K. J. Bender and L. O. Trussell, The Physiology of the Axon Initial Segment, Annual Review of Neuroscience, vol.35, issue.1, pp.249-265, 2012.
DOI : 10.1146/annurev-neuro-062111-150339

T. Benned-jensen, R. K. Christensen, F. Denti, J. F. Perrier, H. B. Rasmussen et al., Live Imaging of Kv7.2/7.3 Cell Surface Dynamics at the Axon Initial Segment: High Steady-State Stability and Calpain-Dependent Excitotoxic Downregulation Revealed, Journal of Neuroscience, vol.36, issue.7, pp.2261-2266, 2016.
DOI : 10.1523/JNEUROSCI.2631-15.2016

P. Wang, X. Yang, and C. J. Li, Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1, Gastroenterology, vol.144, pp.1456-1465, 2013.

J. He, R. Zhou, Z. Wu, M. A. Carrasco, P. T. Kurshan et al., Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species, Proc. Natl. Acad. Sci. USA, pp.6029-6034, 2016.

K. L. Hedstrom, X. Xu, Y. Ogawa, R. Frischknecht, C. I. Seidenbecher et al., Neurofascin assembles a specialized extracellular matrix at the axon initial segment, The Journal of Cell Biology, vol.19, issue.5, pp.875-886, 2007.
DOI : 10.1083/jcb.143.5.1295

K. L. Hedstrom, Y. Ogawa, R. , and M. N. , AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity, The Journal of Cell Biology, vol.120, issue.4, pp.635-640, 2008.
DOI : 10.1038/ncb1603

S. M. Heissler and J. R. Sellers, Myosin light chains: Teaching old dogs new tricks, BioArchitecture, vol.113, issue.8, pp.169-188, 2014.
DOI : 10.1038/sj.emboj.7601059

J. H. Henson, C. E. Ditzler, A. Germain, P. M. Irwin, E. T. Vogt et al., The ultrastructural organization of actin and myosin II filaments in the contractile ring: new support for an old model of cytokinesis, Molecular Biology of the Cell, vol.100, issue.5, pp.613-623, 2017.
DOI : 10.1091/mbc.E07-08-0783

Y. E. Hien, A. Montersino, F. Castets, C. Leterrier, O. Filhol et al., CK2 accumulation at the axon initial segment depends on sodium channel Nav1, FEBS Letters, vol.289, issue.18, pp.3403-3408, 2014.
DOI : 10.1074/jbc.M113.528497

URL : https://hal.archives-ouvertes.fr/hal-01701430

M. Hirano and K. Hirano, Myosin di-phosphorylation and peripheral actin bundle formation as initial events during endothelial barrier disruption, Scientific Reports, vol.294, issue.1, 2016.
DOI : 10.1002/0471142727.mb0910s36

T. J. Hund, O. M. Koval, J. Li, P. J. Wright, L. Qian et al., A ??IV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice, Journal of Clinical Investigation, vol.120, issue.10, pp.3508-3519, 2010.
DOI : 10.1172/JCI43621DS1

S. M. Jenkins and V. Bennett, Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments, The Journal of Cell Biology, vol.143, issue.5, pp.739-746, 2001.
DOI : 10.1083/jcb.143.5.1295

Y. Kato, N. Fusetani, S. Matsunaga, and K. Hashimoto, Calyculins, potent antitumour metabolites from the marine sponge Discodermia calyx: biological activities, Drugs Exp. Clin. Res, vol.14, pp.723-728, 1988.

