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Mathematical Programs with Vanishing Constraints: Constraint

Qualifications, their Applications and a New Regularization Method

Dussault, J.-P.∗ Haddou, M.† Migot, T.‡
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Abstract

We propose a new family of relaxation schemes for mathematical programs with vanishing constraints
that extend the relaxation of Hoheisel, Kanzow & Schwartz from 2012. We discuss the properties of
the sequence of relaxed non-linear programs as well as stationary properties of limiting points. Our
relaxation schemes have the desired property of converging to an M-stationary point. We obtain the new
MPVC-wGCQ and prove that it is the weakest constraint qualification for MPVC. We also introduce a
new constraint qualification, MPVC-CRSC, that is sufficient to guarantee the convergence of the new
method. Under this weak condition, we also provide an error bound and an exact penalty result for the
MPVC.

Keywords: non-linear programming - MPCC - MPEC - MPVC - relaxation methods - butterfly
relaxation - stationary point - constraint qualification - CRSC

AMS Subject Classification: 90C30, 90C33, 49M37, 65K05

1 Introduction

We consider the Mathematical Program with Vanishing Constraints defined as

min
x∈Rn

f(x)

s.t. h(x) = 0, g(x) ≤ 0, H(x) ≥ 0,

Gi(x)Hi(x) ≤ 0, i = 1, . . . , q.

(MPVC)

where f : Rn → R, g : Rn → Rp, h : Rn → Rm, G,H : Rn → Rq are continuously differentiable functions.
This problem has been recently introduced in [2], motivated by several real-world applications, mainly
for topology design problems in mechanical structures as described in [2, 13], but also for robots motion
planning [23, 24]. In general, the vanishing constraint can be interpreted as a logic constraint of the form
0 < Hi(x) =⇒ Gi(x) ≤ 0, which can appear in many challenging applications.

The (MPVC) can be reformulated as the well-studied mathematical program with complementarity con-
straints. However, this reformulation may induce some difficulties regarding to the constraint qualifications
as pointed in early studies of the problem in [2] or in the thesis [13].

This observation has motivated enhanced studies to derive stationary conditions and numerical methods
to find a local minimum for the (MPVC). Indeed, classical optimality conditions in non-linear programming
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cannot be applied here due to the degeneracy of the vanishing constraints. It has been shown in [2] that most
of the classical constraint qualifications used in non-linear programming does not hold here in a generic way.
From a geometrical point of view, this can be explained by the fact that the feasible domain is in general
non-convex (possibly non-connected see Example 3) and has an empty relative interior. Thus, enhanced
stationary conditions and their corresponding constraint qualifications have been defined in the literature in
[2, 9, 14, 15, 16, 19, 20, 22].

In view of the constraint qualifications issues pledge to the MPVC the relaxation methods provide an
intuitive answer. The vanishing constraint, Gi(x)Hi(x) ≤ 0, is relaxed using a parameter so that the new
feasible domain is not thin anymore. It is assumed here that the classical constraints g(x) ≤ 0 and h(x) = 0
are not more difficult to handle than the vanishing constraint. Finally, the relaxation parameter is reduced
to converging to the feasible set of (MPVC) in a similar way as an homotopy technique. This method is still
one of the most popular in the literature [1, 3, 17, 18, 22].

We mention here that other methods have also been proposed: a Newton with active-set strategy in
[21], and a SQP method in [23] that consider sequences of quadratic programs with vanishing constraints.
However, both methods require stronger assumptions that the ones used for regularization method in general
and in particular in this paper.

The main aim of this paper focus on relaxation methods to solve the MPVC and in particular on methods
with guarantees of convergence to an M-stationary point, which is the strongest property in the literature.
A first step in this path has been proposed in [18] and we continue the discussion by introducing the new
butterfly relaxation method.

One of the main advantages of the relaxation methods is that they require very weak constraint qual-
ification to be well-defined. In this paper, we also focus on very weak assumptions to ensure convergence
of the relaxation scheme. This analyze leads us to introduce new constraint qualifications with algorithmic
applications: error bound, exact penalty, convergence of primal-dual sequences. We also introduce a new
condition, which is proved to be the weakest MPVC constraint qualification.

In Section 2, we introduce classical definitions and results from non-linear programming. In Section 3, we
consider optimality conditions for MPVCs and introduce new constraint qualifications, whose applications
are studied in Section 4. In Section 5, we define extension of the butterfly relaxation. In Section 6 and 7,
we prove theoretical results on convergence and existence of the multiplier of the relaxed sub-problems. We
prove that the butterfly method has similar properties as the best methods in the literature. Finally, in
section 8, we validate our approach on classical examples.

2 Non-linear Programming

The MPVC is obviously a non-linear program. Even so we cannot directly apply non-linear programming
(NLP) techniques, we will use some of the tools from NLP to analyze this problem.

Consider the following non-linear program (without vanishing constraints)

min
x∈Rn

f(x) s.t. g(x) ≤ 0, h(x) = 0. (1)

In a usual way, we denote Ig(x∗) := {i | gi(x∗) = 0} and F the feasible set of (1). A classical tool in the
analysis of this problem is the computation of stationary points or so-called KKT-points of (1). We call x∗

a stationary point (or a KKT-point) of the non-linear program (1), if there exists λ := (λg, λh) ∈ Rp+ × Rm
such that −∇f(x∗) = ∇g(x∗)Tλg +∇h(x∗)Tλh and λgi = 0 for all i /∈ Ig(x∗).

It is well-known that any local minimum that satisfies the Guignard CQ (GCQ) is a KKT-point. GCQ
is said to hold at a point x∗ feasible for (1) if the following tangent cone

TF (x∗) = {d ∈ Rn | ∃tk ≥ 0 and F 3 xk → x∗ s.t. tk(xk − x∗)→ d},

and linearized cone

L (x∗) = {d ∈ Rn | ∇gi(x)T d ≤ 0 (i ∈ Ig(x∗)), ∇hi(x)T d = 0 (∀i = 1, . . . ,m)},
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have the same polar cones. In other words GCQ holds at x∗ if

TF (x∗)◦ = L (x∗)◦,

where the polar cone of a cone K is given as {d ∈ Rn | dT y ≤ 0, ∀y ∈ K}. It is also well-known since Gould
and Tolle in [11], that GCQ is the weakest constraint qualification ensuring that the KKT conditions are
necessary conditions independently of the objective function. Up to this point, we may point out that we
say that x∗ ∈ F satisfies Abadie CQ (ACQ) if T (x∗) = L (x∗). This condition is stronger than GCQ.

In general, it is not convenient to verify GCQ or ACQ and these conditions may be too weak to induce
algorithmically useful properties. Thus, a whole family of stronger constraint qualifications have been studied
in the literature. We restrict ourselves to define only the ones that will be useful in the sequel.

Definition 2.1. Let x∗ ∈ F .

(a) Linear Independence CQ (LICQ) holds at x∗ if the family of gradients
{∇gi(x∗) (i ∈ Ig(x∗)), ∇hi(x∗) (i = 1, ...,m)} is linearly independent.

