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ABSTRACT

Multichannel singular spectrum analysis (M-SSA) provides an efficient way to identify weak oscil-
latory behavior in high-dimensional data. To prevent the misinterpretation of stochastic fluctuations
in short time series as oscillations, Monte Carlo (MC)–type hypothesis tests provide objective criteria
for the statistical significance of the oscillatory behavior. Procrustes target rotation is introduced
here as a key method for refining previously available MC tests. The proposed modification helps
reduce the risk of type-I errors, and it is shown to improve the test’s discriminating power. The
reliability of the proposed methodology is examined in an idealized setting for a cluster of harmonic
oscillators immersed in red noise. Furthermore, the common method of data compression into a few
leading principal components, prior to M-SSA, is re-examined and its possibly negative effects are
discussed. Finally, the generalized Procrustes test is applied to the analysis of interannual variability
in the North Atlantic’s sea surface temperature and sea level pressure fields. The results of this
analysis provide further evidence for shared mechanisms of variability between the Gulf Stream and
the North Atlantic Oscillation in the interannual frequency band.

1. Introduction

Over the last two decades, singular spectrum
analysis (SSA) and its multivariate extension (M-
SSA) have become widely used in the identifica-
tion of intermittent or modulated oscillations in ge-
ophysical and climatic time series (Vautard et al.
1992). These methods are closely related to prin-
cipal component analysis (PCA) or empirical ortho-
gonal function (EOF) analysis; they are primarily
designed for the reduction of the dimensionality of a
given data set and the compression of a maximum
of variance into a minimal number of robust compo-
nents. In the identification of regularity, as well as
the reduction to a simpler and easier to interpret pic-
ture of complex observations, SSA and M-SSA have
demonstrated their usefulness in numerous applica-
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tions; see Ghil et al. (2002b) for a comprehensive
overview.

Both SSA and M-SSA decompose the time-delayed
embedding of a given data set (Broomhead and King
1986a,b) into a set of data-adaptive orthogonal com-
ponents, while M-SSA also takes cross-correlations
into account. It turns out that these components
can be classified essentially into trends, oscillatory
patterns, and noise, and allow a reconstruction of
a “skeleton” of the underlying dynamical system’s
structure (Vautard and Ghil 1989; Ghil and Vautard
1991; Vautard et al. 1992). Several practical aspects
of SSA and its application to time series analysis are
covered in Golyandina et al. (2001) and Golyandina
and Zhigljavsky (2013).

In practice, we are usually confronted with the pro-
blem of the regular part of the behavior being rather
weak and hidden by substantial noise. Without any
a priori knowledge of the underlying dynamics—and
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by visual inspection, or by more common spectral
methods alone—it may be difficult to find and formu-
late a proper model for the mechanisms that underlie
the regularity, if any.

To prevent the misinterpretation of random fluc-
tuations as oscillations in a univariate SSA analy-
sis, Allen and Smith (1996, hereafter AS) formula-
ted an objective statistical-significance test against a
red-noise null hypothesis. In their Monte Carlo–type
test, these authors simulate short-term temporal cor-
relations of the time series by means of a first-order
autoregressive process [AR(1) hereafter]; such a pro-
cess does not support oscillatory behavior and it is,
therefore, well adapted to the task.

In the case of multivariate data, it is not only
temporal but spatial correlations, too, that have to
be taken into account in the formulation of the null
hypothesis. Allen and Robertson (1996) proposed a
transformation of the data to pairwise uncorrelated
principal components (PCs) by means of a conven-
tional PCA analysis; their method then proceeds to
fit independent AR(1) processes to each of the PCs.

Small mismatches in each of the null hypotheses
are likely, however, to be amplified as the number of
PCs increases, and this increases the risk of errone-
ously identifying oscillations where none are present.
In an idealized experiment that uses harmonic os-
cillators hidden by irregular noise, we shall see that
that such misidentification may occur even when the
superimposed noise originates from an AR(1) pro-
cess as well; that is, there is no formally erroneous
specification in the definition of the null hypothesis.

In this paper, we introduce a modification of the
Monte Carlo test of Allen and Robertson (1996) that
helps reduce so-called type-I errors and improves the
discriminating power of the test. We propose here to
apply Procrustes target rotation (Green 1952; Hur-
ley and Cattell 1962; Schönemann 1966) in matching
M-SSA eigendecompositions of the null hypothesis’
surrogate data with that of the observed data. In
this setting, the Monte Carlo tests of AS and of Al-
len and Robertson (1996) emerge as special cases.

In our application to sea surface temperature
(SST) data from the Simple Ocean Data Assimilation
(SODA) reanalysis (Carton and Giese 2008; Giese
and Ray 2011) and sea level pressure (SLP) data
from the atmospheric 20CRv2 reanalysis (Compo
et al. 2011), we rely furthermore on the varimax M-
SSA analysis introduced recently by Groth and Ghil
(2011). Feliks et al. (2013) applied such a varimax
rotation to climatic indices, and showed that it helps
reduce mixture problems in the EOFs and that it
provides therewith much sharper spectral results.

In the present paper, we follow Feliks et al. (2011)
and focus on SST data in the Gulf Stream region but

combine it with SLP data in the entire North Atlan-
tic region in a joint M-SSA analysis. The cleaner
and sharper spectral results obtained herein support
the previous authors’ findings of very similar inte-
rannual peaks in the Gulf Stream SST data and the
North Atlantic Oscillation (NAO). Given that the
proposed Monte Carlo test improves M-SSA’s dis-
criminating power, our findings provide even stron-
ger evidence for shared physical mechanisms between
the Gulf Stream’s meandering and the atmospheric
NAO.

The remainder of the paper is organized as follows:
In section 2, we first discuss the key features of M-
SSA and the recently introduced varimax rotation of
the M-SSA solution. We briefly review the Monte
Carlo testing procedure as previously applied to M-
SSA. In section 4, we introduce the concept of Pro-
crustes target rotation as a generalization of such a
test. In section 5, we apply the proposed testing met-
hodology to an idealized statistical experiment. The
results of this experiment are systematically evalua-
ted in section 6. The proposed methodology is finally
applied to observed SST and SLP data in section 7,
and a summary of the results in section 8 concludes
the paper.

2. Singular spectrum analysis (SSA)

Univariate SSA and its multivariate extension M-
SSA rely on the classical Karhunen-Loève decompo-
sition of a stochastic process. Broomhead and King
(1986a,b) introduced them into dynamical system
analysis, as a robust version of the Mañé-Takens idea
to reconstruct dynamics from a time-delayed embed-
ding of time series (Mañé 1981; Takens 1981). The
method essentially diagonalizes the lag-covariance
matrix with respect to a basis of orthogonal eigen-
vectors and computes the corresponding eigenvalues.

The M-SSA eigenvectors are often referred to
as space-time empirical orthogonal functions (ST-
EOFs, Plaut and Vautard 1994; Ghil et al. 2002b).
The new data-adaptive eigenbasis is optimal in the
sense that—for any truncation k with respect to the
leading eigenelements—it minimizes the total mean
squared error between the full data set and that k-
truncated reconstruction. Hence, projecting the data
set onto the data-adaptive eigenvectors simplifies the
picture of a possibly high-dimensional complex sy-
stem by viewing it in an optimal subspace.

Let x = {xd(n) : d = 1, . . . , D; n = 1, . . . , N}
be a multivariate time series with D channels of
length N . Each channel d is embedded into an
M -dimensional phase space by using lagged copies
Xd(n) = [xd(n), . . . , xd(n + M − 1)], with n =
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1, . . . , N −M + 1. The resulting matrix Xd is con-
stant along the skew diagonals, and the full augmen-
ted trajectory matrix X is formed by concatenating
all the channels according to X = (X1,X2, . . . ,XD).
The matrix X has DM columns of reduced length
N ′ = N −M + 1.

The first step of the M-SSA algorithm is to com-
pute the covariance matrix C. This matrix can
be directly estimated from the trajectory matrix X
(Broomhead and King 1986a,b; Allen and Robertson
1996) as

C =
1

N ′
X′X , (1)

where (·)′ indicates the transpose of a matrix, or via
the Toeplitz approach of Vautard and Ghil (1989).

The latter explicitly imposes a Toeplitz
structure—with constant sub- and superdiagonals—
on the covariance matrix and the eigenvectors are
then necessarily either symmetric or antisymmetric
in the univariate case. This feature of the Toeplitz
approach helps the detection of oscillations but it
enhances the risk of spurious-oscillation identifica-
tion as well. In the multichannel case (Keppenne
and Ghil 1993; Plaut and Vautard 1994), each block
has Toeplitz structure, while the “grand” block co-
variance matrix is symmetric. Hence all eigenvalues
are real, but negative eigenvalues may appear as
well. This negative bias has to be compensated by a
positive bias in the positive eigenvalues, which may
reduce the power of the statistical test.

The negative bias in the smallest eigenvalues of the
Toeplitz approach originates from the fact that the
covariance matrix is not directly estimated from the
product of a trajectory matrix as in Eq. (1), but rat-
her from the covariance function estimation, mapped
into Toeplitz form. Vautard and Ghil (1989) sugge-
sted using the common unbiased covariance estima-
tor,

c(τ) =
1

N − τ

N−τ∑
n=1

x(n)x(n+ τ) ,

as resulting from the scalar product of the longest-
available matching segments. This estimate uses
more information from the time series than the
trajectory-matrix approach in Eq. (1).

