(W) Z

y AW)D(wp) dw’

Ssg(W) = (4.4

The single scattering phase function fss). Microscopic self-
shadowing also impacts thengle scattering phase functionsf
which is the standard phase function attenuated in some directions
due to microscopic shadowing (and normalized):

_ A(W9)D(wh)
few! W)= R AWOID((WO% W) =kwO% WK) GwO0
_ ra s JAW)AW)D(wp) .
4ssq(W) ’
Again, whenA = 1, this reduces to the standard micro ake spec-

ular phase function. It is easy to check that our model satis es
Helmholtz's reciprocity principle by construction:

ra ss{l )A(W)A(W") D(wh)
4

(4.5)

Ssg(W) fsg(w! WO) =
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which is symmetric irw andw®

Microscopic multiple scattering. We want our model to take into
account microscopic multiple scattering so that it satis esithée
furnace testmeaning that all incoming light should be scattered
in the case of micro akes with albedo 1, for any self-shadowing
functionA.

Ideally, our model should have one scattering coef cient and one
phase function for each number of local scattering events. Unfortu-
nately, their expressions involve spherical convolutions of the mi-
cro ake phase function, for which there are no analytic expressions
in general. In this paper, we chose to use a single multiple scattering
coef cient smg(w) and a single multiple scattering albedas(l )
that approximate contributions of all scattering orders except sin-
gle scattering. The multiple scattering coef cient is given by the
amount of light that scattered and then masked locally, times the

multiple scattering albedo:
z

Sms(W) = amg(l )JrA(w) 1 A(WO) D(Wm)hw Wmi dwm

Sss(W)
asyl)
The multiple scattering albedumg(l ) is a parameter of our model.
We assume that multiple scattering is roughly diffuse, and we use
the multiple scattering phase function

= amgl) st(w) (4.6)

smwd)

fnsw! W= fngw® = RWO

It satis es reciprocity since

4.7)

gms(W)s ms(w)

Sms(W0§ dw00
which is symmetric inv andw® This phase function scatters light
in directions in which there is strong microscopic shadowing. Also
note that in the cases{(l ) = amdl ) = 1, we have

Sso(W)
asql)

meaning that our model preserves energy when micro akes do not
absorb light, meaning that the model passes the white furnace test.

Sms(W) fmg(w'! W(ﬁ =

Ss(W)+ Sme(W) = ssg(W)+ amg(l ) st(W) = st(w)

Summary. We introduced a self-shadowing functioh where

1 A(w) represents the probability of shadowing and masking by
neighboring micro akes at a microscopic scale. Self-shadowing
impacts attenuation coef cierttt, the single scattering coef cient
sssand the associated phase functiga For energy conservation,
we take into account local multiple scattering introducing a multi-
ple scattering coef ciens msand its associated phase functifar.
Rendering with this model requires evaluating these functisns (
Sss fss, Sms fms) and sampling procedures féysand fms.

In practice, Eq. 4.2, 4.3 and 4.7 rely on spherical integrals of the
micro akes distributionD with the shadowing functioA, meaning
that for most function® andA no closed-form expressions can be
found. In the next section, we present appropriate functidasd
A that lead to closed-form expressions, allowing ef cient imple-
mentations of our self-shadowing model.

4.3. Simpli ed model with isotropic self-shadowing

Our model greatly simpli es when the self-shadowing function is
isotropic, i.e. when A(w) = A; 8w. As discussed in Sec. 6, this
simpli ed model is easier to implement, requires less parameters
at rendering and has suf cient accuracy in practice. In the case of

isotropic self-shadowing, expressions reduce to
4

st(w)= Ar  D(Wm)hw wmi dwm (4.8)
Ssg(W) = asg(l )Ast(w) (4.9
_ rass{l )A’D(wp)
few! wh= e (4.10)
Sms(W) = amg(l )st(w)(1 A) (4.11)
_p SmwW)  _ o osiwd)
frslw) = R 008 dno™ sy 412

Note thatst(w) is equal toA times the attenuation coef cient of
the standard micro ake model, arfesis exactly the specular phase
function of the standard micro ake model.