(b) Constant Positive-Linear Dependence constraint qualification (CPLD) holds at x∗ if, for any subsets
I1 ⊂ Ig(x∗) and I2 ⊂ {1, . . . ,m} such that the gradients {∇gi(x∗) (i ∈ I1)} ∪ {{∇hi(x∗) (i ∈ I2)}} are
positively linearly dependent, there exists δ > 0 such that they remain linearly dependent for every x
such that ‖x− x∗‖ ≤ δ.

(c) Constant Rank in the Subspace of Components (CRSC) holds at x∗ if there exists δ > 0 such that the
family of gradients {∇gi(x) (i ∈ J−), ∇hi(x∗) (i = 1, . . . ,m)} has the same rank for every x ∈ Bδ(x∗),
where J− := {i ∈ Ig(x∗) | − ∇gi(x∗) ∈ L (x∗)◦}.

(d) The Cone-Continuity Property (CCP) holds at x∗ if the set-valued mapping Rn 3 x ⇒ K(x) defined
by

K(x) := {
∑

i∈Ig(x∗)

λi∇gi(x) +

m∑
i=1

µi∇hi(x) | λ ∈ Rp+, µ ∈ Rm}

is outer semicontinuous.

Constant rank of the subspace component, CRSC, was introduced recently in [4]. This latter definition
considers an unusual set denoted J−, that can be viewed as the set of indices of the gradients of the active
constraints whose Lagrange multiplier, if they exist, may be non-zero.

It is to be noted that in the definition of CCP, K(x) depends on x∗, since it considers only active
constraints at x∗. Clearly, K(x∗) is a closed convex cone and coincides with the polar of the linearized
cone L (x∗)◦. Moreover, K(x) is always inner semicontinuous due to the continuity of the gradients and
the definition of K(x). For this reason, outer semicontinuity is sufficient to get the continuity of K(x) at
x∗. Finally, it has been shown in [5] that CCP is strictly stronger than ACQ and weaker than CRSC, see
Figure 1.

MPCC-LICQ =⇒MPCC-MFCQ =⇒MPCC-CRSC

Figure 1: Relations between the MPCC constraint qualifications.

3 MPVC: Definitions, Stationarity and Constraint Qualifications

This section defines the stationary conditions and their related constraint qualifications that have been used
in the literature to study the MPVC. Up to this point, we notice that similar but fundamentally different
notions are given in the literature for non-linear programs and mathematical programs with complementarity
constraints (MPCC).
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Beforehand, let us define some notations. Given x∗ ∈ Z := {x ∈ Rn | h(x) = 0, g(x) ≤ 0, H(x) ≥
0, Gi(x)Hi(x) ≤ 0 (i = 1, . . . , q)}, we denote

Ig := {i | gi(x∗) = 0}, I .0 := {i | Hi(x
∗) = 0}, I .+ := {i | Hi(x

∗) > 0},
I−+ := {i | Gi(x∗) < 0, Hi(x

∗) > 0}, I0+ := {i | Gi(x∗) = 0, Hi(x
∗) > 0},

I+0 := {i | Gi(x∗) > 0, Hi(x
∗) = 0}, I00 := {i | Gi(x∗) = 0, Hi(x

∗) = 0},
I−0 := {i | Gi(x∗) < 0, Hi(x

∗) = 0}.

Note that the dependence of x∗ is omitted here, since these sets are always used at this point. Let the
enhanced Lagrangian of (MPVC) be defined as LMPV C(x∗, λ) := f(x∗)+g(x∗)Tλg+h(x∗)Tλh+G(x∗)TλG−
H(x∗)TλH with λ := (λg, λh, λG, λH).

3.1 Enhanced Stationarity Conditions

We now define the alphabet of stationary conditions for (MPVC). They differ in the sign of λG and λH for
indices i ∈ I00.

Definition 3.1. A point x∗ ∈ Z, is called

(a) W-stationary [22], if there exists multipliers λ ∈ Rp+ × Rm × Rq × Rq such that

∇xLMPV C(x∗, λ) = 0,

and

λgi = 0 ∀i /∈ Ig,
λGi = 0 ∀i ∈ I−+ ∪ I−0 ∪ I+0, λGi ≥ 0 ∀i ∈ I0+ ∪ I00,

λHi = 0 ∀i ∈ I .+, λHi ≥ 0 ∀i ∈ I−0.

(b) T-stationary [9], if x∗ is W-stationary and λGi λ
H
i ≤ 0 for all i ∈ I00.

(c) M-stationary [15], if x∗ is W-stationary and λGi λ
H
i = 0 for all i ∈ I00.

(d) S-stationary, if x∗ is W-stationary and λHi ≥ 0, λGi = 0 for all i ∈ I00.

The relations between these conditions follow in a straightforward way from the definition: S-stationary =⇒
M-stationary =⇒ T-stationary =⇒W-stationary. These conditions are in general weaker than the classical
KKT condition, which is equivalent here to the S-stationary condition. The T-stationary condition defined
in [9] plays here the role of the C-stationary condition in the context of MPCCs.

We conclude this section by giving a new interpretation of M-stationary based on non-linear programming.

Proposition 3.1. x∗ is an M-stationary point of (MPVC) if and only if there exists a partition I00(x∗) =
A ∪B such that x∗ is a stationary point of the following non-linear program, denoted MNLPA,B(x∗),

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

Gi(x) ≤ 0 ∀i ∈ I0+ ∪A,Hi(x) = 0 ∀i ∈ I+0 ∪B,
Hi(x) ≥ 0 ∀i ∈ I−0.

(MNLPA,B(x∗))

Based on this observation, we can derive constraint qualifications for MPVC simply by applying classical
constraint qualifications from non-linear programming to (MNLPA,B(x∗)). This will be discussed with
more details in the following section. This philosophy to derive constraint qualifications based on classical
constraint qualifications applied on a specific non-linear program has been used in [17] to derive stronger
conditions than the ones presented here.
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3.2 Constraint Qualifications for MPVC

Let us introduce the MPVC-weak Guignard CQ (MPVC-wGCQ) that will be useful in stating optimality
conditions for (MPVC).

Definition 3.2. Let x∗ ∈ Z. MPVC-wGCQ holds at x∗ if for any partition I00(x∗) = A ∪ B, GCQ holds
at x∗ for (MNLPA,B(x∗)).

In the sequel, we show that this is a weaker constraint qualification than MPVC-GCQ, and in Section 4.1,
we prove that it is the weakest constraint qualification for MPVC.

As a consequence of Proposition 3.1, we have the following equivalent characterization of M-stationary
points.

Corollary 3.1. Let x∗ ∈ Z and let the cone PM be defined as

PM := ∪A∈P(I00),B=I00\ALMNLPA,B
(x∗)◦.