A. N. King, C. F. Manning, and J. S. Trimmer, A unique ion channel clustering domain on the axon initial segment of mammalian neurons, Journal of Comparative Neurology, vol.33, issue.9, 2014.
DOI : 10.1523/JNEUROSCI.2983-12.2013

M. H. Kole and G. J. Stuart, Signal Processing in the Axon Initial Segment, Neuron, vol.73, issue.2, pp.235-247, 2012.
DOI : 10.1016/j.neuron.2012.01.007

M. Ková-cs, J. Tó-th, C. Heté-nyi, A. Má-lná-si-csizmadia, and J. R. Sellers, Mechanism of Blebbistatin Inhibition of Myosin II, Journal of Biological Chemistry, vol.246, issue.34, pp.35557-35563, 2004.
DOI : 10.1021/bi026964f

H. Kuba, R. Adachi, and H. Ohmori, Activity-Dependent and Activity-Independent Development of the Axon Initial Segment, Journal of Neuroscience, vol.34, issue.9, pp.3443-3453, 2014.
DOI : 10.1523/JNEUROSCI.4357-13.2014

B. Ladoux, W. J. Nelson, J. Yan, and R. M. Mè-ge, The mechanotransduction machinery at work at adherens junctions, Integrative Biology, vol.35, issue.Pt 8, pp.1109-1119, 2015.
DOI : 10.1016/j.clinimag.2010.07.009

URL : https://hal.archives-ouvertes.fr/hal-01272697

C. Leterrier, The Axon Initial Segment, 50Years Later, Curr. Top. Membr, vol.77, pp.185-233, 2016.
DOI : 10.1016/bs.ctm.2015.10.005

URL : https://hal.archives-ouvertes.fr/hal-01473979

C. Leterrier, J. Potier, G. Caillol, C. Debarnot, R. Boroni et al., Nanoscale Architecture of the Axon Initial Segment Reveals an Organized and Robust Scaffold, Cell Reports, vol.13, issue.12, pp.2781-2793, 2015.
DOI : 10.1016/j.celrep.2015.11.051

URL : https://hal.archives-ouvertes.fr/hal-01701419

C. Leterrier, N. Clerc, F. Rueda-boroni, A. Montersino, B. Dargent et al., Ankyrin G membrane partners drive the establishment and maintenance of the axon initial segment, Front. Cell. Neurosci. Neuron, vol.11, issue.97, pp.1-16, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01701415

. Berger, Localized Myosin II Activity Regulates Assembly and Plasticity of the Axon Initial Segment, Neuron, vol.97, issue.3, 2017.
DOI : 10.1016/j.neuron.2017.12.039

URL : https://hal.archives-ouvertes.fr/hal-01701359

T. T. Liu, L. Feng, H. F. Liu, Y. Shu, X. et al., Altered axon initial segment in hippocampal newborn neurons, associated with recurrence of temporal lobe epilepsy in rats, Molecular Medicine Reports, vol.16, issue.3, pp.3169-3178, 2017.
DOI : 10.3892/mmr.2017.7017

D. N. Lorenzo, A. Badea, J. Davis, J. Hostettler, J. He et al., A PIK3C3???Ankyrin-B???Dynactin pathway promotes axonal growth and multiorganelle transport, The Journal of Cell Biology, vol.35, issue.6, pp.735-752, 2014.
DOI : 10.1083/jcb.201407063.dv

M. Ma, Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon, Neurobiology of Disease, vol.60, pp.61-79, 2013.
DOI : 10.1016/j.nbd.2013.08.010

X. Ma and R. S. Adelstein, The role of vertebrate nonmuscle Myosin II in development and human disease, BioArchitecture, vol.4, issue.3, pp.88-102, 2014.
DOI : 10.1016/j.ydbio.2012.07.011

M. Miyazaki, M. Chiba, H. Eguchi, T. Ohki, and S. Ishiwata, Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings??in??vitro, Nature Cell Biology, vol.268, issue.4, pp.480-489, 2015.
DOI : 10.1083/jcb.103.6.2747

K. A. Newell-litwa, R. Horwitz, and M. L. Lamers, Non-muscle myosin II in disease: mechanisms and therapeutic opportunities, Disease Models & Mechanisms, vol.8, issue.12, pp.1495-1515, 2015.
DOI : 10.1242/dmm.022103

I. Park, C. Han, S. Jin, B. Lee, H. Choi et al., Myosin regulatory light chains are required to maintain the stability of myosin II and cellular integrity, Biochemical Journal, vol.261, issue.1, pp.171-180, 2011.
DOI : 10.1002/cm.20148