5. Implementing the self-shadowing model using
trigonometric lobes cos™ and sin””

As we highlighted before, functions in our shadowing model
(Eq. 4.2, 4.3 and 4.7) involve spherical convolutions and inte-
grals of micro ake distributiondD and self-shadowing functions
A. The micro ake normal distributio® is de ned in the space of
micro ake normals, whileA is de ned in the space of incoming
or outgoing directions. Because of this, it is very dif cult to nd
closed-form expressions of integrals such as Eq. 4.3. For instance,
we could not nd solutions using the commonly used SGGX distri-
bution, the Gaussian Fiber Distribution [ZIJMB11], Spherical Gaus-
sians [TS06] or Anisotropic Spherical Gaussians [X3B] despite
their interesting mathematical properties.

Fortunately, we found closed-form expressions using micro ake
distributions based on trigonometric lobB§w) = co$™(w;Xp)
andD(w) = sinZ”(w; Xp) (Sec. 5.2), and using an appropriate self-
shadowing function (Sec. 5.1). We give here our main results (ex-
pressions fost andsss). Complete derivations, proofs and sam-
pling procedures can be found in our supplemental material.

5.1. Choosing the self-shadowing functioi.

We introduce an anisotropic self-shadowing functoof the form

AWw) = w'Sw (5.1)

with Sa symmetric positive de nite matrix encoding anisotropy as

in SGGX distributions [HDCD15] (this function can be seen as the
squareprojected area of an ellipsoid). As we wankQA(w) 1,

we ensure thab has eigenvalues equal to or below 1. We found

that this representation is simple and exible enough for encoding
smooth directional changes of the self-shadowing probability, and
it can be stored with only 6 parameters.
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Figure 3: (top): trigonometric lobes Figure 4: Notations for
(Eq. 5.2).(bottom): SGGX distribu- Eqg. 7.10, for a ray in a
tions. These distributions can rep- block of input voxels or in
resent similar foliage-like (left) and a low-res voxel.

ber-like (right) media.

5.2. Using trigonometric lobes for distribution D.

Using self-shadowing functions described by Eq. 5.1, we found
closed-form expressions for our model using the following mi-
cro ake normal distributions:

co"(w;x) _ (w x)2"

Neos(n)

Peodutim = Neod )

sifP"(w;x) _ (1 (w x)%)"
Nsin(1) Nsin(n)
with n2 N andNcos(n) andNsjn(n) the normalization factors whose

Dsin(W; x;n) =

closed-form expressions can be found in our supplemental material.

These distributions will be referred to i®onometric lobesn this
paper. Any linear combination of such lobes still leads to closed-

5.4. Single Scattering coef cients

Similarly, we have found closed-form expressionsdegfor each
n:

2 3

1 2

2
s22%w) = s )rA() § 0

(w xp)®

T 3
W' Saw
C2 4xbSaxp°
tracdA)

+asdl )rAwW) w'Syxp 4

with C; a(n+ 1) 3 matrix of coef cients andC3 a vector of co-
ef cients of lengthn. We found similar expression for Sthlobes.

5.5. Evaluating and samplingfssand fms

Details concerning phase functions can be found in our supplemen-
tal material. The evaluation of our multiple scattering phase func-
tion fms (EQ. 4.7) involves the integral of the multiple scattering

coef cient:
Z Z

Z
SmdW) dw= amg(l) amdl)

asgl)

We provide closed-form expressions f%st(w) andRsss(w). We

also provide sampling procedures for the visible normal distribu-
tions [HDCD15] of trigonometric lobes. We rely on rejection sam-
pling for sampling exactlyfss and fms. As discussed in our sup-
plemental material, our sampling procedures are very ef cieat (
samples are almost always accepted) when the shadowing function
Ahas few anisotropic variations (which is often the case in practice)
and are less ef cient wheA is highly anisotropic.