Then, it holds true that
−∇f(x∗) ∈PM ⇐⇒ x∗ is M-stationary,

Proof. By straightforward computation, we can give an explicit form of the polar cone of LMNLPA,B
for all

A,B. Then, computing the union of this cones yields to

∪A∈P(I00),B=I00\ALMNLPA,B
(x∗)◦ = {d ∈ Rn | ∃(λg, λh, λG, λH) such that d = LMPV C(x∗, λ),

with λgi ≥ 0 (i ∈ Ig),
λHi = 0 (i ∈ I .+),

λHi ≥ 0 (i ∈ I−0),

λGi = 0 (i ∈ I−+ ∪ I−0 ∪ I+0),

λGi ≥ 0 (i ∈ I0+ ∪ I00),

λGi λ
H
i = 0 (i ∈ I00)}.

(2)

Thus, the result follows by combining this computation with Proposition 3.1.

MPVC-wGCQ is different from the MPVC-GCQ used for instance in [15] or in [16]. First, let us define
the MPVC-linearized cone

LMPV C(x∗) := {d ∈ Rn | ∇gi(x∗)T d ≤ 0(i ∈ Ig),∇hj(x∗)T d = 0 (∀i = 1, . . . ,m),

∇Hi(x
∗)T d = 0 (i ∈ I+0),∇Hi(x

∗)T d ≥ 0 (i ∈ I00 ∪ I−0),

∇Gi(x∗)T d ≤ 0 (i ∈ I0+), (∇Hi(x
∗)T d)(∇Gi(x∗)T d) ≤ 0 (i ∈ I00)}.

(3)

Note that LMPV C(x∗) is, in general, a non-convex cone and then, differs from L (x∗) applied to (MPVC).
However, due to Corollary 2.5 of [16] it holds

TZ(x∗) ⊆ LMPV C(x∗) ⊆ L (x∗). (4)

Definition 3.3. Let x∗ ∈ Z. Then, MPVC-GCQ holds at x∗ if TZ(x∗)◦ = LMPV C(x∗)◦.

These definitions have been introduced earlier in [16]. The following lemma gives a relation of LMPV C(x∗)◦

with the set PM used in Corollary 3.1.

Lemma 3.1. Let x∗ ∈ Z. The following inclusion holds true

LMPV C(x∗)◦ ⊆PM .
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Proof. The proof of Corollay 3.1 already state an explicit formula for the right-hand side of the inclusion in
equation (2). Let us now compute explicitly LMPV C(x∗)◦.

First, it is to be observed that the cone LMPV C can be rewritten as a union of polyhedral cones in the
following way.

LMPV C(x∗) = ∪I⊂I00LMPV C(x∗, I),

where LMPV C(x∗, I) stands for

LMPV C(x∗, I) := {d ∈ Rn | ∇gi(x∗)T d ≤ 0 (i ∈ Ig),
∇hi(x∗)T d = 0 (i = 1, ...,m),

∇Hi(x
∗)T d = 0 (i ∈ I+0),

∇Hi(x
∗)T d ≥ 0 (i ∈ I ∪ I−0),

∇Gi(x∗)T d ≤ 0 (i ∈ I0+),

∇Gi(x∗)T d ≤ 0 (i ∈ I),

∇Hi(x
∗)T d = 0,∇Gi(x∗)T d ≥ 0 (i ∈ I00 \ I)}.

Now, let us compute the polar of LMPV C at x∗ using [6, Proposition 1.1.16],

LMPV C(x∗)◦ = ∩I⊂I00LMPV C(x∗, I)◦.

We can compute the polar cone of LMPV C(x∗, I) given by

LMPV C(x∗, I)◦ := {d ∈ Rn | ∃(λg, λh, λG, λH) ∈ Rp+ × Rm × Rq × Rq

with λGi ≥ 0 ∀i ∈ I ∪ I0+, λGi ≤ 0 ∀i ∈ I00 \ I,
λHi ≥ 0 ∀i ∈ I ∪ I−0,

d =
∑
i∈Ig

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)

+
∑

i∈I0+∪I00
λGi ∇Gi(x∗)

−
∑

i∈I+0∪I00∪I−0

λHi ∇Hi(x
∗)}.

Now, computing the intersection in the equation above leads to

LMPV C(x∗)◦ := {d ∈ Rn | ∃(λg, λh, λG, λH) ∈ Rp+ × Rm × Rq × Rq

with λGi ≥ 0 ∀i ∈ I0+, λGi = 0 ∀i ∈ I00,

λHi ≥ 0 ∀i ∈ I00 ∪ I−0,

d =
∑
i∈Ig

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)

+
∑

i∈I0+∪I00
λGi ∇Gi(x∗)

−
∑

i∈I+0∪I00∪I−0

λHi ∇Hi(x
∗)}.

From the two explicit formulas of L ◦MPV C and PM , it is now clear that LMPV C(x∗)◦ ⊆PM .

A consequence of this result is that MPVC-GCQ implies MPVC-wGCQ.
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Definition 3.4. A feasible point x∗ of (MPVC) satisfies

(a) MPVC-Linear Independence CQ (MPVC-LICQ) if the gradients

{∇gi(x∗) (i ∈ Ig),∇hi(x∗) (i = 1, . . . ,m),∇Gi(x∗) (i ∈ I00 ∪ I+0),∇Hi(x
∗) (i ∈ I .0)}

are linearly independent.

(b) MPVC-Constant Positive-Linear Dependence constraint qualification (MPVC-CPLD) if, for all subsets
I1 ⊆ Ig, I2 ⊆ I0−, I3 ⊆ I+0 ∪ I00, I4 ⊆ {1, . . . , p},I5 ⊆ I0+ ∪ I00, the following implication holds true :
if the gradients

{∇gi(x∗) (i ∈ Ig),−∇Hi(x
∗) (i ∈ I2),∇Gi(x∗) (i ∈ I3)} ∪ {{∇hi(x∗) (i ∈ I4),∇Hi(x

∗) (i ∈ I5)}}

are positively linearly dependent, then they remain linearly dependent for all x in some neighborhood
of x∗.

The MPVC-LICQ, introduced in [2], is a strong condition that guarantee that a local minimum is an S-
stationary point [16]. Under this condition, it has been proved in [2] that the MPVC Lagrange multipliers are
unique. The MPVC-CPLD introduced in [17] is very popular in the context of relaxation methods to prove
their convergence, see [17, 18]. In the sequel, we introduce a weaker condition, denoted as MPVC-Constant
Rank in the Subspace of Component (MPVC-CRSC), to prove similar results of convergence.

Definition 3.5. Let x∗ ∈ Z. MPVC-CRSC holds at x∗ if for any partition I00(x∗) = A ∪ B, CRSC holds
at x∗ for (MNLPA,B(x∗)).

This definition is an extension of the one given in [4] for non-linear programming and [10] for the MPCC.
It follows in a straightforward way from their definitions that MPVC-CRSC is stronger than MPVC-wGCQ.

In a similar way as in Definition 3.5, applying CCP constraint qualification at (MNLPA,B(x∗)) for any
partition I00 = A ∪B yields a new MPVC constraint qualification, denoted MPVC-CCP.