A possible compromise, likewise suggested by Vau-
tard et al. (1992), could be that of a biased estimator
of the covariance function,

c̃(τ) =
1

N

N−τ∑
n=1

x(n)x(n+ τ) .

This scalar product can be written—by analogy with

Eq. (1)—as a matrix product C̃ = X̃
′
X̃/N of the

extended trajectory matrix, X̃d(n) = [xd(n), . . . ,
xd(n + M − 1)], with n = −M + 1, . . . , N , and all
unknown values at either end, n < 1 and n > N ,

respectively, set to zero. Note that X̃ has thus co-
lumns of length N+M−1. This way, the covariance

matrix estimation C̃ has Toeplitz structure in each
block and is positive semidefinite as well. A draw-
back of this approach is obviously the problem of the
Gibbs phenomenon at either end of the time series
due to the zero-padding.

For simplicity, we rely here on the trajectory ap-
proach of Eq. (1) to calculate C, rather than on either
version of the two versions above of the Toeplitz ap-
proach.

The next step of the algorithm is to diagonalize C,
which yields

Λ = E′C E , (2)

where Λ is a diagonal matrix of DM real eigenvalues
{λk : k = 1, . . . DM}, and a matrix E whose columns
are the associated eigenvectors ek. The ST-EOFs
that enter E are composed of D consecutive segments
edk of length M , each of which is associated with a
channel in Xd, edk(m) ≡ ek((d− 1)M +m).

Projecting the augmented trajectory matrix X
onto the eigenbasis E,

A = XE , (3)

yields the corresponding principal components (PCs)
as columns ak of A. These PCs are pairwise uncor-
related at zero lag and have a reduced length of N ′.
Note that the trajectory approach ensures uncorre-
lated PCs, since A′A = E′X′XE = N ′Λ. This is
not necessarily the case in the unbiased Toeplitz ap-
proach, in particular not for time series with strong
nonstationarity over the observed time interval or for
large values of M ' N/2.

In general, however, we are interested in the re-
construction of the dynamical behavior that gene-
rated the time series X by using only a subset K ⊆
{1, . . . , DM} of the ST-EOFs. Such a reconstruction
requires an inverse transformation of Eq. (3),

RK = XEKE′ ≡ AKE′, (4)

with K a diagonal matrix of size DM×DM , in which
elements Kkk = 1 if k ∈ K and Kkk = 0 otherwise.
Note that K = {1, . . . , DM} yields a complete recon-
struction of X.

Given the PCs in A and the ST-EOFs in E, the
final M-SSA step is to average along the skew diago-
nals of R,

rdk(n) =
1

Mn

Un∑
m=Ln

ak(n−m+ 1)edk(m) , (5)
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in order to determine a set of DM reconstructed
components (RCs) for each of the original input
channels xd (Ghil and Vautard 1991; Vautard et al.
1992; Plaut and Vautard 1994). The normalization
factor Mn and the summation bounds Ln and Un
for the central part of the time series, M ≤ n ≤
N−M+1, are simply (Mn, Ln, Un) = (M, 1,M); for
their values at either end, see Vautard et al. (1992)
or Ghil et al. (2002b).

Still, PCA overall was primarily designed for di-
mensionality reduction and signal compression of
multichannel data. It is thus not clear, a priori,
how informative PCA in general or M-SSA in par-
ticular can be in the interpretation of the underlying
system’s dynamics or structure. Both PCA and M-
SSA, in fact, suffer from degeneracy of eigenvectors
when the corresponding eigenvalues are similar in
size (North et al. 1982). Instead of clearly separa-
ting structural distinct dynamical phenomena—e.g.,
distinct oscillations in the case of M-SSA—one often
observes a mixture of two or more eigenvectors.

A common approach to reduce such mixture effects
and to improve the physical interpretation of the re-
sults is to perform a rotation of the eigenvectors,
E∗ = ETV (Richman 1986; Jolliffe 2002). In Appen-
dix A, we briefly recall the classical varimax rotation
algorithm (Kaiser 1958) and motivate a necessary
modification thereof for M-SSA eigenvectors (Groth
and Ghil 2011).

In the following, we no longer explicitly distin-
guish between unrotated and rotated eigenelements
and thus drop the superscript (·)∗.

3. Monte Carlo SSA: a short review

Usually, the set of eigenvector-eigenvalue pairs are
ranked in descending order of the eigenvalues. This
informal ranking, however, should not be confused
with the order of significance. It is only by tes-
ting against a specific null hypothesis that one can
draw further conclusions about significant determi-
nistic behavior, cf. AS.

In this context, AS proposed a framework of
Monte-Carlo testing for SSA that compares the va-
riance captured by the data eigenvalues with that of
an ensemble of surrogate data. Since climate and ot-
her geophysical records tend to have larger power at
lower frequencies, the authors discuss the null hypot-
hesis of an AR(1) process; note, though that the class
of null hypotheses is not restricted to such simple, li-
near stochastic processes. The AS approach also pro-
vides a low-bias estimator for the model parameters,
given even a short time series. In the case of multiva-
riate data sets, Allen and Robertson (1996) proposed
first a rotation to uncorrelated principal components

by means of a classical PCA, prior to the estimation
of independent AR(1) processes.

Once an appropriate model for the null hypothesis
has been formulated, an ensemble of surrogate data
xR of the same length N and dimension D as the ori-
ginal data set is generated and, for each realization,
the covariance matrix CR is determined. To compare
the data eigendecomposition with the ensemble of
surrogate covariance matrices, AS discussed several
approaches.

A first possibility is to project each covariance ma-
trix CR onto the data eigenvectors E using Eq. (2),

Λ
(E)
R = E′CRE . (6)

Since Eq. (6) is not the eigendecomposition of CR,

the matrix Λ
(E)
R is not necessarily diagonal, but its

diagonal elements yield the resemblance between the
null hypothesis’ variance and the data variance in Λ
in the eigen-directions of E. From a sufficiently large
ensemble of surrogate data, confidence intervals can
be derived; outside of these intervals, the data eigen-
values can be considered to be significantly different
from the null hypothesis.

However, as AS further pointed out, this test tends
to be too lax. Since the eigendecomposition puts
maximum variance into a minimal number of data
adaptive components, artificial variance compression
may occur: that is, SSA may account for too much
variance in the largest eigenvalues and too little in
the smallest. This increases the likelihood of the lar-
gest data eigenvalues being significant. Later on we
shall see that this effect is amplified when the number
of channels increases, e.g. when DM ≈ N ′.

Groth and Ghil (2011) have shown, furthermore,
that this undesired effect of artificial variance com-
pression can be at least partly reduced by a subse-
quent varimax rotation. The latter relaxes slightly
the diagonal form of the eigenvalue matrix Λ∗ in fa-
vor of a more simplified eigenvector structure that,
in turn, flattens the spectrum of eigenvalues. In the
presence of multiple oscillatory pairs, the rotated so-
lution improves the pairing of nearly equal eigenva-
lues; see Fig. 1 in Groth and Ghil (2011). Even so,
the problem of Eq. (6) not being truly optimal for
constructing the surrogate covariance matrices is still
present and, with it, the risk of the test not being
stringent enough.

Alternatively, AS discussed the possibility of obtai-
ning an eigendecomposition for each surrogate reali-
zation separately,

ΛR = E′RCRER , (7)

and to compare the shape of the ranked eigenspectra
of ΛR and Λ; see also Elsner and Tsonis (1994) and
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Elsner (1995). This way the effect of variance com-
pression will be present in both the data and surro-
gate data eigenspectra. However, the rank order of
the eigenvalues alone, without the information con-
tained in the corresponding eigenvectors, has very
little to say about the underlying dynamics. We will
return to this idea to obtain an eigendecomposition
for each surrogate realization separately in the defi-
nition of our hypothesis test in section 4.

Finally, AS discussed the following possibility:
Instead of analyzing each surrogate realization se-
parately, they average first over the entire set of all
surrogate covariance matrices to estimate CN, the
expected covariance matrix of the null hypothesis.
Irregularities that are likely to occur in short rea-
lizations are smoothed out and the eigendecomposi-
tion CN = ENΛNE′N of this average covariance matrix
is, in contrast to each single eigendecomposition in
Eq. (7), much less susceptible to artificial variance
compression. Both the data covariance matrix and
all the surrogate covariance matrices are projected
onto the eigenvectors of the null hypothesis,

Λ(N) = E′NC EN , (8a)

Λ
(N)
R = E′NCREN . (8b)

Initially, this test gives only confidence intervals

for Λ(N) and not for Λ. To link the two, AS proposed
to associate the corresponding data eigenvectors E
and null-hypothesis eigenvectors EN via their domi-
nant frequency. Paluš and Novotná (2004) took this
idea further and paired the data eigenvectors E with
the surrogate eigenvectors ER in Eq. (7), based on
their dominant frequency.

Such a pure frequency encoding of eigenvectors is
quite helpful for single-channel SSA analysis (Ghil
et al. 2002b) but it can be rather misleading in the
multi-channel setting of M-SSA. In the latter, is is
possible that two eigenvectors have similar frequency
but different spatial patterns and thus could be lin-
ked to different types of dynamical behavior; e.g., two
oscillators that are only slightly out of tune but not
actually synchronized (Groth and Ghil 2011). The
frequency pairing would then associate the same sig-
nificance level to both eigenvectors, although their
corresponding eigenvalues might be quite different.

In the end, the test in Eq. (8) may carry the op-
posite risk of being too conservative and thus not
sufficiently sensitive. Since the null hypothesis ap-
proximates only certain aspects of the data set, its
eigendecomposition may only be suitable for the des-
cription of the data set to a limited extent. In this
context, AS noted that a weak signal may not align
very well with the eigenvectors of the null hypothe-
sis and that it could, therefore, be missed altogether.