St(w) dw

Ssg(W) dw:

form expressions in our model. These lobes can represent the same

kinds of distributions as the SGGX distribution (Fig. 3), using for
instance

Wiso
4
with we, Ws, Wigo positive weights such thaie + ws+ wigo = 1.

D(wW) = WcDcos(W; Xc; Ne) + WsDgin(W; Xs; Ns) + (5.2)

5.3. Attenuation coef cients for co" and sir” lobes.

In our supplemental material, we derive a general closed-form ex-
pression for the attenuation coef ciesifs, but this expression
involves costly Gauss hypergeometric functigitg and cannot

be evaluated ef ciently at rendering. However, for each particu-
lar valuen, we have found ef cient closed-form expressions of the

form:

2 3

1
s = raw § O X0°F ¢,
)2n

(5.3)
(W Xp

with C; an+ 1 vector of coef cients. We computed coef cients for
eachn between 1 and 20, using symbolic integration [MG3].
Note that for eachn, these expressions are exact. We have found
similar expressions for sff lobes (only coef cientsC; change).

5.6. Limitations

Compared to SGGX distributions, implementing our model with
the distribution proposed in Eq. 5.2 is about 2 to 3 times more ex-
pensive for evaluatingt(w), and about 25 to 60 times more ex-
pensive for sampling the phase functions, depending:pns, and
A(w). Despite these additional costs compared to the standard mi-
cro ake model, rendering our LoDs is much faster than rendering
high-resolution volumes. In the next section, we propose an im-
plementation of our simpli ed self-shadowing model that is more
ef cient because it relies on SGGX fer and fss.

Another limitation of the implementation proposed here is that
unlike SGGX distributions, interpolating trigonometric distribu-
tions cannot be done by linear interpolation of trigonometric lobe
parameters. This means that tri-linear spatial interpolation at ren-
dering would require 8 evaluations sf.

6. Implementing the simpli ed self-shadowing model using
the SGGX distribution

In our simpli ed self-shadowing modekt andsss almost reduce
to the standard micro ake model, for which the SGGX distribu-
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tion allows for ef cient rendering. For this reason, we propose an

implementation of the simpli ed model based on the SGGX dis- Input rowa - -
tribution. HoweverRusing SGGX distributions, there is no closed- :

. . .. . . Linear r Dw) a - -
form expression for smg(w) dw, which is involved in the multiple Transp r DWw) a - )
scattering phase function. Assuming normalized SGGX matrices, 50 (our) r D(W) s A Ams
meaning that the highest eigenvalue is 1, the other two eigenval- Aniso (our) r D(W) ass AW) ams

ues belong t(hthe intervgD; 1]. We discretized this interval and
pre-computed s¢(w°Y dw®%or each pair of eigenvalues using nu-
merical integration.

(a) Inputvol.  (b) Outputvol.  (c) Data in input and output voxels

Figure 5: Our input voxelga) have parameters for the standard

In the simpli ed self-shadowing model, sampling the multiple ~Micro akes model (density , micro ake distribution Ow) and
scattering phase functiofinsis equivalent to importangg sampling albedoa). Each low-resolution voxeb) approximates a cube of
st, i.e.the projected area of the SGGX ellipsoid given bwT Sw. input voxels (otblock of input voxel’. In this paper, we compare

In the supplemental material, we provide the details of a sampling four downsampling algorithméc). Linear and Transp use the
rocedure forfms, Using the fact thawv' S w is close enough to standard micro ake modelso andAniso use our self-shadowing

wT Sw to allow ef cient rejection sampling. model and output voxels store additional parameters in this case,
for the self-shadowing function A and for the multiple scattering
albedoams.

7. Downsampling with the microscopic self-shadowing model

In this section, we introduce new algorithms for downsampling - trigonometric lobes in input and output voxels. In our implementa-
standard micro ake volum_es using our microscopic self-sh_adowmg tion, we used a single SGGX lobe in each low-resolution voxel, or
model. We assume that input voxels contain one density value, jts equivalent using trigonometric lobes (Fig. 3), and we pre- ltered

parameters for the micro ake distribution and a specular albedo.
We describe two algorithms that we used for generating results in
Sec. 8:Aniso uses anisotropic self-shadowing functions in each
low-res voxel, andiso relies on our simplied self-shadowing
model (Sec. 4.3) for which each low-res voxel needs less param-

normal distributions using linear SGGX pre- Itering [HDCD15].