Definition 3.6. We say that a feasible point x∗ satisfies the MPVC-CCP if the set-valued mapping Rn 3
x⇒ KMPV C(x) defined by

KMPV C(x) := {
∑
i∈Ig

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x) +
∑

i∈I0+∪I00
λGi ∇Gi(x)−

∑
i∈I+0∪I00∪I−0

λHi ∇Hi(x) |

λgi ≥ 0 (i ∈ Ig) and , λHi ≥ 0 (i ∈ I−0), λGi ≥ 0 (i ∈ I0+ ∪ I00), λGi λ
H
i = 0 (i ∈ I00)}

is outer semicontinuous at x∗, that is

lim sup
x→x∗

KMPCC(x) ⊂ KMPCC(x∗).

In this context, the outer limit is taken in the sense of Kuratowski-Painlevé corresponding to the Definition
5.4 given in [27]. By construction, it holds that MPVC-CRSC implies MPVC-CCP, which itself implies
MPVC-wGCQ.

As we already remarked the new conditions defined here (MPCC-wGCQ, MPCC-CCP and MPCC-CRSC)
are very weak conditions compared to existing ones in the literature, except for MPVC-GCQ and MPVC-
ACQ. In a same way, they are weaker than other conditions that have been omitted here, MPVC-CRCQ
defined in [17], MPVC-MFCQ defined in [2] and MPVC-GMFCQ first introduced in [19]. Besides in the
following section, we show that these new weak conditions have a theoretical and numerical impact.

4 Algorithmic Applications of MPVC Constraint Qualifications

In this section, we prove algorithmic applications of the new MPVC constraint qualifications defined in the
previous section.

7



4.1 MPVC-wGCQ as the Weakest Constraint Qualification for MPVC

The following theorem is a key result, since it defines in some sense the best necessary optimality condition
that we can expect to compute with first order methods.

Theorem 4.1. Let x∗ ∈ Z be a local minimum of (MPVC) that satisfies MPVC-wGCQ. Then, x∗ is an
M-stationary point.

Proof. By Equation 4 and Lemma 3.1, it holds that

−∇f(x∗) ∈ TZ(x∗)◦ =⇒ −∇f(x∗) ∈ ∪PM , (5)

⇐⇒ x∗ M-stationary, (6)

where the last equivalence comes from Corollary 3.1.

A similar result as been proved under MPVC-GCQ in [16]. In particular, this result gives that in our
context the natural goal of any numerical method designed for (MPVC) is to compute an M-stationary point.

The fact that this condition is the weakest constraint qualification for (MPVC) is actually a consequence
of the similar result in non-linear programming stated in [11] and Theorem 3.1.

Theorem 4.2. MPVC-wGCQ is the weakest constraint qualification for MPVC.

Before moving to the proof, let us introduce the definition of (g, h,G,H) MPVC-regular point that is an
extension of a definition from [11].

Definition 4.1. (g, h,G,H) is said MPVC-regular at x∗, if for all function f that admits a local constrained
minimum at x∗, x∗ is an M-stationary point.

It is very important to notice here that a constraint qualification must be independent of the objective
function, since it describes only the feasible set. Considering Corollary 3.1, we can prove the following result.

Lemma 4.1. Assume that (g, h,G,H) is MPVC-regular at x∗ ∈ Z. Then, for all function f that admits a
local constrained minimum at x∗ it holds that −∇f(x∗) ∈PM (x∗).

We also give an additional theorem from [11]. The original result is stated for local maximum, but there
is no loss of generality to write it for a local minimum.

Theorem 4.3. For every, y ∈ TZ(x∗)◦ there exists, an objective function f , which is differentiable at x∗,
which has a local constrained minimum at x∗ and for which −∇f(x∗) = y.

We can now go on the proof of Theorem 4.2.

Proof of Theorem 4.2. The ”⇐=” part is given by Theorem 4.1.
So, let us consider the ”=⇒” part. Assume that (g, h,G,H) is MPVC-regular at x∗ ∈ Z and prove that

for any y ∈ TZ(x∗)◦, y ∈PM (x∗). By Theorem 4.3, for any y ∈ TZ(x∗)◦ there exists a function f such that
y = −∇f(x∗).
Since we assume that (g, h,G,H) is MPVC-regular at x∗ ∈ Z it follows by Lemma 4.1 that for all functions
f such that −∇f(x∗) ∈ TZ(x∗)◦ we have −∇f(x∗) ∈PM (x∗).

4.2 MPVC-CRSC and Error Bound for MPVC

An interesting application of the constraint qualifications is the existence of an error bound. That is, if close
to a feasible point x it is possible to estimate the distance to the feasible set F using a natural measure of
infeasibility. We first give the definition in the context of a non-linear program.
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Definition 4.2. We say that an error bound holds in a neighborhood U(x∗) of a feasible point x∗ ∈ F if
there exists α > 0 such that for every y ∈ U(x)

min
z∈F
‖z − y‖ ≤ αmax{‖h(y)‖∞, ‖g+(y)‖∞},

whenever F := {x ∈ Rn | g(x) ≤ 0, h(x) = 0}.

In [4], the authors show that if CRSC holds at a point x and that g, h admit second derivatives, then
an error bound holds in a neighborhood of x. It is to be noted that the same result may be obtained if F
satisfies quasi-normality at x as shown in [26].

We can now derive a enhanced MPVC-error bound result. Error bound and exact penalty results have
been first derived in [19] in the context of MPVC, where the authors proved very general results under
MPVC-GMFCQ, which correspond to classical MFCQ applied to (MNLPA,B(x∗)). The following result
shows that we can, indeed, weaken this assumption.

Theorem 4.4. Given x∗ ∈ Z satisfying MPVC-CRSC. Then, there exists a neighborhood U(x∗) and a
constant α > 0 such that for every y ∈ U(x∗) the following holds

min
z∈Z
‖z − y‖ ≤ αmax{‖h(y)‖∞, ‖g+(y)‖∞, ‖G+

I0+∪I00(y)‖∞, ‖HI+0∪I00(y)‖∞, ‖H−I−0(y)‖∞}.

Proof. We remind that definition of MPVC-CRSC states that CRSC holds for all non-linear programs of
the form (MNLPA,B(x∗)), where I00(x∗) = A ∪ B. Thus, applying Theorem 5.1 of [4] yields that for A,B
there exists a neighborhood UA,B and a constant αA,B such that

min
z∈Z
‖z − y‖ ≤ αA,B max{‖h(y)‖∞, ‖g+(y)‖∞, ‖G+

I0+∪A(y)‖∞, ‖HI+0∪B(y)‖∞, ‖H−I−0(y)‖∞},

for all y ∈ UA,B(x∗). Taking α := maxA,B αA,B , U(x∗) = ∩A,BUA,B(x∗) we get for all y ∈ U(x∗)

min
z∈Z
‖z − y‖ ≤ αmax{‖h(y)‖∞, ‖g+(y)‖∞, ‖G+

I0+∪A(y)‖∞, ‖HI+0∪B(y)‖∞, ‖H−I−0(y)‖∞}.