Finally, this test on the EOFs of the null hypothesis
may not take into account all the advantages of a
varimax M-SSA.

Significance tests on variance can be complemen-
ted by using other statistical properties of the os-
cillatory modes to distinguish regular behavior from
noise, e.g. Paluš and Novotná (2004) and Holmström
and Launonen (2013).

4. Revisiting Monte Carlo SSA

In the following, we propose a Monte Carlo SSA al-
gorithm that operates on the data eigenbasis in such
a way as to keep its optimal data description proper-
ties, as well as its high sensitivity in the identification
of weak signals. At the same time, we allow for small
mismatches between the data generating process and
the null hypothesis in order to reduce the risk of the
test being either too lenient or overly conservative.

a. Procrustes target rotation

In the first step, we determine the eigendecompo-
sition of the data set in Eq. (2) as well as the eigende-
composition of each surrogate realization in Eq. (7)
separately. We recall that the projection in Eq. (6)
can be rewritten as a similarity transformation,

Λ
(E)
R = E′CRE (9a)

= E′ERΛRE′RE (9b)

= T′ΛRT , (9c)

with the transformation matrix T = E′RE. Insofar as
E and ER are of full rank, the transformation matrix
T is orthogonal and the total variance is preserved;
for the case of a rank-deficient covariance matrix, see
the following section.

The linear maps in Eq. (9) are based on the struc-
ture of the eigenvectors and they disregard comple-
tely the eigenvalue spectrum. It is, however, the com-
bination of both eigenvalues and eigenvectors that
determines the spatio-temporal correlation structure
of the underlying dynamical system. To improve the
comparison of the data eigendecomposition with that
of the surrogate data, we have to take both aspects
into account.

In doing so, we first scale data and surrogate
eigenvectors by their corresponding singular values

Σ = Λ1/2, and then look for an orthogonal rota-
tion matrix TE that provides maximal similarity be-
tween EΣ and ERΣRTE . In general, the projection
(ERΣR)

′ EΣ is not orthogonal, but an optimal solu-
tion to this target rotation problem is given by the
orthogonal Procrustes target rotation (Green 1952;
Hurley and Cattell 1962; Schönemann 1966)

TE = UV′ (10a)
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that yields the SVD

(ERΣR)
′ EΣ = USV′ . (10b)

The solution TE is optimal inasmuch as it minimizes
the Frobenius norm of the difference Y = ERΣRTE−
EΣ, i.e. {tr

(
Y′Y

)
}1/2.1

Finally, we compare the data eigenvalues Λ with
the diagonal elements of the similarity transforma-
tion,

Λ
(EΣ)
R = T′EΛRTE . (11)

Note that substituting for ΛR in Eq. (11) its eigen-
decomposition (7) gives the equivalent formulation

Λ
(EΣ)
R = T′EE′RCRERTE . (12)

Hence, the surrogate covariance matrix is not directly
projected onto the data eigenvectors, as in Eq. (6),
thus avoiding the already discussed risk of a test that
is too lenient. Instead, we project onto a close ap-
proximation of the former, i.e., onto ERTE ≈ E, and
we expect this modified test to be more conservative.

Cliff (1966) has suggested, as an alternative to the
target rotation of one eigenbasis onto another, the
possibility of comparing the two eigenbases with a
common basis of maximum similarity. A solution
to this problem is likewise given by Eq. (10), with
the rotation of the data and surrogate data eigenvec-
tors to EV and ERU, respectively. As in the case of
Eq. (8), though, this approach complicates the inter-
pretation, since no confidence intervals for the data
eigenvalues are available.

b. Rank-deficient covariance matrix

So far we have assumed covariance matrices C of
full rank. For the trajectory-matrix–based approach
in Eq. (1), this condition is, in general, fulfilled as
long as N ′ ≥ DM . This is a necessary condition
for the Monte Carlo test to work correctly, and its
violation yields to a loss of part of the total variance
in the projection given by Eq. (6); such a loss will
result in significance intervals that are too low.

To overcome this limiting factor in the M-SSA ana-
lysis of short time series, Allen and Robertson (1996)
proposed the complementary eigendecomposition of
a reduced covariance matrix XX′,

1

DM
XX′ = PΛP′. (13)

Both, X′X and XX′ share the same non-vanishing
eigenvalues and their eigenelements are linked via

1In case of varimax-rotated eigenelements, the target beco-
mes E∗Σ∗ = ETV T′V ΣTV = EΣTV , and TE simply includes
a further rotation, given by T∗E = TETV .

X = η1/2 PΣE′, the SVD of X, where η is equal
to the larger of N ′ and DM . In case of varimax
rotation, P becomes rotated as well, P∗ = PTV ,
and the SVD becomes X = η1/2 PTV T′V ΣTV T′V E′,
with TV T′V = Iη the identity matrix. The left-
singular vectors P—also referred to as time EOFs
(T-EOFs)—describe only temporal behavior; see also
Appendix A1 in Ghil et al. (2002b).

The Allen and Robertson (1996) test continues by
projecting the reduced covariance matrix onto P,

Λ
(P )
R =

1

DM
P′XRX′RP ; (14)

it derives the significance level for Λ from the statis-

tics of the diagonal elements of Λ
(P )
R .

In the same way as for ST-EOFs, we could also
construct a test based on the scaled T-EOFs, PΣ ≡
A, i.e. on the PCs of C. Similar to the scaled target
rotation onto ST-EOFs, we first determine an ort-
hogonal rotation matrix TP = UV′ from the SVD
(PRΣR)′PΣ ≡ A′RA = USV′ and then compare the
data eigenvalues Λ with the diagonal elements of a
similarity transform,

Λ
(PΣ)
R = T′PΛRTP . (15)

The test based on the reduced covariance matrix
is essentially a univariate test, since no cross-channel
covariance information is used in XX′. The useful-
ness of the test thus strongly depends on the in-
put channels being uncorrelated. This can be partly
achieved by transforming the input channels into
spatial PCs, although correlations at other time lags
may not vanish.

A solution to this rank-deficiency problem is like-
wise given by the target rotation onto ST-EOFs, as
described in the section before. In this algorithm,
it is the multiplication of the eigenvectors by their
corresponding singular values that automatically re-
stricts the projection to non-vanishing eigenelements
and the orthogonality constraints in TE ensure the
conservation of the total variance.

As a special case of this solution, we could also
imagine to simply remove all vanishing eigenelements
from E as well as ER—without rescaling the elements
retained by their corresponding singular values—and
then determine an orthogonal transformation such as
in Eq. (10). We will refer to this alternative as unsca-
led target rotation to distinguish it from the scaled
target rotation in Eq. (11). It will be shown, however,
that the rescaling of the EOFs by their singular va-
lue, in the latter, significantly improves the power of
the modified Monte Carlo test proposed herein. Note
that the unscaled target-rotation onto ST-EOFs in-
cludes the projection algorithm of AS as a special
case for DM ≤ N ′, cf. Eq. (9).
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c. Composite null hypothesis

Once a certain part of the time series has been
identified as signal, AS proposed a single-channel
SSA composite test for the remainder of the time
series against an AR(1) null hypothesis.

Following AS, we define K as a diagonal matrix
of size M ×M with Kkk = 0 if the corresponding
EOF has been identified as signal and Kkk = 1 ot-
herwise; i.e. the signal can be reconstructed from
the filtered trajectory matrix R = XE(I−K)E′. The
authors then proceed to fit the covariance matrix CN

associated with the null hypothesis to the data cova-
riance matrix C in a subspace spanned by the “noise”
EOFs.

With the “noise projection matrix” Q = EKE′, the
fitting conditions then are given by

tr0 (QCNQ) = tr0 (QCQ) , (16a)

tr1 (QCNQ) = tr1 (QCQ) , (16b)

where trj(C) = (M − j)−1
∑M−j
k=1 Ck,k+j is a gene-

ralized trace operator. Furthermore, AS provide an
unbiased estimator of the AR(1) parameters given
that the process mean underlying x is unknown, i.e.,
x is centered by subtracting its mean value instead.

In the test against a pure-noise null hypothesis,
K and Q become identity matrices, and Eq. (16)
equals the common fit of the variance and lag-1 cor-
relation of the AR(1) process to that of the obser-
ved time series. This equivalence, however, is only
correct when C has Toeplitz structure with constant
sub- and superdiagonals. In the trajectory appro-
ach, this is in general not the case—i.e. for short
time series with strong nonstationarity over the ob-
served time interval, or for largeM—and we estimate
the AR(1) parameters from Eq. (16) instead, even
when Q becomes an identity matrix. Doing so ensu-
res, in particular, that the expectation value satisfy

E
{

tr0
(

KΛ
(E)
R

)}
= tr0{KΛ}.

In our proposed target-rotation algorithm, the in-
dividual realizations of the surrogate covariance ma-
trix CR are projected onto a Procrustes approxima-
tion of the data EOFs. To account for this modi-
fication of the original AS null-hypothesis test, the
covariance matrix CN associated with the null hypot-
hesis has to be projected onto a Procrustes approx-
imation as well. Given the eigendecomposition of
this matrix, CN = ENΛNE′N, we derive an orthogo-
nal rotation matrix T = UV′ that yields the SVD(

ENΛ
1/2
N

)′
EΣ = USV′. The projection Q of the

noise covariance matrix CN is modified thereafter to
read Q̃ = ENTKT′E′N and the conditions for the

AR(1) parameter estimation in case of the Procrus-
tes target rotation become

trj
(

Q̃CNQ̃
)

= trj (QCQ) , for j = 0, 1. (17)

This modification of Eq. (16) is important inasmuch
as more EOFs are identified as part of the signal in
K. In the test against a pure-noise null hypothesis,

Q̃ becomes again an identity matrix, and Eq. (17)
simplifies to (16).