7.2. Algorithm Linear

eters. We also describe in this section two naive algorithms that useThis is the naive linear algorithm: given anda;, densities and

the standard micro ake model in output voxelsnear performs
linear pre- ltering for densities and albedos, afichnsp performs
linear pre- Itering for albedos but computes density parameters that

preserve local transparency. These naive algorithms are used for

comparison in Sec. 8.

Fig. 5illustrates our downsampling pipeline and summarizes our
input and output models for each algorithm. Each of our output
voxels have a unique single scattering albedo, which could be insuf-
cient for downsampling datasets with strong correlations between
micro ake distributions and albedo®.g. multi-yarn fabrics). We
discuss this case in Sec. 8.4.

7.1. Overview

In the four algorithms described in this section, each block of input
voxels (Fig. 5) is downsampled into one low-res voxel indepen-
dently of other low-res voxels. Parameters of each low-res voxel
are computed using different strategies summarized in the follow-
ing table:

r a ss A ams
Linear Linear (Eq. 7.1 Linear (Eq. 7.2 -
Transp Mean (Eqg. 7.5) Linear (Eq. 7.2 - -
Aniso Max (Eqg. 7.7) Linear (Eq. 7.z Sec.7.4.2,7.4 Sec.7.4.4

Iso Mean (Eqg. 7.6) Linear (Eq. 7.z Sec.7.4.2 Sec.7.4.4

We do not contribute to micro ake pre- ltering. Algorithms de-
scribed in this section are valid for any number of SGGX or

albedos ofNy, input voxels (Fig. 5), the parameters of the corre-
sponding low-resolution voxel are computed using

r= Nivari (7.1)
and
éair,
a= 7.2
ari (72)

7.3. Algorithm Transp

This algorithm rst computes transparency of the block of input
voxel in the three axis of the voxel gri@(wx), T(wy) andT (wz).
These quantities are computed exactly from directional transparen-
cies of each input voxel. Given the width of input voxélg, the
transparency of one input voxel in directianis given by
z
exp Liyr;i Di(m)hw; midm (7.3)
Similarly, transparency of the low-resolution voxel in directisn
is given by
z

exp( Lst(wj))=exp Lr D(mbhy; midm (7.4)
with L the size of the low-resolution voxel. We compute density
parameters that preserve transparency in each direstjand we

average them:

o log(T(w))
L D(mhw midm’

r= % a (7.5)
i2f X;Y;Zg
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7.4. Downsampling using our self-shadowing modelgo and Fig. 4, the amount of single scattering writes
Aniso)
Hnax Z

Given a pre- Itered micro ake distributioD, our algorithms rst Poor) = SsOGWr) O0mini Wrsx) - O wi I w)O(x;w) dwa

compute directional transparencies of the block of input voxels Ximin &

. ) . (7.10)
as in algorithmTransp. Then, they compute a temporary density with
valuer g and temporary parameters for a self-shadowing function 7
Ag. These temporgry parameters are used for estimating the amount O(X1; Wi X2) = exp * st(sw)ds (7.11)
of self-shadowing in the low-resolution voxel. The amount of self- X1

shadowing is glso computed in the_block of input voxels (Fig. 5). andO(xq; w) a similar transmittance probability betweerand the
The nal densityr and self-shadowing parameters are computed jinit of the block of input voxels, in directiow (Fig. 4). The quan-

so that the amount of self-shadowing is the same in the block of tity Pss(r) is dimensionless but wavelength dependent. We estimate

input voxels and the low-res voxel. Single scattering albedos are y,o mean amount of single scattering in the block of input voxels by
downsampled linearly using Equation 7.2, and the computation the castingNray rays all around the block of input voxels. In our imple-