Finally, it holds that A,B ⊂ I00 so we have

min
z∈Z
‖z − y‖ ≤ αmax{‖h(y)‖∞, ‖g+(y)‖∞, ‖G+

I0+∪I00(y)‖∞, ‖HI+0∪I00(y)‖∞, ‖H−I−0(y)‖∞}.

This concludes the proof.

By Clarke’s exact penalty principle [8], we get the following exact penalty result.

Corollary 4.1. Let x∗ ∈ Z be a local optimum that satisfies MPVC-CRSC. Then, there exists a constant
κ > 0 such that x∗ is a local optimum of

min
x∈Rn

f(x) + κmax{‖h(y)‖∞, ‖g+(y)‖∞, ‖G+
I0+∪I00(y)‖∞, ‖HI+0∪I00(y)‖∞, ‖H−I−0(y)‖∞}.

4.3 Convergence of Primal-Dual Sequences under MPVC-CRSC and MPVC-
CCP

Another application of these new constraint qualifications is the convergence of sequences that are classically
obtained by relaxation methods.

Theorem 4.5. Let x∗ be in Z such that MPVC-CRSC holds at x∗. Given two sequences {xk},{λk} such
that xk → x∗ and that satisfies

∇f(xk) +

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k) +

q∑
i=1

λG,ki ∇Gi(x
k)−

q∑
i=1

λH,ki ∇Hi(x
k)→ 0, (7)
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lim
k→∞

λgi
‖λk‖∞

= 0 ∀i /∈ Ig, lim
k→∞

λHi
‖λk‖∞

≥ 0 ∀i ∈ I−0, (8)

lim
k→∞

λG,ki

‖λk‖∞
= 0 ∀i ∈ I−+ ∪ I−0 ∪ I+0 and lim

k→∞

λH,ki

‖λk‖∞
= 0 ∀i ∈ I .+, (9)

lim
k→∞

λG,ki λH,ki

‖λk‖2∞
= 0 ∀i ∈ I00, (10)

lim
k→∞

λG,ki

‖λk‖∞
≥ 0 ∀i ∈ I0+ ∪ I00, (11)

and the family of gradients of non-vanishing multipliers in (7) are linearly independent. Then, the sequence
{λk} is bounded.

According to Lemma 7.1 of [28] we may assume without loss of generality that the gradients corresponding
to non-vanishing multipliers in equation (7) are linearly independent for all k ∈ N (note that this may change
the multipliers, but a previously positive multiplier will stay at least non-negative and a vanishing multiplier
will remain zero).

Proof. Let {wk} be a sequence defined such that

wk :=
∑
i∈Ig

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k) +

∑
i∈I0+∪I00

λG,ki ∇Gi(x
k)−

∑
i∈I−0∪I00

λH,ki ∇Hi(x
k). (12)

We prove by contradiction that the sequence {λk} is bounded. If λk were not bounded, there would exist
a subsequence such that

λk

‖λk‖∞
→ λ̄ 6= 0.

Here we consider a subsequence K, where the family of linearly independent gradients of non-vanishing
multipliers is the same for all k ∈ K. Note that this can be done with no loss of generality, since there is a
finite number of such subsequences and altogether they form a partition of the sequence.

Note here that conditions (7) to (11) give that limk→∞ wk = limk→∞−∇f(xk)/‖λk‖∞ = 0.
Dividing by ‖λk‖∞ and passing to the limit in (12),

w∗ =
∑
i∈Ig

λ̄gi∇gi(x
∗) +

m∑
i=1

λ̄hi∇hi(x∗) +
∑

i∈I0+∪I00
λ̄Gi ∇Gi(x∗)−

∑
i∈I−0∪I00

λ̄Hi ∇Hi(x
∗),

with λ̄Gi = 0 for i ∈ I−+ ∪ I−0 ∪ I+0, λ̄Hi = 0 for i ∈ I .+ by assumptions (8) to (11).
It follows that the gradients with non-zero multipliers involved in the previous equation are linearly

dependent.
MPVC-CRSC guarantees that these gradients remain linearly dependent in a whole neighborhood. This,

however, is a contradiction to the linear independence of these gradients in xk since wk 6= 0 for k sufficiently
large. Here, we used that for all k sufficiently large supp(λ̄) ⊆ supp(λk). Consequently, we get a contradiction
and thus the sequence {λk} is bounded.

A direct consequence of this theorem is that the sequence herein converge to an M-stationary point.
Indeed, by assumptions of previous theorem and since λ <∞, then any limit point of the sequence {xk, λk}
satisfies conditions from Definition 3.1.

Corollary 4.2. Let x∗ be in Z such that MPVC-CRSC holds at x∗. Given two sequences {xk},{λk} that
satisfy the assumptions of Theorem 4.5. Then, x∗ is an M-stationary point.

By considering the weaker condition MPVC-CCP, one can do a similar study.
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Theorem 4.6. Let x∗ ∈ Z such that MPVC-CCP holds at x∗. Given two sequences {δk},{xk} such that
δk → 0, xk → x∗ and for all k ∈ N

−∇f(xk) ∈ KMPV C(xk) + Bδk(xk).

Then, x∗ is an M-stationary point of (MPVC).

Proof. By continuity of the gradients involved in (MPVC) and MPVC-CCP assumption, it holds that

lim sup
xk→x∗

KMPV C(xk) = KMPV C(x∗).

Therefore, it follows that −∇f(x∗) ∈ KMPV C(x∗). So, x∗ is an M-stationary point of (MPVC).

The gap between Theorem 4.5 and Theorem 4.6 is that the former guarantee boundedness of the dual
sequence, while the latter does not. This observation will be of importance while studying the convergence
of the butterfly relaxation in Section 6.

5 The New Butterfly Relaxation Method for MPVC

We now propose an adaptation of the butterfly relaxation method introduced for MPCC in [10] to solve
MPVC. As pointed out earlier, Theorem 4.1 gives that our goal is to compute an M-stationary point.

Let t := (t1, t2) ∈ R2
+. We consider the following relaxed problem

min
x∈Rn

f(x)

s.t. x ∈ XBt := {x | h(x) = 0, g(x) ≤ 0, H(x) ≥ −t2,ΦB(G(x), H(x); t) ≤ 0.}
(Bu.)

where for all i = 1, . . . , q
ΦBi (G(x), H(x); t) := Gi(x)Fi(x; t),

and

Fi(x; t) := Hi(x)− t2 − t2θt1(Gi(x)− t2).

θ : R →] −∞, 1] are continuously differentiable non-decreasing concave functions with θ(0) = 0, θt1(x) :=
θ(x/t1) for all t1 > 0 and lim

t1→0
θt1(x) = 1 ∀x ∈ R++ completed in a smooth way for negative values by

considering θt1(z < 0) = zθ′(0)/t1. Examples of such functions are θ1
t1(x) = x

x+t1
and θ2

t1(x) = 1− exp−
x
t1 .