The AS composite test we considered so far applies
only to the single-channel case of SSA. In the multi-
channel case of M-SSA, the covariance matrix C in-
cludes cross-correlations as well. In the test against a
pure-noise null hypothesis, this can be at least partly
resolved by transforming the input channels into spa-
tial PCs. The extent to which this is valid in the
test against a composite null hypothesis, however,
depends largely on the structure of Q. Since indivi-
dual channels become correlated in the filtered tra-
jectory matrix R, a test against independent AR(1)
processes is no longer feasible.

This problem does not appear in the null hypothe-
sis test on T-EOFs, since no cross-channel covariance
information is used and the reduced covariance ma-
trix,

XX′ =
D∑
d=1

XdX′d , (18)

is simply the average of D individual N ′×N ′ single-
channel covariance matrices, each of rank M , as long
as M ≤ N ′; see also Allen and Robertson (1996).
This feature of the single-channel case has the ad-
vantage that independent AR(1) processes can be
fitted to each of these single-channel covariances ma-
trices, whether one tests against pure noise or against
a composite null hypothesis. In the latter case, the
noise projection matrix becomes Q = PKP′ and we
proceed by fitting independently for each channel d
a covariance matrix CN,d of size N ′ ×N ′ associated
with a single-channel null hypothesis, according to

trj (QCN,dQ) = trj
(
QXdX′dQ

)
, for j = 0, 1. (19)

In the multi-channel case, the covariance matrix

CN =
∑D
d=1 CN,d given by Eq. (19) provides, in par-

ticular, a solution for

trj{QCNQ} = trj{QXX′Q}, for j = 0, 1. (20)

Note that the problem in Eq. (20) is underdetermi-
ned, since its solutions actually involve two parame-
ters for each of the D independent AR(1) processes,
and the channel-wise solution from Eq. (19) is not
unique.



8 J o u r n a l o f C l i m a t e

This indeterminacy is a shortcoming of the test
on T-EOFs, which are invariant with respect to an
orthogonal rotation of the input channels. We will
come back to this problem when comparing the null
hypothesis test on T-EOFs with that on ST-EOFs in
the presence of cross correlations. In the latter test,
the ST-EOFs are not invariant and we proceed with
the channel-wise solution of Eq. (19).

A drawback of this solution is the fact that only
the projection onto T-EOFs, cf. Eq. (14), satisfies

E
{

tr0
(

KΛ
(P )
R

)}
= tr0{KΛ} . We may always want,

however, to verify the results of a significance test
on T-EOFs with those obtained by projecting onto
ST-EOFs, in case there is no a priori reason to as-
sume uncorrelated input channels at all time lags
{0, . . . ,M − 1}.

Note that in the multichannel parameter estima-
tion of Eq. (19), there is no equivalent formulation
to the single-channel case of Eq. (17), i.e., no equiva-
lent to a parameter estimation that would take the
Procrustes target rotation into account.

5. Experimental design

To illustrate the limitations of the Monte Carlo
tests in section 3, we consider the idealized case of
a cluster of harmonic oscillators with red noise su-
perimposed on the observations. Hence the model
specification of the null hypothesis is correct.

We create D = 5 time series of length N =
250; each of these is a composite of harmonic os-
cillations with different fundamental periods T =
{7.6, 5.0, 2.7, 2.3}. For each channel and each oscilla-
tor, the initial phases and amplitudes are randomly
and independently drawn in the intervals [0, 2π] and
[0, A], respectively. The upper limit A = A(T ) de-
pends on the period length T and it has the same
frequency dependence as the superimposed AR(1)

process, i.e. A(T ) ∼
∣∣1− γ e−2πi/T

∣∣−1 with γ the
damping parameter of the AR(1) process. We consi-
der the optimal case of independent AR(1) processes
for each of the D channels and set γ = 0.65. The
signal-to-noise ratio here is 1:4.

The multichannel time series is first transformed
to uncorrelated PCs by means of a classical PCA
analysis and individual AR(1) processes are fitted
to each of the PCs. Then, surrogate realizations of
length N are created and transformed back.

Figure 1 shows the resulting eigenvalue spectrum
for a typical realization of the simulation experiment.
Both panels show the same spectrum but with diffe-
rent significance level.

In Fig. 1a, the error bars are derived from the pro-
jection algorithm of Eq. (6). For each surrogate re-
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Fig. 1. Eigenvalue spectrum for a cluster of harmonic os-
cillators with observational red noise. (a, b) The eigenvalues
that belong to the harmonic and the noise part—i.e., to the
line spectrum and the continuous one—are marked as filled
and open circles, respectively. The error bars indicate the 1%
and 99% quantile from an ensemble of 500 surrogate data. The
Monte Carlo test corresponds to (a) the classical projection al-
gorithm of Eq. (6); and (b) the proposed scaled target-rotation
algorithm of Eq. (11). The window length is M = 40 and the
number of varimax rotated components is S = 40; see text for
details.

alization, the covariance matrix is determined and
projected onto the data ST-EOFs.

We clearly observe the limitation of the signifi-
cance test, since more eigenvalues than expected are
significant. Especially among the largest eigenvalues
there are some that correspond to the noise (open
circles) and that, nonetheless, appear as significant
oscillations. The appearance of such false positives
(FPs) reduces the precision and limits the explana-
tory power of the test. All true oscillations (filled
circles), however, also reject the null hypothesis of
random fluctuations. These oscillations are referred
to as true positives (TPs).

In Fig. 1b, the error bars are derived from the sca-
led target-rotation algorithm of Eq. (11). We first
determine the eigendecomposition for each of the for-
mer surrogate realizations and then look for an op-
timal orthogonal rotation towards the data eigende-
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Fig. 2. Same data and parameters as in Fig. 1. Both data
and surrogates are projected onto the ST-EOFs of the null-
hypothesis covariance matrix CN, cf. Eq. (8). Vertical lines
indicate the frequencies of the harmonic oscillators.

composition, as described in section 4. We see that
this algorithm reduces the number of FPs to none
but keeps the number of TPs as high as in panel (a)
and equal to the correct one.

In this experiment, we have chosen the parameters
in the limiting case DM = N ′, i.e. the covariance
matrix C becomes a square matrix and we consider
only significance test based on ST-EOFs. Allen and
Robertson (1996) have already noted that, whenDM
reaches N ′, the hypothesis test becomes less reliable.
In section 6 we will show that this undesirable effect
is largely reduced by using scaled target-rotation al-
gorithm.

Furthermore, we have performed a significance test
on the null-hypothesis basis according to Eq. (8). It
turns out that, with this test, only three out of four
oscillations are detected. Figure 2 thus confirms the
findings of AS that the test is less sensitive in the
detection of weak signals. Moreover, we observe that
each of the true oscillations are not necessarily captu-
red by a single EOF pair of CN, rather than by three
or even more significant eigenvalues. In contrast to
single-channel SSA, it is quite likely in M-SSA to
observe several EOFs with similar frequency but dif-
ferent spatial pattern, whose eigenvalues are found
to be significant.

6. Sensitivity vs. specificity

a. Basic definitions

We consider now the identification of an oscillatory
pair as a binary classification test. Such a test is
characterized by its sensitivity and specificity.

The sensitivity is a statistical measure of the pro-
portion of TPs that are correctly identified as such,

i.e.

sensitivity =
#TP

#TP + #FN
, (21)

where # is the cardinality of a set and the FNs are
the false negatives, i.e., the missed oscillations; sen-
sitivity is also referred to as true positive rate or hit
rate. Specificity, on the other hand, measures the
true negative rate and is given by

specificity =
#TN

#TN + #FP
, (22)

with the TNs being the true negatives.
Ideally, one wishes for a test that is 100 % sensi-

tive, i.e., it identifies all actual oscillations, and also
100 % specific, i.e., it doesn’t mistake any spurious
oscillation as an actual one. But, in practice, there is
always a trade-off between these two properties of a
test, and any classification test has a minimum error,
known as the Bayes error rate (Fukunaga 1990).

In the following, we proceed with the two tests
based on the data EOFs that we first compared in
Fig. 1 and evaluate more systematically their capa-
bility to identify true oscillatory components. Based
on an ensemble of multiple repetitions of the experi-
ment, we thus evaluate the sensitivity as well as the
specificity of these two tests.

First, we determine the eigendecomposition of a
noise-free realization of the set of harmonic oscilla-
tors of section 5, in order to get a reference set of ei-
genelements that describes the harmonic part of the
full time series. Next, we add the desired amount of
red noise and rerun the eigenanalysis.

To identify true oscillations in the eigendecom-
position of the noise-contaminated data set, we (i)
project the noise-free covariance matrix onto the
noise-contaminated eigendecomposition, cf. Eq. (6),
as well as (ii) apply the proposed target-rotation
algorithm from the noise-free eigenelements to the
noise-contaminated eigenelements, Eq. (12). This
way, the noise-free realization is compared with the
noise-contaminated eigendecomposition exactly in
the same way as we compare the surrogate realizati-
ons in the two significance tests.