multiple scattering albedo is discussed in Sec. 7.4.4. mentation, we chose rays with directions parallel to the mains axis
of the voxel grid. For each ray, we compuiRg(r;) and we average
7.4.1. Computing temporary parametersr g and Ag from the results:

directional transparencies MU N1 2 Pu(r): (7.12)
Given the size of low-res voxels, the transparency of a low-res 1o rays
voxel in directionw; is given by Similarly, we estimate the quantitylss, the amount of single scat-
z tering in the low-res voxel, using the pre- Itering distributidh
exp( Lst(wj))= exp LroAg(wj) D(mhwi midm : ro, Ag(w) and the correspondirgss and fss (instead ofss and f)

in Eq. 7.10.
Algorithm Iso only uses the simpli ed micro ake model in which
Ao(w) = Ag; 8w. In this case, we sety = 1 and compute for

preserving the average transparency as in algortansp: 7.4.3. Computing nal density and self-shadowing parameters

_1g  log(T(wi)) . Thanks to our model, we can control the amount of self-shadowing
ro= 3 L”D(m)hNi mi dm’ (7.6) in the low-res voxel while preserving the voxel transparency, using

_To - ; .
Algorithm Aniso uses the anisotropic self-shadowing function in- T = o @ndAW) = gAo(w) with g2 (0;1]. Indeed, for any value

troduced in Section 5.1. It computeg using g, usingr andA(w) instead ofr g and Ag(w) in the low-res voxel
ti t the att ti f cient:
fo= max o log(T (wi)) . a7 does no |mpacZ e attenuation coef cien ,
i2f X;yizg L D(m)hw; midm sy(w)= rA(w) D(mhw midm= roAg(w) D(m)hw midm:
and then it computes the self-shadowing parameters with ) ) o o
2 o 03 On the contrary, the smglg scattering coef cient is multipliedgy
SX
Aow)=w'40 s 05w (7.8) Ss(W) = rA(w)  A(w)D(m)hw mi dm
0 0 s A

= groAo(w) Ag(w)D(m)hw mi dm:

log(T (w;)) . " This means that the amount of self-shadowing in the low-res voxel
R —: i2fX;Y;Zg (7.9) _ _ input
rob D(m)hw; midm (estimated from Eq. 7.10) would now lpMss. GivenMsg - and

so that directional transparencies of the low-res voxel matches ex-Mss We compute the valugthat minimizes the error over various
actly T(wx), T(wy) andT(w), the transparencies of the block of ~ Wavelengths:

input voxels. - 2
g= argrgwé M1 gMsql i) (7.13)

with

S:

7.4.2. Estimati If-shadowi . . .
stimating sefi-shadowing | i being wavelengths. We used RGB albedos in our implementa-

At this stage, the low-resolution voxel has correct transparency tion.

but incorrect self-shadowing probability. For preserving self-

shadowing, we estimate the amount of single scattering in the 7.4.4. Computation of multiple scattering albedcs ms

block of input voxels and in the low-res voxel, and we compute -

nal parameters accordingly. More precisely, we estimate the meanOur self-shadowing model requires a multiple scattering albedo
amount of energy that leaves the block of input voxels after exactly smsthat characterizes the color of light scattered at least two times
one scattering event. For one incoming rayith directionw, in- at themicroscopicscale due to self-shadowing. At rendering, mul-
tersecting the block of input voxels i, andXmax as shown in tiple scattering occurs at the microscopic scale with our model, but
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it can also occur several times in the low-res voxel. We need to Bunny  hair Cedar  Pine Hairy ball
estimates ms such that theffectivealbedoae of the low-res voxel, Size of input vol. ' 5000 600 680° 680° 6803
that is the resulting albedo of the voxel taking into account multiple ~ Aniso / LoD 1 11 1.4 0.1 0.13 6.8
scattering with microscopic and non-microscopic scattering events, Aniso /LoD 3 0.92 0.6 0.14 0.17 3.2

is the same as the effective albeﬂiﬁ[’”t of the corresponding block Aniso /LoD 5 0.64 0.33 0.17 0.15 12

of input voxels.
) In their work, Zhao, Wu et al. give pre-computation time of respec-