These functions have already been used in the context of complementarity constraints in [10, 12, 25]. This
new relaxation handles two parameters t1 and t2 chosen such that

t2 = o(t1). (13)

A figure illustrating the feasible set of the (MPVC) and the relaxed feasible set is given in Figure 2.
This method is an extension of the method introduced in [18]. A typical choice to satisfy (13) is to choose
t2 = t1

α with 0 < α < 1. We could be even more general by considering a third parameter for the constraints
Hi(x) ≥ −t̄, but we decided not to follow this for simplicity.

The sets of indices used for the analysis of this relaxation are defined in the following way

IH(x; t) := {i | Hi(x) = −t2},
IGH(x; t) := {i | ΦBi (G(x), H(x); t) = 0},
I+0
GH(x; t) := {i ∈ IGH(x; t) | G(x) > 0, Fi(x; t) = 0},
I0+
GH(x; t) := {i ∈ IGH(x; t) | G(x) = 0, F (x; t) > 0},
I00
GH(x; t) := {i ∈ IGH(x; t) | G(x) = 0, Fi(x; t) = 0}.

The following lemma sum up some of the key features of the relaxation.
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Figure 2: Feasible set of the MPVC and the butterfly relaxation for θt1(z) = z
z+t1

with t2 = t1
3/2.

Lemma 5.1. The following properties on XBt hold:

1. XB0 = Z;

2. XBta ⊂ X
B
tb

for all 0 < t2a

t1a
< t2b

t1b
;

3. ∩t≥0XBt = Z.

If the feasible set of the (MPVC) is non-empty, then the feasible set of the relaxed sub-problems are also
non-empty for all t ≥ 0. If for some parameter t ≥ 0 the set XBt is empty, then it implies that Z is empty.
If a local minimum of (Bu.) already belongs to Z, then it is a local minimum of the (MPVC).

Finally, the following lemma from [10] gives more information on the asymptotic convergence of the θ’s
functions.

Lemma 5.2. Given two sequences {t1k} and {t2k}, which converge to 0 as k goes to infinity and ∀k ∈
N, (t1k, t2k) ∈ R2

++. Then, for any z ∈ R+ it holds

lim
k→∞

t2kθt1k
(z) = 0,

and
lim
k→∞

t2kθ
′
t1k

(z) ≤ lim
k→∞

t2kθ
′
t1k

(0).

Since we assume that t2k = o(t1k) in (13), it implies that t2kθ
′
t1k

(zk)→ 0.
A generic relaxation algorithm to compute a stationary point of (MPVC) is Algorithm 1.

Data: x0 an initial point, (t0, t̄0) initial parameters, σt ∈ (0, 1) parameters update;
1 Set k := 0, (tk, t̄k) := (t0, t̄0) ;
2 repeat
3 (tk+1, t̄k+1) = σt(tk, t̄k);

4 xk+1 := stationary point of (Bu.) with xk initial point;
5 k := k + 1;

6 until xk+1 is a ”stationary point of (MPVC)” or decision of infeasibility or unboundedness;

This generic algorithm raises two important questions:

1. is it possible to guarantee that the limit point is an M-stationary point ?
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2. do we have guarantees of existence of stationary point of the relaxed sub-problem ?

Both questions will be treated successfully in the following two sections.
We conclude this section by an example that shows that the butterfly relaxation may improve the re-

laxation [18], which is the only other method with proved convergence to M-stationary point. Indeed, it
illustrates an example where there are no sequences of stationary points that converge to any undesirable
point.

Example 1.
min
x∈R2

−x2 s.t x2 ≤ 1, x2 ≥ 0, x1x2 ≤ 0.

In this example, there are two stationary points: an S-stationary point (0, 1) that is the global minimum and
an M-stationary point (0, 0), which is not a local minimum. Indeed, we see that x∗ = (0, 0)T is M-stationary,
since computing the gradient of the MPVC-Lagrangian function yields to(

0
1

)
= −λH

(
0
1

)
+ λG

(
1
0

)
,

so λH = −1 and λG = 0.
For the relaxation [18] the gradient of the Lagrangian equal to 0 gives(

0
1

)
= −λH,k

(
0
1

)
+ λΦ,k

(
xk2 − tk2
xk1

)
.

Here, for t2,k = 1
k a sequence xk = (2t2,k t2,k)T , with λΦ,k = k, may converge to (0, 0) as k goes to infinity.

However, there are no sequences of stationary point that converges to this undesirable point with the
butterfly relaxation. The gradient of the Lagrangian for the relaxation equal to 0 gives(

0
1

)
= −λH,k

(
0
1

)
+ λΦ,k

(
(xk2 − tk2 − tk2θt1,k(xk1 − t2,k))− tk2θt1,k(xk1 − t2,k)xk1

xk1

)
.

Now, evaluating this expression at the point xk = (2t2,k t2,k)T yields that λΦ,k = 0 and λH,k = −1, which
contradicts the sign constraints in the KKT condition.

6 Convergence of the Butterfly Relaxation

As in [18], sequences of stationary points of (Bu.) converge to an M-stationary point. Moreover, we prove
here that the new MPVC-CRSC is sufficient for this result, while MPVC-CPLD has been considered in [18].

Theorem 6.1. Given a sequence {tk} of positive parameters satisfying (13) and decreasing to zero as k
goes to infinity. Let {xk, λk} be a sequence of points that are stationary points of (Bu.) for all k ∈ N with
xk → x∗, where MPVC-CRSC is satisfied in x∗. Then, x∗ is an M-stationary point of (MPVC).

Proof. First, we identify the expressions of the multipliers of the vanishing constraints in Definition 3.1 in
function of the stationary points of (Bu.). Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a sequence of KKT points
of (Bu.) for all k ∈ N. The representation of ΦB immediately gives ∇ΦBi (G(xk), H(xk); tk) = 0, ∀i ∈
I00
GH(xk; tk) for all k ∈ N. Thus, we can rewrite the equation above as

−∇f(xk) =

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k) +

q∑
i=1

ηG,ki ∇Gi(xk)−
q∑
i=1

ηH,ki ∇Hi(x
k),

where

ηG,ki =


−λΦ,k

i t2kθ
′
t1k

(Gi(x
k))Gi(x

k), if i ∈ I+0
GH(xk; tk)

λΦ,k
i Fi(x

k; tk), if i ∈ I0+
GH(xk; tk)

0, otherwise,
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ηH,ki =


λH,ki , if i ∈ IH(xk; tk)

−λΦ,k
i Gi(x

k), if i ∈ I+0
GH(xk; tk)

0, otherwise.

Noticing that whenever i ∈ {i = 1, . . . , q | Gi(xk) = 0}, i ∈ I0+
GH(xk; tk) or symmetrically i ∈ {i | Fi(xk; tk) =

0} implies that i ∈ I+0
GH(xk; tk) by concavity of θ and t2kθ

′(0) ≤ t1k for all k ∈ N.

In order to prove boundedness of the sequence ηk := {λg,k, λh,k, ηG,k, ηH,k}, we check that all the as-
sumptions of Theorem 4.5 are satisfied and apply Corollary 4.2.