Corresponding to the four imposed oscillations in
the noise-free realization, we consider the eight lar-

gest elements in Λ
(E)
R and Λ

(EΣ)
R , respectively, as

being true in the noise-contaminated eigendecompo-
sition. We will see forthwith that it is not necessarily
the largest eigenvalues that correspond to the true
oscillations.

Typically, we expect to identify the same eigenele-
ments as true oscillations—with or without Procrus-
tes rotation—but small differences are possible. To
avoid the identification algorithm being in favor of
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Fig. 3. Detection of oscillatory pairs in a cluster of har-
monic oscillators with observational red noise. (a) Specificity
when using the classical projection algorithm (light line) and
the scaled target-rotation algorithm (heavy line), both based
on ST-EOFs; and (b) distribution of true oscillations. In both
panels, rank order k is plotted on the abscissa. A total of 100
noise-contaminated data sets have been tested; the parameters
are the same as in Fig. 1.

one of the two significance tests, we keep only those
noise-contaminated realizations that give the same
identification results.

Once we have classified the eigenelements of the
noise-contaminated data set into true and spurious
oscillations, we proceed with the two significance
tests as in the previous section, cf. Fig. 1, and deter-
mine the number of TPs and FPs, #TP and #FP,
respectively, from an ensemble of several repetitions
of the experiment.

b. Artificial variance compression

In the example of section 5 we have seen that the
inclusion of eigenvalues, in addition to the EOFs,
into the target rotation algorithm has reduced the
number of FPs, in particular for higher-rank eigen-
values. For this near-singular case of the covariance
matrix, i.e. DM = N ′, the problem of artificial va-
riance compression is exacerbated and M-SSA may
yield, in the absence of suitable rotation, several FPs

among the higher-rank EOFs. At the same time, all
true oscillations have been correctly identified; that
is the sensitivity is maximal.

The experiment is repeated 100 times and the spe-
cificity is plotted as a function of the rank order k
in Figure 3a. As expected, there is an enhanced rate
of FPs, especially at higher-rank EOFs, and that, in
turn, reduces the specificity in both cases. In the
target-rotation algorithm, however, this undesirable
effect has been largely reduced, and we show in the
following subsections that the overall number of FPs
does indeed not exceed the expected nominal level,
according to the chosen significance level.

Figure 3b shows the distribution of true oscilla-
tions among the full spectrum of eigenvalues, as a
fraction of the number of replicates of the test. As a
consequence of the low signal-to-noise ratio, it turns
out that the true oscillations are not necessarily attri-
buted to the leading eigenvalues and that the eigen-
value rank order used originally by Broomhead and
King (1986a,b) is, therefore, not a reliable method
for separating signal from noise; this result provides
additional motivation for using a Monte Carlo test
against a red-noise process (cf. Allen and Smith 1996;
Allen and Robertson 1996). To compare the success
of the latter type of test with that of a simple rank-
order test, we determine the number of TPs in the set
of the eight largest eigenvalues as well. This criterion
implies, of course, knowledge of the correct number
of true oscillations, and it thus avoids estimating a
break in the eigenvalue spectrum.

In the following, we first examine in greater detail
the reliability of the two tests based on the data ST-
EOFs—with and without scaling of the ST-EOFs—
in different experimental settings. In particular, we
consider the effect of modifying the number D of ob-
served channels, the observation length N , and the
window width M . Furthermore, we examine the ef-
fects of data compressions into PC. Finally, we com-
pare the tests based on ST-EOFs with that based on
T-EOFs.

c. Number D of observed channels

We first analyze the influence of the observed num-
ber of channels. In our experiment of a cluster of
oscillators with uncorrelated observational red noise,
we expect to improve the detection rate of shared os-
cillations as the number of channels—and hence the
amount of information—increases, while at the same
time the signal-to-noise ratio is enhanced.

Figure 4 shows #TP and #FP, i.e. the average
number of TPs and FPs, as a function of the num-
ber D of channels. An increase in D does indeed
help the extraction of the signal from the noise, and
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Fig. 4. Detection of oscillations in a cluster of harmonic
oscillators with observational red noise. The average number
of true positives (#TP) and false positives (#FP) is plotted,
along with the corresponding standard deviation (error bars),
based on an ensemble of 50 repetitions of the experiment, as
the number D of observed channels increases. The parame-
ters M and N are the same as in Fig. 1. The dashed lines
correspond to the unscaled target-rotation algorithm onto ST-
EOFs and the solid lines to the scaled one. The former inclu-
des the projection algorithm as a special case for DM ≤ N ′.
A black bar along the horizontal axis indicates the D-interval
within which the covariance matrix C becomes rank-deficient,
DM > N ′. In addition, the average number of TPs within
the set of the eight largest eigenvalues (heavy gray line), and
the expected number of FPs according to the significance level
(gray shaded area) are shown.

the number of TPs converges toward its maximum
value, which is max{#TP} = 8 in case of the four
fundamental frequencies T = {7.6, 5.0, 2.7, 2.3}.

The convergence occurs already for D = 5, while in
single-channel SSA, i.e. for D = 1 in the figure, only
half of the oscillations have been identified. This re-
sult clearly illustrates the fact that M-SSA improves
upon single-channel SSA by taking additional spatial
information into account.

This improved detection rate, however, cannot be
merely attributed to a concentration of oscillatory
behavior in the largest eigenvalues alone. It turns out
that no more than half of the eight largest eigenvalues
are TPs (heavy gray line in Fig. 4).

While the sensitivity of the test does grow with D,
it is indispensable to keep the specificity high as well.
Figure 4 makes it clear that this is not the case for the
projection algorithm, i.e. when DM ≤ N ′, in which
the number of FPs (red dashed line) increases as well.

In particular, #FP greatly exceeds the number of
expected FPs (gray shaded area), which equals the
number of eigenvalues multiplied by the significance
level. This excess of type-I error becomes more dra-
matic as one approaches the point at which the cova-
riance matrix C reaches rank deficiency, DM . N ′.
For DM > N ′, i.e. the unscaled target-rotation al-
gorithm, the number of FPs remains likewise high,
and reaches nearly the number of TPs. This ren-
ders the test useless, since only half of the significant
eigenvalues can be attributed to true oscillations.

It is only the inclusion of eigenvalue information
into the scaled target-rotation algorithm that finally
helps control this type-I error, with the average num-
ber of FPs (solid red line in Fig. 4) now below the ex-
pected level of FPs over the entire range of D-values.
We note that this algorithm has a slight tendency
towards a more conservative behavior—a property
that Procrustes methods have been often criticized
for (e.g., Paunonen 1997)—but the detection rate
remains comparable to that of the unscaled target-
rotation algorithm. In particular, the scaled target-
rotation algorithm would be the preferable choice
with respect to the test’s explanatory power.

To improve the detection of weak signals in the
case of single-channel SSA, Paluš and Novotná
(2004) proposed a test on the regularity of the os-
cillatory modes rather than on their variance. Their
significance test has a demonstrably enhanced sen-
sitivity, but it is not clear whether it remains suffi-
ciently specific as well; see, for instance Figs. 2 and
4 in Paluš and Novotná (2004), with further “noise”
EOFs becoming significant above the upper signifi-
cance levels in the test on regularity. On the other
hand, the frequency-pairing algorithm in their test
is much less susceptible to the problem of artificial
variance compression than the projection approach
in Eq. (6); see again their Fig. 2, with the number of
significant “noise” EOFs below the lower significance
levels becoming largely reduced.

d. Length N of the observations

In the previous subsection we have seen that for
the unscaled target-rotation algorithm, the specifi-
city strongly depends on the ratio of the embedding
dimension DM to the time series length N . It is the
singular character of the covariance matrix C that en-
hances the artificial variance compression, and thus
gives a high number of FPs in this algorithm. We ex-
amine next whether this undesirable property can be
avoided when the observation length N considerably
exceeds (D + 1)M for fixed M .

For a fixed number D of channels, we have varied
the observation length N and rerun the analysis as
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Fig. 5. Same as Fig. 4 but as a function of the length N of
the observed time series.

before. Figure 5 shows the average number of TPs
and FPs for both the unscaled and scaled target-
rotation algorithms.

On the one hand, we see that the sensitivity is
enhanced as the observation length N increases and
that #TP tends towards the maximum value for suf-
ficiently large N . It is only for very short observati-
ons that it drops to much lower values.

On the other hand, #FP in the unscaled target-
rotation algorithm remains much higher than ex-
pected, even for large N . The scaled target-rotation
algorithm, though, helps control the type I-error over
the whole range of N -values in the figure. In parti-
cular, the latter algorithm remains superior to the
projection algorithm even in full-rank case of very
large N . This comparison demonstrates that the ex-
tent to which the artificial variance compression in-
fluences the hypothesis test is difficult to predict, as
already indicated by Allen and Robertson (1996).

e. Window length M

The length N of the observations and the number
D of channels is usually specified by the experimen-
tal setting, but the window length M is a flexible
parameter to be judiciously chosen by the data ana-
lyst. In its choice, we are usually confronted with the
general trade-off between a high spectral resolution,
on the one hand, and a high temporal resolution, on
the other; the decision may depend, therewith, on
the specific problem. Increasing the window length
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Fig. 6. Same as Fig. 4 but as a function of the window
length M .

increases the number of RCs as well, and M-SSA will
provide then a more detailed spectral decomposition
of the data set, while incurring the risk of an exces-
sive number of FPs.

