RLMan: an Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks

Abstract : A promising solution to achieve autonomous wireless sensor networks is to enable each node to harvest energy in its environment. To address the time-varying behavior of energy sources, each node embeds an energy manager responsible for dynamically adapting the power consumption of the node in order to maximize the quality of service while avoiding power failures. A novel energy management algorithm based on reinforcement learning, named RLMan, is proposed in this work. By continuously exploring the environment, RLMan adapts its energy management policy to time-varying environment, regarding both the harvested energy and the energy consumption of the node. Linear function approximations are used to achieve very low computational and memory footprint, making RLMan suitable for resource-constrained systems such as wireless sensor nodes. Moreover, RLMan only requires the state of charge of the energy storage device to operate, which makes it practical to implement. Exhaustive simulations using real measurements of indoor light and outdoor wind show that RLMan outperforms current state of the art approaches, by enabling almost 70 % gain regarding the average packet rate. Moreover, RLMan is more robust to variability of the node energy consumption.
Type de document :
Article dans une revue
IEEE Transactions on Green Communications and Networking, 2018, pp.1 - 11. 〈10.1109/TGCN.2018.2801725〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01701688
Contributeur : Matthieu Gautier <>
Soumis le : mardi 6 février 2018 - 08:58:19
Dernière modification le : mercredi 16 mai 2018 - 11:24:10
Document(s) archivé(s) le : samedi 5 mai 2018 - 13:08:31

Fichier

rl_eh_long.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Fayçal Ait Aoudia, Matthieu Gautier, Olivier Berder. RLMan: an Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks. IEEE Transactions on Green Communications and Networking, 2018, pp.1 - 11. 〈10.1109/TGCN.2018.2801725〉. 〈hal-01701688〉

Partager

Métriques

Consultations de la notice

326

Téléchargements de fichiers

159