Let ∀i ∈ I−+ ∪ I−0 ∪ I+0, we verify that

lim
k→∞

ηG,ki

‖ηk‖∞
= 0. (14)

Obviously, it holds for k sufficiently large that Gi(x
k) 6= 0 and so either i ∈ IH(xk; tk) or i ∈ I+0

GH(xk; tk).
In the former case, ηG,k = 0 and so (14) holds true. Thus, let us consider i ∈ I+0

GH(xk; tk). In this case, it
clearly holds that

lim
k→∞

|ηG,ki |
|ηH,ki |

= lim
k→∞

λΦ,k
i t2kθ

′
t1k

(Gi(x
k))Gi(x

k)

λΦ,k
i Gi(xk)

≥ |η
G,k
i |
‖ηk‖∞

= 0,

which proves (14).

It follows in a straightforward way from the definition of ηH,ki that ηH,k ≥ 0 for all i ∈ I−0 and for all
i ∈ I .+

lim
k→∞

ηH,ki

‖ηk‖∞
= 0. (15)

Finally, we verify that for all i ∈ I00 we get

lim
k→∞

ηG,ki ηH,ki

‖ηk‖2∞
= 0 and lim

k→∞

ηG,ki

‖ηk‖∞
≥ 0. (16)

The case, where λΦ,k = 0 for k sufficiently large holds trivially, thus assume that i ∈ I+0
GH and so by definition

of ηG,ki and ηH,ki we have

0 ≤ lim
k→∞

ηG,ki ηH,ki

‖ηk‖2∞
= lim
k→∞

(λΦ,kGi(x
k))2t2kθ

′
t1k

(Gi(x
k))

‖ηk‖2∞
≤ lim
k→∞

t2kθ
′
t1k

(Gi(x
k)) = 0,

by the assumption that t2k = o(t1k). The second part of (16) is also a consequence of the previous equation

since for i ∈ I0+
GH it always holds and for i ∈ I+0

GH it holds that lim
k→∞

ηG,k
i

‖ηk‖∞ = 0.

Thus, all the assumptions of Corollary 4.2 are verified and so x∗ is an M-stationary point.

This theorem attains our goal defined in Theorem 4.1 to compute an M-stationary point of the (MPVC).
Removing the assumption t2 = o(t1), made in 13, may lead the sequence of stationary points to spurious

stationary points as illustrated by the following example.

Example 2. Consider the following two-dimensional example

min
x1,x2∈R2

x1 − x2 s.t. x2 ≥ 0, x1x2 ≤ 0,

and the relaxed sub-problems of the butterfly relaxation with t2k = θ′t1k
(0) denoted as

min
x1,x2∈R2

x1 − x2 s.t. x2 ≥ −tk, x1(x2 − tk − tkθ′r(x1)) ≤ 0.

The origin is a weak-stationary point with multipliers λG = 1 and λH = 1. Let xk = (1/k, tk + t2kθ
′
t1k

(1/k))

(so i ∈ I+0
GH(xk; tk)) be a sequence of stationary point of the butterfly relaxed sub-problem with multipliers

λG,k = λH,k = 0 and λΦ,k = k. Then, xk →k→∞ x∗ = (0, 0)T since lim
k→∞

t2kθ
′
t1k

(0) = 1 for t2k = θ′t1k
(0).
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7 Existence of Lagrange Multipliers of the Relaxed Sub-problems

The convergence analysis relies on the fact that Lagrange multipliers exist for the relaxed sub-problems. The
following theorem illustrates this assumption.

Theorem 7.1. Let x∗ ∈ Z such that MPVC-LICQ holds at x∗. Then, there exists t∗ > 0 and a neighborhood
U(x∗) of x∗ such that:

∀t ∈ (0, t̄] : x ∈ U(x∗) ∩ XBt =⇒ standard GCQ for (Bu.) holds in x.

Proof. First we note that it always holds that L ◦XB
t

(x) ⊆ T ◦XB
t

(x). So, it is sufficient to show the reverse

inclusion.
The linearized cone of RBt is given by

LXB
t

(x) = {d ∈ Rn | ∇gi(x)T d ≤ 0 (i ∈ Ig(x)), ∇hi(x)T d = 0 (i = 1, . . . ,m),

∇Hi(x)T d ≥ 0 (i ∈ IH(x; t)),

∇ΦBi (G(x), H(x); t)
T
d ≤ 0 (i ∈ I0+

GH(x; t) ∪ I+0
GH(x; t))}.

Let us compute the polar of the tangent cone.
Consider the non-linear program (NLPt,I(x)) with I ⊂ I00

GH(x; t), defined by

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

H(x) ≥ −t,
ΦBi (G(x), H(x); t) ≤ 0, i /∈ I00

GH(x; t),

Gi(x
k) ≤ 0, Fi(x; t) ≥ 0, i ∈ I,

Gi(x
k) ≥ 0, Fi(x; t) ≤ 0, i ∈ Ic,

(NLPt,I(x))

where Ic ∪ I = I00
GH(x; t) and I ∩ Ic = ∅. By construction of U(x∗) and t̄, the gradients {∇gi(x∗) (i ∈

Ig),∇hi(x∗) (i = 1, . . . ,m),∇Gi(x∗) (i ∈ I00 ∪ I0+),∇Hi(x
∗) (i ∈ I .0)} remain linearly independent for all

x ∈ U(x∗) by continuity of the gradients in a neighborhood and

Ig(x) ⊆ Ig,
IH(x; t) ⊆ I+0 ∪ I00,

I00
GH(x; t) ∪ I0+

GH(x; t) ⊆ I00 ∪ I0+,

I00
GH(x; t) ∪ I+0

GH(x; t) ⊆ I+0 ∪ I00.

Therefore, we can apply Lemma A.1 of [10] that gives that MFCQ holds for (NLPt,I(x)) at x. Furthermore,
by Lemma 8.10 of [28] and since MFCQ in particular implies Abadie CQ it follows

TXB
t

(x) = ∪I⊆I00GH(x;t)TNLP (t,I)(x) = ∪I⊆I00GH(x;t)LNLP (t,I)(x).

By [7, Theorem 3.1.9], passing to the polar yields

TXB
t

(x)◦ = ∩I⊆I00GH(x;t)L
◦
NLP (t,I)(x),

and by [7, Theorem 3.2.2]

L ◦NLP (t,I)(x) = {v ∈ Rn | v =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)−
∑

i∈IH(x;t)

λHi ∇Hi(x)

+
∑

i∈I+0
GH(x;t)∪I0+GH(x;t)

λΦ
i ∇ΦBi (G(x), H(x); t) +

∑
i∈I

λGi ∇Gi(x)−
∑
i∈Ic

λGi ∇Gi(x)

−
∑
i∈I
∇Hi(x) +

∑
i∈Ic
∇Hi(x) : λg, λG, λH , λΦ ≥ 0}.
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Taking v ∈ T ◦XB
t

(x) implies v ∈ L ◦NLP (t,I)(x) for all I ⊆ I00
GH(x; t). If we fix such I, then there exists some

multipliers λh and λg, λG, λH , λΦ ≥ 0 so that

v =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)−
∑

i∈IH(x;t)

λHi ∇Hi(x) +
∑

i∈I+0
GH(x;t)∪I0+GH(x;t)

λΦ
i ∇ΦBi (G(x), H(x); t)

+
∑
i∈I

λGi ∇Gi(x)−
∑
i∈Ic

λGi ∇Gi(x)−
∑
i∈I
∇Hi(x) +

∑
i∈Ic
∇Hi(x).