Figure 6 shows the results of analyzing the same
data set as in the previous subsections for various
values of M . First of all, the figure shows a con-
sistently high detection rate for both methods over
a large range of M -values, with a slight decrease at
small window length only. Note that a minimal win-
dow size of M ' 16 is necessary to separate the four
oscillators even in the noise-free reference case.

At the same time, we observe that the scaled
target-rotation algorithm controls well type-I errors
over the entire range of M -values in the figure. The
projection algorithm for full-rank covariance matri-
ces, M . 42, runs increasingly the risk of an ex-
cessive number of FPs as these matrices get closer
to being singular, and the risk remains high in the
unscaled target-rotation algorithm for rank-deficient
covariance matrices, M ≥ 42. Only at much lar-
ger values of M does the number of FPs diminish to
the nominal level, a feature that strongly limits the
choice of M .

f. The effects of data compression

In the M-SSA analysis of high-dimensional data,
it is common practice to perform first a conventional
PCA analysis and to retain only a subset of leading
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PCs for the subsequent M-SSA analysis. This pre-
processing is meant to reduce the number of input
channels and the computational cost, while retaining
a large fraction of the total variance. Usually a small
number L of channels is kept, no matter how large
the data set (Dettinger et al. 1995; Allen and Robert-
son 1996; Robertson 1996; Ghil et al. 2002b); see also
(Moron et al. 1998, Table 1). Since the resulting PCs
are pairwise uncorrelated at zero lag, the M-SSA re-
sults can be simply tested against independent AR(1)
processes, cf. section 3 herein.

Even though the transformation to conventional
PCs turns out to be a helpful preprocessing step
in the M-SSA analysis, its implications for the pro-
perties of the subsequent signal detection are rather
complex. Given that the signal of interest involves
typically only a small fraction of the total variance,
we would expect it to show up only among the spatial
EOFs (S-EOFs) with relatively small variance, while
the leading S-EOFs might capture other large-scale
effects. In this respect, the prior transformation to
PCs could interfere with the detection of weak sig-
nals.

To study the implications of this type of prepro-
cessing, we increase the number of observed channels
in the previous example of a cluster of harmonic os-
cillators to D = 250 and reduce at the same time
the observation length to N = 130. The parameter γ
for the D superimposed AR(1) processes is randomly
drawn from the interval γ ∈ [0, 0.95], but we intro-
duce at the same time correlations between all of
them. That is, instead of adding independent noise
realizations to each of the observed channels, we set
the lag-0 covariance matrix W of the noise part to fit
a Toeplitz structure, with Wij = κ|i−j| and κ = 0.5.

These correlations between channels are meant to
simulate the effect of spatial correlations in a rand-
omly perturbed spatio-temporal process and, given
our choice of κ, we expect the noise part to domi-
nate the prior PCA analysis.

Figure 7 illustrates the implications of a transfor-
mation of the input channels to conventional PCs.
The variance that is captured by the L leading S-
EOFs increases monotonically, as expected, as the
number L of S-EOFs increases. Usually, one selects a
good trade-off between a low number of components
and a high fraction of the variance they capture, be-
fore proceeding to the M-SSA analysis.

Although the S-EOFs provide an efficient repre-
sentation of the spatial aspects of the signal’s vari-
ance, potentially important information about a pos-
sibly weak signal in the time domain may be missed.
To illustrate this limitation, we project the reference
signal—that is the cluster of harmonic oscillators wit-
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Fig. 7. Fraction of the total variance (heavy solid line)
that is captured by the L leading S-EOFs of a conventional
PCA analysis. The statistical experiment is similar to that
in Fig. 4; it consists in a cluster of harmonic oscillators with
spatial correlated observational red noise, but the number D =
250 of observed channels is much larger and the observation
length is N = 130. Furthermore is shown the variance of the
noise-free oscillators alone that is captured by the L leading
S-EOFs (light solid line), and the variance ratio between the
noise-free and the full signal (dashed line). All values are
averaged over 50 realizations of the experiment.

hout noise—onto the same S-EOFs, and determine
its variance as well (light solid line in the figure).

The variance of the reference signal increases mo-
notonically with L, like that of the full signal, but
the variance ratio between the reference and the full
signal (dashed line) decreases markedly as L is redu-
ced to values typically used in the type of preproces-
sing discussed herein; as a consequence, when L . 4,
the signal-to-noise ratio is nearly half of its value at
L = N = 130.

These effects have been further emphasized by the
fact that the oscillations in our statistical experiment
have random initial phases and that the PCA analy-
sis is not taking this phase information into account.
A similar negative effect is likewise possible in the
detection of traveling oscillatory patterns, e.g. when
having to rely on regionally averaged data, such as
the SST data in section 7.

After the above preprocessing and retention of L
leading conventional PCs, we next evaluate the de-
tection rate of the subsequent M-SSA analysis. As
before, we determine a set of reference ST-EOFs that
correspond to oscillatory modes in order to identify
true oscillatory behavior in the full signal’s ST-EOFs.
To account for the projection of the full signal onto
S-EOFs, we project the noise-free reference signal
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Fig. 8. Same as Fig. 4 but as a function of the number L of
retained PCs from a conventional PCA analysis in Fig. 7. Note
that we only show the results for the scaled target rotation.

onto the same subspace as well and derive reference
ST-EOFs from the M-SSA analysis of the correspon-
ding PCs. Here we focus only on the scaled target-
rotation algorithm and determine TPs and FPs in an
ensemble of 50 repetitions of the experiment.

Figure 8 is similar to Figs. 4–6 and it shows the
number of TPs and FPs as a function of L. It turns
out that the detection rate, #TP (heavy solid line),
is best for large L, and that it does reach its optimal
value in this limit. On the other hand, as the data
set is compressed into a decreasing number of PCs,
the detection rate drops very markedly. This marked
drop is comparable to that of Fig. 4, where D, the
number of observed channels, affects the detection
rate in a similar way.

In conclusion, we have seen that a compression of
the data set into a few leading PCs can strongly in-
fluence the capability of M-SSA to extract weak but
significant signals. In particular, in the presence of
other high-variance components, such preprocessing
may reduce substantially the signal-to-noise ratio.

When the number of channelsD exceeds the length
N of the data set, D > N , we rely here on PCA as
a transformation of the data set into a set of L = N
pairwise uncorrelated PCs; see, for instance, Fig. A1
in Ghil et al. (2002b). Doing so preserves the total
variance, but helps reduce computational costs.

Although it would be theoretically possible to per-
form M-SSA on the full set of D channels via the
complementary eigendecomposition of the reduced
covariance matrix (cf. section 2), it is computati-

onally more efficient and numerically stabler to per-
form the subsequent varimax rotation on ST-EOFs
of length LM rather than DM , given that often
L = N � D. To which extent, however, the supe-
rimposed spatial structure of the S-EOFs will affect
the spatio-temporal structure of the varimax-rotated
ST-EOFs so obtained is left for future studies.

g. Significance test on T-EOFs

So far, we have only focused on the two signifi-
cance tests that are based on the unscaled and scaled
target-rotation of ST-EOFs, respectively, in the two
cases of a full-rank and a rank-deficient covariance
matrix. In the latter case, we will compare those re-
sults now with that of the two tests that are based on
the unscaled and scaled target-rotation of T-EOFs;
cf. section 4.

Since no cross-channel covariance information is
taken into account in the two tests on T-EOFs, we
first transform the input channels into spatial PCs.
As already discussed, this helps eliminate cross cor-
relations at lag zero, but correlations at other time
lags may remain and influence the tests on T-EOFs.
To compare its reliability with that of the two tests
on ST-EOFs, we consider correlated noise, as in the
previous subsection, with the noise coupling strength
set to κ ≥ 0.

Figure 9 shows the number of TPs and FPs as a
function of κ, for the two unscaled target rotation
algorithms onto ST-EOFs and T-EOFs. Note that
the latter case equals that of a projection onto T-
EOFs as proposed by Allen and Robertson (1996),
cf. Eq. (14) herein. The parameters N , M , and
D are chosen to emphasize the severity of the pro-
blem of artificial variance compression: e.g., by ta-
king DM . N ′.

For uncorrelated noise, κ = 0, both tests are like-
wise susceptible to this problem and show an enhan-
ced number of FPs. As the noise coupling strength
increases, κ > 0, the FP rate of the test on ST-EOFs
starts to decrease and reaches its nominal level at
sufficiently strong coupling, κ & 0.4. The FP rate of
the test on T-EOFs, however, starts to increase even
further as the coupling strength increases, and the
test completely fails to distinguish true oscillations
from spurious ones, i.e. the number of FPs largely
exceeds that of the TPs, which renders the test me-
aningless.

The scaled target-rotation algorithm, on the other
hand, clearly helps reduce the number of FPs not
only in the test on ST-EOFs, but also in the test on
T-EOFs, as shown in Fig. 10. When the coupling is
weak, κ . 0.1, both tests show an FP rate that is
close to the nominal level now. Still, only the test
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Fig. 9. Same as Fig. 4 but as a function of the coupling
strength κ between the individual AR(1) processes. The solid
lines correspond now to the unscaled target rotation onto ST-
EOFs and the dashed lines to projecting onto T-EOFs, cf.
Eq. (14).

on ST-EOFs is able to keep its FP rate below the
nominal level as the coupling strength increases even
further, κ & 0.2, while the test on T-EOFs once again
looses its discriminant power as κ increases. The TP
rate at weak coupling is likewise high in both tests,
although it does drop faster in the test on T-EOFs
as the noise coupling increases.