We rst estimate the effective albedd, ™" in the block of input tively 12 and 40 CPU core hours for the bunny (LoD 2) and the
voxels, that is the average color of light when it leaves the block hairy ball (LoD 3). We obtained accurate results for these model
after 1 or more scattering events. We cast rays through the blockwith respectively 0.97 and 3.2 CPU core hours. As our algorithm
of input voxels as for single scattering estimations (Fig. 5). For downsamples each block of input voxels independently, paralleliz-
each ray, we compute a light path until the ray leaves the block, ing our method is straightforward.
exactly as a volume path tracer would do. Thefi*" is computed
averaging ray throughputs.
) 8.2. Savings

Now we want to ndams such thatae = an™™. Unfortunately,
there is no simple way to derive exactly from ams, and we want Compared to the standard micro ake model, our model requires
to avoid iterative optimizations because they are time consuming. additional data per voxel: 2 additional values for our trigonometric
We approximate.e using: distributions compared to SGGX, 3 for multiple scattering albedos
(RGB) and 6 or 1 additional values for the shadowing function us-

o n
e A Psn(M(Psstsst (1 Pgdamy) (7.14) ing respectively our anisotropic self-shadowing model or our sim-
with Psp(n) the probability for a ray of having exacttyscattering pli ed model. Despite its additional parameters, our downsampling
events before leaving the voxeB(Psn(n) = 1) andPss the prob- method allows for huge memory savings as shown in the following

ability of self-shadowing at the microscopic scale. We cast rays in table:
the low-res voxel and estimate probabilitieg,(n) for eachn (up

to a given value), which do not depend ®ms For Pss, we use the Linear Iso (SGGX) Aniso (trigiobe)

following approximation: HIATD GRS 4y = 2l
R Size of LoD1wrt input 12.5% 17.5% 26.3%
Pss s§§ : (7.15) Size of LoD3wrt input 0.20% 0.27% 0.41%
as{l) st
Finally, we can estimatams by solving numerically the equation On average, for the LoDs shown in Fig. 6, the render time for
input _ o n naive LoDs is around 11% of the render time for high-resolution
ae” = a Psn(n)(Pssass+ (1 Psgams) (7.16) volumes, and around 13% for our LoDs with algorithniso.

for each wavelength. We evaluated this method by computing the This means that our LoDs also decrease render time despite the
relative errors between the effective albedos of low-res voxels additional cost compared to rendering naive LoDs.

ae, measured with ray casting, and the effective albesl&" in

the corresponding blocks of input voxels. Our method (Eq. 7.14

and 7.15) tends to slightly underestimate the effective altzago 8.3. Results

and its accuracy depends on the density and the amount of shadow-

ing in the voxel. Details can be found in Sec. 6 of the supplemental Fig. 6 compares our LoDs with input volumes and results from

material, including statistics of errors for the assets used in the nextnaive algorithms described in Section 7. Our downsampling
section. method supports semi-transparent inputs with low-density voxels.

Our LoDs are only slightly more accurate in this case because
naive methods already perform well when there are no strong self-

8. Implementation and results shadowing effects (Fig. 6a and 6f). However, our LoDs are much
more accurate than naive LoDs when input volumes have rela-
8.1. Pre-computation time tively dense voxels (Fig. 6b to 6e). Because we preserve local

_ _ transparency, our results have correct silhouettes even when in-
Pre-computation time depends on the number of samples usedhyt datasets have intricate shapes (Fig. 6d and 6e). Our LoDs can

for estimating self-shadowing probabilities and multiple scattering be computed at arbitrary scales and their appearance is consistent
albedos (Sec. 7.4.2 and 7.4.4). In our implementation, we adapted(Fig. 1).