Now, it also holds that v ∈ L ◦NLP (t,Ic)(x) and so there exists some multipliers λh and λg, λG, λH , λΦ ≥ 0
such that

v =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)−
∑

i∈IH(x;t)

λHi ∇Hi(x) +
∑

i∈I+0
GH(x;t)∪I0+GH(x;t)

λΦ
i ∇ΦBi (G(x), H(x); t)

+
∑
i∈I

λGi ∇Gi(x)−
∑
i∈Ic

λGi ∇Gi(x)−
∑
i∈I
∇Hi(x) +

∑
i∈Ic
∇Hi(x).

By the construction of t̄ and U(x∗) the gradients involved here are linearly independent and so the multipliers
in both previous equations must be equal. Thus, the multipliers λGi and λHi with indices i in I ∪ Ic vanish.
Therefore, v ∈ L ◦XB

t
(x) and as v has been chosen arbitrarily then T ◦XB

t
(x) ⊆ L ◦XB

t
(x).

The result follows since it always holds that L ◦XB
t

(x) ⊆ T ◦XB
t

(x).

This result gives a similar conclusion to the one from [18] and shows that, in general, there exist Lagrange
multipliers of the relaxed sub-problem.

8 Numerical Examples

In this section, we present two examples of numerical tests of the butterfly relaxation on MPVC that are
motivated by bar-truss topology problems. The two examples have been used previously in the literature
in [17] and are described in depth in the thesis [13]. We remind here that models for topology optimization
was the motivation to introduce MPVC in [2]. Our motivation here is to validate our method on classical
instances of MPVC, additionally to its strong theoretical properties.

8.1 Academic Example

Let us consider the following two dimensional MPVC from [17].

Example 3.

min
x∈R2

4x1 + 2x2

s.t. x1 ≥ 0, x2 ≥ 0,

(5
√

2− x1 − x2)x1 ≤ 0,

(5− x1 − x2)x2 ≤ 0.

The feasible set of this example is given in Figure 3. As the geometry indicates, numerical methods based
on feasible descent concepts generally converge to the point x̂ = (0, 5

√
2)T . The unique global solution to

the problem is the point x∗ = (0, 0)T . In practical application this point must be excluded by an additional
constraint. Finally, the point x̄ = (0, 5)T is a local minimum.

We run butterfly relaxation tailored for (MPVC) on Example 3 using an initial point inside the feasible
domain x0 = (6, 6)T . Results are presented in Table 1 with solvers SNOPT and IPOPT to compute the
iterates in the relaxation method, see Algorithm 1. In one case the butterfly method manages to converge
to the global optimum and in the second case it converges to the point (0, 5) which is a local minimum.
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Figure 3: The feasible set of Example 3 from [13].

sovler x∗ f(x∗) last value of t
SNOPT (0, 5)T 10 0, 5
IPOPT (0, 0)T 0 4.67 · 10−4

Table 1: Butterfly (MPVC) relaxation with t2 = t1
3/2 on Example 3 with initial point (6, 6)T .

8.2 Application in bar-truss topology

In [17], they also consider a general model for bar-truss well known from engineering literature.

min
a∈Rn,u∈RL×d

n∑
i=1

liai

s.t K(a)u = fl, l = 1, . . . , L

fTl ul ≤ c, l = 1, . . . , L

ai ≤ ā , i = 1, ..., n

ai ≥ 0 , i = 1, ..., n

(σil(a, u)2 − σ̄2)ai ≤ 0 , i = 1, ..., n, l = 1, ..., L

(17)

where K(a) =
∑N
i=1 ai

E
li
γiγ

T
i ∈ Rd×d, σil(a, u) = E

γT
i u
li

and ‖f‖ = 1. All in all, this problem possesses
n := N + L × d variables, p := L × d equality constraints, m := L + N (ordinary) inequality constraints,
and, formally, N × L vanishing (stress) constraints. Moreover, as a simplification in all problems below we
use the setting E := 1 for the Young’s modulus, which can be regarded as a scaling of the problem and is
not essential.

Example 4 (Ten-bar truss problem). L = 1, N = 10, d = 8. The bar lengths are li = 1 for i ∈ {1, 3, 5, 6, 8, 10}
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sovler x∗ f(x∗) last value of t
SNOPT (2.82, 0, 0.85, 2.00, 0.70, 0.70, 0.50, 0, 0.50, 1.24ε1)T 9.34 1
IPOPT (2.82,−7.63ε2, 0.85, 2.00, 0.70, 0.70, 0.50,−5.62ε2, 0.50,−5.76ε2)T 9.34 1

Table 2: Butterfly (MPVC) relaxation with t2 = t1
3/2 on Example 4 with initial point a = u = 1. ε1 = 10−14,

ε2 = 10−9.

and li =
√

2 for i ∈ {2, 4, 7, 9}. Vectors γi are given in the following array

i = 1 2 3 4 5 6 7 8 9 10

1
√

2
2 −1 −

√
2

2 u11√
2

2 1 −1 −
√

2
2 u21

1
√

2
2 u31√

2
2 1 u41

−
√

2
2 −1 −

√
2

2 u51

1
√

2
2 u61

−
√

2
2 −1 u71√

2
2 1 u81

All in all, problem possesses 18 variables, 8 bilinear equality constraints, 21 linear inequality constraints, and
10 non-linear inequality constraints modeling the vanishing stress constraints. Furthermore, we fix c = 10,
ā = 100 and σ̄ = 1. Moreover, we set f1 = (1/

√
8, . . . , 1/

√
8) so that it satisfies ‖f1‖2 = 1.

Results are presented in Table 2 with solvers SNOPT and IPOPT to compute the iterates in the relaxation
method and with initial point a = u = 1, t0 = 1, σt = 0.1. In both cases, the method manages to find a
solution.

9 Conclusion

This article proposes a new family of relaxation schemes for the mathematical program with vanishing
constraints. This new method is an extension of existing method with the best-known convergence property,
while weakening the required assumptions. We define new and weak constraint qualifications for the MPVC,
all of them with direct algorithmic applications.

Further research will focus on several aspects of the new relaxation method. First of all, we plan a numer-
ical comparison between relaxation methods on several examples. Then, convergence of the method needs
to be analyzed, when the sequence of stationary points is only computed approximately. This potential issue
and some keys to solve it have already been proposed in [25] in the context of complementarity constraints.
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