P. P. Provenzano, K. , and P. J. , Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling, Journal of Cell Science, vol.124, issue.8, pp.1195-1205, 2011.
DOI : 10.1242/jcs.067009

J. C. Rios, C. V. Melendez-vasquez, S. Einheber, M. Lustig, M. Grumet et al., Contactin-Associated Protein (Caspr) and Contactin Form a Complex That Is Targeted to the Paranodal Junctions during Myelination, The Journal of Neuroscience, vol.20, issue.22, pp.8354-8364, 2000.
DOI : 10.1523/JNEUROSCI.20-22-08354.2000

J. Salomon, C. Gaston, J. Magescas, B. Duvauchelle, D. Canioni et al., Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity, Nature Communications, vol.102, 2017.
DOI : 10.1073/pnas.0408482102

URL : https://hal.archives-ouvertes.fr/hal-01439356

J. Samanta, E. M. Grund, H. M. Silva, J. J. Lafaille, G. Fishell et al., Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination, Nature, vol.19, issue.7573, pp.448-452, 2015.
DOI : 10.1093/cercor/bhn212

D. P. Schafer, S. Jha, F. Liu, T. Akella, L. D. Mccullough et al., Disruption of the Axon Initial Segment Cytoskeleton Is a New Mechanism for Neuronal Injury, Journal of Neuroscience, vol.29, issue.42, pp.13242-13254, 2009.
DOI : 10.1523/JNEUROSCI.3376-09.2009

C. Schwayer, M. Sikora, J. Slová-ková, R. Kardos, and C. P. Heisenberg, Actin Rings of Power, Developmental Cell, vol.37, issue.6, pp.493-506, 2016.
DOI : 10.1016/j.devcel.2016.05.024

J. R. Sellers, Myosins: a diverse superfamily, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1496, issue.1, pp.3-22, 2000.
DOI : 10.1016/S0167-4889(00)00005-7

L. Smith and J. T. Stull, Myosin light chain kinase binding to actin filaments, FEBS Letters, vol.347, issue.2-3, pp.298-300, 2000.
DOI : 10.1038/347044a0

J. M. Sobotzik, J. M. Sie, C. Politi, D. Turco, D. Bennett et al., AnkyrinG is required to maintain axo-dendritic polarity in vivo, Proc. Natl. Acad. Sci. USA, pp.17564-17569, 2009.
DOI : 10.1016/0165-0270(91)90128-M

I. Spector, F. Braet, N. R. Shochet, and M. R. Bubb, New anti-actin drugs in the study of the organization and function of the actin cytoskeleton, Microscopy Research and Technique, vol.57, issue.12, pp.18-37, 1999.
DOI : 10.1021/np9803225

A. F. Straight, A. Cheung, J. Limouze, I. Chen, N. J. Westwood et al., Dissecting Temporal and Spatial Control of Cytokinesis with a Myosin II Inhibitor, Science, vol.299, issue.5613, pp.1743-1747, 2003.
DOI : 10.1126/science.1081412

M. Tapia, F. Wandosell, and J. J. Garrido, Impaired Function of HDAC6 Slows Down Axonal Growth and Interferes with Axon Initial Segment Development, PLoS ONE, vol.5, issue.9, 2010.
DOI : 10.1371/journal.pone.0012908.s004

M. Uehata, T. Ishizaki, H. Satoh, T. Ono, T. Kawahara et al., Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension, Nature, vol.38, issue.6654, pp.990-994, 1997.
DOI : 10.1016/0076-6879(74)38047-0

M. Vicente-manzanares and A. R. Horwitz, Myosin light chain mono- and di-phosphorylation differentially regulate adhesion and polarity in migrating cells, Biochemical and Biophysical Research Communications, vol.402, issue.3, pp.537-542, 2010.
DOI : 10.1016/j.bbrc.2010.10.071