the number of samples to the complexity of the block of input vox-

els. For LoDi (i.e. 2' times smaller than input volume in each Using anisotropic self-shadowing functions allows for preserv-
dimension), blocks of input voxels viewed from one side have a ing exactly directional transparency in low-res voxels indepen-
complexity of 4 voxels. We cast 40 4' rays for each non-empty  dently of the micro ake distribution, for instance when the mi-
low-res voxels so that our LoDs are not subject to noise. We got cro ake distribution is isotropic as shown in Fig. 2d. How-
the following pre-computation times on a Intel Xeon Processor E5- ever, we found in our experiments that using anisotropic self-
2630 v3 (in CPU core hour): shadowing does not improve accuracy signi cantly in practice,
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Linear (naive) Transp (naive) Inputvolume  Aniso (our) Iso (our)

@

LoD 2 Input volume LoD 2
[zZwDR16] P Iso (our)

(b) Figure 7: Dense hairy bunny. Both meth-
ods preserve the macroscopic appear-
ance of the input volume. Silhouettes are
slightly more accurate in our LoD be-
cause we do not pre- Iter density lin-

(©
early.

(d)

(e)

LoD 5 Input volume LoD 5
[zZwDR16] P Iso (our)

) Figure 8: Close-upvs large scale view
of the velvet dataset. Our LoDs have ac-
curate transparency (bottom right). Be-
cause they have dense low-resolution

Figure 6: Comparison of volumes downsampled using the four algorithms described in Segoxels (top left), LoDs from [ZWDR16]
Low-res volumes are LoD 5, meaning that the number of voxel has been divigfeddiyipared to preserve more accurately fabrics-like
input volumes. Insets show relative érrors in linear RGB, computed on low-resolution picturesappearance at large scales, especially
(a): low-density bunny(b): high density bunny (20 compared to(a)). (c): dense hairy ball at grazing angles. Preserving both ac-
with anisotropic micro ake distributiong(d): cedar foliage with homogeneous albede). pine  curate transparency and scattering be-
tree with dark trunk(f): hair with anisotropic micro ake distribution. Our algorithm increases havior remains an open problem for such
signi cantly accuracy of LoDs when input volumes have dense vofiglso((e)). dense input volumes.

even for datasets with dense aligned voxels such as the hairy bunnymuch smaller backward. Moreover, our multiple scattering phase
(Fig. 6b). This means that our simpli ed model has suf cient ac- function is relatively diffuse, while light scattered multiple times
curacy in most downsampling applications, and that accuracy is in a dense voxel mainly leaves this voxel backward — because light
more limited by albedos and phase functions than by accurate view-cannot reach the opposite side of the voxel. Hence, our phase func-
dependent attenuation. tions lack accuracy when input datasets are very dense and het-
erogeneous. This can be seen in Figure 8 where the LoD from
We compared our LoDs with results provided by Zhao, Wu et [7WDR16] better preserves velvet-like re ections at grazing an-
al. [ZWDR16]. Fig. 7 and Fig. 8 show LoDs of the dense hairy gles because they use dense low-resolution voxels. Fig. 9 shows
bunny and the velvet datasets. Both methods preserve large-scalghat our LoDs lack accuracy for the hair datasets because input vox-
albedos, unlike naive methods (1, 6b). Silhouettes of our LoDs gls are too dense. Our self-shadowing model allows for preserving
are more accurate because we preserve local transparency in lowthe mean amount of local self-shadowing, but preserving both lo-
resolution voxels instead of pre- Itering density linearly. cal transparency and accurate scattering behavior remains an open
problem for dense and heterogeneous input volumes.

8.4. Limitations We did not address the problem of colored multi- ber datasets,

for which it is important to store multiple albedos and lobes in low-
The main limitation of our work is that the self-shadowing func-  resolution voxels. We believe that our method can be extended to
tions we use do not model accurately self-shadowing effects in such case using self-shadowing estimations for each lobe, but a
dense voxels. Indeed, our functions are symmetaf = A( w)) rigorous study remains to be done. We did not work on animated
while self-shadowing in a dense voxel is very strong forward and
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