In conclusion, the null hypothesis test that is based
on the scaled target-rotation algorithm of ST-EOFs
provides the most reliable results also for the case of a
rank-deficient covariance matrix, DM > N ′, and cle-
arly outperforms the two tests that are based on T-
EOFs in the presence of cross correlations. Since no
cross-channel covariance information is retained in
T-EOFs, cross correlations may reduce the discrimi-
nant power of the corresponding tests, even though
the input channels have been transformed into spa-
tial PC.

7. An application to North Atlantic data

The SODA reanalysis data set (Giese and Ray
2011, version 2.2.4) provides monthly SST fields over
the 138-yr interval 1871–2008. The SST, following
Feliks et al. (2011), is taken equal to the tempera-
ture in the upper 5 m of the ocean.

The analysis here is for the Gulf Stream region
(30◦–50◦N, 76◦–35◦W) that includes the Cape Hat-
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Fig. 10. Same as Fig. 9 but for the scaled target rotation.
The solid lines correspond to the rotation onto ST-EOFs, cf.
Eq. (11), and the dashed lines to the rotation onto T-EOFs,
cf. Eq. (15).

teras and the Grand Banks sub-regions. Feliks et al.
(2011) identified in either one or both of these two
regions, interannual spectral peaks of 8.5 yr, 4.2 yr
and 2.8 yr. As discussed in the Introduction, these
peaks are similar to those found in the NAO index
(Gámiz-Fortis et al. 2002; Paluš and Novotná 2004;
Feliks et al. 2013); hence the possibility of shared me-
chanisms between the ocean and atmosphere in the
North Atlantic basin is worth examining further.

We include, therefore, in our analysis atmospheric
SLP data that covers the North Atlantic region (25◦–
80◦N, 80◦W–33◦E), taken from the 20CRv2 reana-
lysis project (Compo et al. 2011) in the same 138-yr
interval. The SST and SLP data fields are first con-
verted into anomalies, i.e. we remove at each grid
point the average value over the 138-yr interval. To
account for geographical variations in the grid-size
resolution, we further multiply each grid point by
the cosine of its latitude.

In the present analysis, we focus on interannual
variability only and subsample the data in time with
an annual sampling rate. The latter step implies a
low-pass filtering of the monthly data with a Che-
byshev type-I filter from which we take all the July
values; see Feliks et al. (2013) for details.

To combine the annual SST and SLP anomalies
into a joint M-SSA analysis, we further normalize
each field to unit variance and concatenate all chan-
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Fig. 11. Spectral properties of North Atlantic SST and SLP
anomaly fields from a joint M-SSA analysis for the interval
1871–2008, with a window length of M = 40 yr; the subse-
quent varimax rotation uses ST-EOFs 4–30, while ST-EOFs
1–3 are excluded from the rotation since they are distinct from
the others and not degenerate. (a) The estimated variance in
each mode is shown as black dots, plotted as a function of
their corresponding frequency. Lower and upper ticks on the
error bars correspond to the 1% and 99% quantiles of a Monte
Carlo test that uses the scaled target-rotation algorithm of
ST-EOFs; the test ensemble has 2000 members. (b) Signifi-
cance test on the T-EOFs of the reduced covariance matrix of
the null hypothesis, using the same set of surrogate data; note
that LM � N ′. (c) Low-frequency variability of the spatially
averaged SST and SLP anomalies from a reconstruction with
ST-EOFs 1–3.

nels into a single large trajectory matrix. The reso-
lution in time and space gives a total of D = 24 173
channels of length N = 138 yr, from which we finally
derive L = 138 PCs as input channels for our M-SSA
analysis, as described in section 6f.

Figure 11a shows the M-SSA results—together
with the significance level from a test against a null
hypothesis of pure noise, as derived from the scaled
target-rotation algorithm of ST-EOFs. It turns out

that five eigenvalues exceed the significance level of
99% in the interannual frequency band: the largest
eigenvalue, which can be attributed to a trend com-
ponent, and two oscillatory pairs at period lengths
of 2.7 yr and 2.2 yr, respectively.

A significance test that is based on the T-EOFs of
the null-hypothesis covariance matrix confirms these
findings, cf. Fig. 11b. The probability to observe
five or more excursions above the 99% quantile, as
given by the binomial distribution, is approximately
1.3%. This probability means that, even without any
prior knowledge of the underlying dynamics and the
frequencies of interest, we can still reject the null
hypothesis at a significance level that is only margi-
nally lower than 99%.

It appears that the low-frequency variance in
EOFs 1–3 dominates the entire spectrum and that
the significance levels for the adjacent frequencies are
likely, therefore, to be overestimated; i.e., EOFs 6-7
at a frequency of 0.05 year−1 appear below the 15%
quantile. Removing the leading components from the
significance test could thus help reduce the bias in the
AR(1) parameter estimation toward the strong trend
components. In a composite test, we hence exclude
not only EOFs 1–3 from the parameter estimation
of the AR(1) null hypothesis, but also the two os-
cillatory pairs that we found to be significant at the
periods 2.7 yr and 2.2 yr, respectively.

Figure 12 shows the updated significance levels
against a composite null hypothesis. In particular, at
frequencies of . 0.2 cycles/yr, the AR(1) null hypot-
hesis gives a considerably better fit to the remain-
der on the ST-EOFs. It turns out that we obtain
an additional 7.7-yr mode in EOFs 4-5, which be-
comes significant in both tests now, apart from the
seven EOFs that we had excluded from the signifi-
cance test (target dots in the figure). This result is
not surprising, as the probability to observe two or
more such random excursion out of the remaining
129 EOFs is very likely, i.e. 37% at a 99% signifi-
cance level, according to a binomial distribution; see
also AS and the appendix therein. Without further
evidence, the information from the two significance
tests is therefore not sufficient to draw conclusions
about the presence of such a 7.7-yr mode.

In the present case, however, we have prior reason
to focus on a 7–8-yr frequency band. Feliks et al.
(2011) identified significant oscillatory modes with
periods of 8.5 yr and 10.5 yr in the SST field of the
Cape Hatteras and Grand Banks region, respectively,
and have shown that these modes spinup in an at-
mospheric model and become synchronized with a
simulated NAO index.

These authors have also shown that the spatio-
temporal pattern of the 8.5-yr mode shares certain
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Fig. 12. Same as Fig. 11 but with the significance level
derived from a test against a composite null hypothesis of se-
ven ST-EOFs plus AR(1) noise. The seven ST-EOFs (target
dots) correspond to the trend, ST-EOFs 1–3, and two oscilla-
tory pairs at a period of 2.7 yr and 2.2 yr, respectively.

features with the so-called gyre mode (Jiang et al.
1995) that has a dominant 7–8-yr peak across a hier-
archy of ocean models (Speich et al. 1995; Chang
et al. 2001; Ghil et al. 2002a; Dijkstra and Ghil 2005).
It is the modeling evidence in Feliks et al. (2011)
combined with that obtained due to the markedly
improved discriminant power of the present signifi-
cance test that provides the requisite, stronger evi-
dence for the existence of such a joint mode in the
analyzed SST and SLP data.

Relatively small discrepancies between the earlier
frequency results of Feliks et al. (2011) and the pre-
sent ones might be due to the shorter duration of
the SODA reanalysis used there, which was of only
50 yr in Carton and Giese (2008, version 2.0.2-4), as
well as the absence of a subsequent varimax rotation
toward unimodal ST-EOFs in the previous analysis.
We have further analyzed the SST and SLP anoma-
lies separately and the results support the existence
of similar 7.7-yr, 2.7-yr, and 2.2-yr modes common
to both of the fields (not shown).

Figure 13 shows the reconstruction of the SST and
SLP anomaly fields from the three oscillatory modes
found to be highly significant. In the SST anoma-
lies (upper panels), we observe in all three modes a
concentration of small areas of high variance and of
alternating sign along the Gulf Stream front. This
spatial structure yields a weaker vs. a stronger me-
andering of the eastward jet in the opposite phases
of each mode, while the resulting deflection from the
mean Gulf Stream position is largest in the 7.7-yr
mode.

In the SLP anomalies (lower panels), we observe a
clear dipole structure in all three modes. In both the
7.7-yr and 2.2-yr mode, this dipole has a meridional
orientation, with the two extrema that appear near
the Iceland low and the Azores high, respectively.
The phase alternation in these two modes thus leads
to a weaker vs. a stronger meridional SLP gradient.
In the 2.7-yr mode, the dipole structure is tilted and
it is oriented southwest-to-northeast. Hence, this os-
cillatory mode contributes to a a tilt of the total SLP
pattern in that direction. In all three oscillatory mo-
des, we are thus led to the conclusion that the vari-
ability in the Gulf Stream region is probably linked
to variability in the NAO.

Finally, to compare our analysis of the full SST
field in the Gulf Stream region with that of a simple
univariate analysis of regionally averaged indicators,
we have further analyzed the mean SST field, as well
as the leading PC of the same region, in a single-
channel SSA analysis. It turns out that in both ca-
ses, apart from a low-frequency component of high
variance, no further oscillatory modes are found to
be significant at the 99% level.

In the single-channel SSA analysis of the mean
SLP anomalies, as well as the leading PC of the
North Atlantic region, oscillatory modes similar to
the three modes discussed are found to be significant,
but only at a lower, 97.5% level. The single-channel
SSA results thus confirm our findings of possibly ne-
gative effects of data compression on the detection of
weak signals; these results clearly demonstrate, the-
rewith, the advantages of a full multichannel spectral
analysis vs. that of a simple scalar indicator.