Y. Wang, P. Zhang, and D. R. Wyskiel, Chandelier Cells in Functional and Dysfunctional Neural Circuits, Frontiers in Neural Circuits, vol.24, p.33, 2016.
DOI : 10.1523/jneurosci.0544-04.2004

T. Watanabe, H. Hosoya, Y. , and S. , Regulation of Myosin II Dynamics by Phosphorylation and Dephosphorylation of Its Light Chain in Epithelial Cells, Molecular Biology of the Cell, vol.18, issue.2, pp.605-616, 2007.
DOI : 10.1091/mbc.E06-07-0590

K. Watanabe, S. Al-bassam, Y. Miyazaki, T. J. Wandless, P. Webster et al., Networks of Polarized Actin Filaments in the Axon Initial Segment Provide a Mechanism for Sorting Axonal and Dendritic Proteins, Cell Reports, vol.2, issue.6, pp.1546-1553, 2012.
DOI : 10.1016/j.celrep.2012.11.015

W. Wefelmeyer, D. Cattaert, and J. Burrone, Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output, Proc. Natl. Acad. Sci. USA, pp.9757-9762, 2015.
DOI : 10.1162/neco.1997.9.6.1179

B. Winckler, P. Forscher, and I. Mellman, A diffusion barrier maintains distribution of membrane proteins in polarized neurons, Nature, vol.20, issue.6721, pp.698-701, 1999.
DOI : 10.1016/S0896-6273(00)80468-7

K. Xu, G. Zhong, and X. Zhuang, Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons, Science, vol.68, issue.5, pp.452-456, 2013.
DOI : 10.1016/j.neuron.2010.11.021

R. Yamada and H. Kuba, Structural and Functional Plasticity at the Axon Initial Segment, Frontiers in Cellular Neuroscience, vol.30, p.250, 2016.
DOI : 10.1523/jneurosci.2651-10.2010

C. X. Yang, H. Q. Chen, C. Chen, W. P. Yu, W. C. Zhang et al., Microfilament-binding properties of N-terminal extension of the isoform of smooth muscle long myosin light chain kinase, Cell Research, vol.1450, issue.4, pp.367-376, 2006.
DOI : 10.1016/j.yexcr.2004.04.025

R. Zaidel-bar, G. Zhenhuan, and C. Luxenburg, The contractome - a systems view of actomyosin contractility in non-muscle cells, Journal of Cell Science, vol.128, issue.12, pp.2209-2217, 2015.
DOI : 10.1242/jcs.170068

C. Zhang, R. , and M. N. , Cytoskeletal control of axon domain assembly and function, Current Opinion in Neurobiology, vol.39, pp.116-121, 2016.
DOI : 10.1016/j.conb.2016.05.001

Y. Zhang, Y. Bekku, Y. Dzhashiashvili, S. Armenti, X. Meng et al., Assembly and Maintenance of Nodes of Ranvier Rely on Distinct Sources of Proteins and Targeting Mechanisms, Neuron, vol.73, issue.1, pp.92-107, 2012.
DOI : 10.1016/j.neuron.2011.10.016

G. Zhong, J. He, R. Zhou, D. Lorenzo, H. P. Babcock et al., Author response image 1. Author response, eLife, vol.143, p.4581, 2014.
DOI : 10.7554/eLife.04581.025

S. Figure, Related to Figure 6. Depolarization increases the ectopic expression of AIS components in axons of MYPT mutants

E. Shrna-knockdown, KD) of MYPT2 resulted in elevated axonal pMLC (red) and AnkG (magenta) in neurons at baseline and a further increase after 60 minutes of depolarization. An shRNA to a scrambled sequence (shScr) served as a control

F. Pmlc, AnkG are elevated in the axon at baseline and further increased after depolarization in shMYPT2 knockdown (Cre; gray) but not in shScr control (EGFP; black) neurons. Depolarization resulted in an additional 1.6-fold increase of pMLC (p=0.0003) and a 1.6-fold increase of AnkG (p=0.004) relative to non-depolarized knockdown neurons. Graphs show average intensity ± SEM. Kruskal-Wallis test with Dunn's correction