8. Summary

In numerous applications, multichannel singular
spectrum analysis (M-SSA) has proven an efficient
tool for the identification of regular behavior in high-
dimensional data (Ghil et al. 2002b, and referen-
ces therein). Since M-SSA, like single-channel SSA
(Vautard and Ghil 1989), can generate oscillatory-
looking patterns from pure noise, Monte-Carlo type
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Fig. 13. Reconstruction of SST and SLP anomalies from the oscillatory modes with 7.7-yr, 2.7-yr, and 2.2-yr periods. In
each mode, the leading spatial EOF from a classical PCA analysis is shown in color and transformed back into physical units.
(a–c) SST field reconstruction in the Gulf Stream region, with contour lines that correspond to the mean SST field; contour
interval is 2◦C. (d–f) SLP field reconstruction in the North Atlantic region, with contour lines that correspond to the mean
SLP field, i.e. solid and dashed lines are positive and negative differences from 1013.25 hPa, respectively; contour interval is
200 Pa. Extreme values (max and min) are given in the legend of each panel. Meteorological stations located in the Azores
and Iceland are typically used to define an NAO index, and they are indicated as points A and B, respectively, in panel (d).

tests have been developed to provide objective crite-
ria for its significance (Allen and Smith 1996; Allen
and Robertson 1996). In the present paper, we have
proposed several ways of improving such tests and
studied their performance as a function of various
parameters, such as the number D of observed chan-
nels, the length N of the time series, and the window
parameter M .

We have shown that straightforward Monte Carlo
tests for M-SSA are more likely to fail as the em-
bedding dimension DM reaches the length N of the
observed time series. We introduced here Procrustes
target rotation into the M-SSA setting and showed
that it markedly improves the discriminant power of
Monte Carlo–type tests by reducing the risk of type-I
errors, while maintaining their sensitivity.

Our M-SSA analysis relied on varimax-rotated ST-
EOFs (Groth and Ghil 2011) and we have shown
that, in particular, the scaled target-rotation algo-
rithm of ST-EOFs provides a robust significance test
for both full-rank and rank-deficiant covariance ma-
trices. In the latter case, it clearly outperforms the
test based on T-EOFs of a reduced covariance ma-
trix, as proposed by Allen and Robertson (1996), es-
pecially in the presence of cross correlations.

We have further shown the limitations of prepro-
cessing large data sets via data compression onto
a few leading S-EOFs by means of a conventional
PCA analysis in the M-SSA setting, i.e. when the
goal is the detection of weak but significant signals
in the space-time domain by M-SSA. Once a certain
part of the time series has already been identified as
signal, we have further proposed a generalization of
the single-channel SSA composite test of Allen and
Smith (1996) to M-SSA.

The evaluation of the methods was carried out at
first in an idealized experiment using a cluster of har-
monic oscillators with observational red noise. The
perturbing noise is generated by the same class of
AR(1) processes as the one used in the null hypothe-
sis, hence there is no formally erroneous specification
of the latter.

The end-to-end testing algorithm that results from
these various comparisons is summarized in Appen-
dix B. We applied this algorithm—along with the
new varimax rotation methods introduced and tes-
ted herein—to the analysis of interannual variability
in the North Atlantic basin. This analysis combined
the SST field in the Gulf Stream region that includes
Cape Hatteras and the Grand Banks with the SLP
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field over the entire North Atlantic basin. Given the
more refined spectral results of varimax-rotated ST-
EOFs and the improved discriminant power of our
modified Monte Carlo test, we have been able to pro-
vide even stronger evidence for shared mechanisms
between the Gulf Stream region and the North At-
lantic Oscillation in the interannual frequency band.
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APPENDIX

A. Varimax rotation of ST-EOFs

The common idea of so-called simple-structure ro-
tations is to find a rotation that simplifies the in-
terpretation of the eigenvectors and that reduces
mixture effects. There are several ways to quantify
the simplicity of an eigenvector’s structure (Richman
1986). Varimax rotation attempts to find an orthogo-
nal rotation E∗ = E TV that maximizes the variance
of the squared elements (Kaiser 1958).

In PCA with M = 1, the functional of the eigen-
vectors one wishes to maximize is

V1 =
S∑
k=1

 1

D

D∑
d=1

(
e∗dk

2

h∗d
2

)2

−
(
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D
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e∗dk
2

h∗d
2

)2
 ;

(A1)
here S is the number of rotated eigenvectors e∗k and

h∗d
2 =

∑S
k=1 e

∗
dk

2 is a normalization factor. Kaiser
(1958) has given an explicit equation for the sequen-
tial rotation of pairs of eigenvectors.

Since the criterion V1 maximizes the variance over
all dimensions, a direct application to M-SSA eigen-
vectors would not only achieve the desirable effect
of increasing the spatial variance between channels,
but also increase the temporal variance of the data-
adaptive sine-cosine–like characteristics in the eigen-
vectors. The latter effect can lead to an undesirable
loss of correctly captured oscillatory pairs (Plaut and
Vautard 1994).

For this reason, Groth and Ghil (2011) have pro-
posed a modification of varimax that maximizes only

the variance of the spatial component. Prior to the
calculation of the varimax criterion in each rotation
step, the authors first sum over the temporal part,

ē∗dk
2 =

M∑
m=1

e∗dk
2(m), (A2)

to obtain a participation index ē∗dk
2 of channel d to

the kth ST-EOF, and then try to maximize the va-
riance in the participation index instead. Thus, the
criterion becomes

VM =
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with the normalization h̄
∗
d

2
=
∑S
k=1 ē

∗
dk

2.
In this way, the criteria V1 and VM , respectively,

attempt to bring the spatial component of the ei-
genvectors either close to one or to zero, and that
can help the interpretation of their structure. Groth
and Ghil (2011) have further shown that the varimax
algorithm’s original simplicity—namely a maximiza-
tion of V1 by pairwise rotations of eigenvectors—is
maintained in the maximization of VM as well.

As proposed by Groth and Ghil (2011), we scale
here too each eigenvector by its singular value prior
to rotation, in order to stabilize the results over a
large range of the number S of rotated eigenvectors,
and to minimize the risk of an overrotation (O’Lenic
and Livezey 1988). That is, we first derive an ort-
hogonal rotation matrix TV that maximizes the cri-

terion VM in B = EΣTV , with Σ = Λ1/2 the sin-
gular values. This yields a non-orthogonal B, and
Groth and Ghil (2011) propose to rotate the eigen-
vectors instead, E∗ = ETV . Finally, the eigenvalues
are updated by the diagonal elements of a similarity
transform, Λ∗ = T′V ΛTV .

As shown hereafter, the rotation E∗ = ETV gives
indeed the best approximation, in the sense that it
minimizes the distance between E∗ and B: Suppose

we want to find an orthogonal rotation matrix T̃ that

brings ET̃ closest to B. A solution to this problem is
given by the orthogonal Procrustes algorithm, with

the details given in section 4. In particular, T̃ =
UV′ yields the singular value decomposition (SVD)
of E′B ≡ E′EΣTV = USV′. A simple, element-by-
element inspection gives U = I as the identity matrix,

S = Σ, and hence T̃ = TV .

B. Summary of Monte-Carlo SSA algorithms

Table 1 summarizes the different versions of the
Monte-Carlo SSA algorithm that have been discus-
sed in the present paper. This includes the origi-
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Table 1. Original Monte-Carlo SSA algorithms of Allen and Smith (1996) and Allen and Robertson (1996) for full-rank and
rank-deficient covariance matrices, respectively, in comparison with the proposed Procrustes target rotation algorithms.

X = η1/2 PΣE′, Λ = Σ2 full-rank rank-deficient

XR = η1/2 PRΣRE′R, ΛR = Σ2
R DM ≤ N −M + 1 (η = N −M + 1) DM > N −M + 1 (η = DM)

1. Original Monte-Carlo SSA algorithms

Λ
(E)
R = η−1 E′X′RXRE

= E′ERΛRE′RE

= T′ΛRT

T = E′RE

Λ
(P )
R = η−1 P′XRX′RP

= P′PRΛRP′RP

= T′ΛRT

T = P′RP

Allen and Smith (1996) Allen and Robertson (1996)

2. Extension via unscaled target rotation

P′RP = USV′

T = UV′

Λ
(P )
R = T′ΛRT

E′RE = USV′

T = UV′

Λ
(E)
R = T′ΛRT

3. Scaled target rotation of ST-EOFs

(ERΣR)′EΣ = USV′

TE = UV′

Λ
(EΣ)
R = T′EΛRTE

4. Scaled target rotation of T-EOFs

(PRΣR)′PΣ = USV′

TP = UV′

Λ
(PΣ)
R = T′PΛRTP

nal algorithms of Allen and Smith (1996) for single-
channel SSA, and of Allen and Robertson (1996) for
M-SSA (first row of the table), as well as their gene-
ralization to covariance matrices of arbitrary rank via
the unscaled target-rotation algorithm (second row).
The first column of the table deals with the case of a
full-rank covariance matrix, while the second column
presents the rank-deficient case.

All the algorithms in the upper half of the table
(rows one and two) are based on the structure of the
EOFs alone, i.e. they disregard completely the eigen-
value spectrum. To improve the comparison of the
data eigendecomposition with that of the surrogate
data, the scaled target-rotation algorithm is included
in the lower half of the table (third and fourth row).

Note that all the steps in each of these algorithms
remain exactly the same in the case of varimax-
rotated data eigenelements: that is, the target ei-
genelements E, Σ, and P are just replaced by the
rotated ones E∗, Σ∗, and P∗, respectively, in all of
the equations in Table 1.
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