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Common dynamical properties of business cycle fluctuations are studied in a sample of more than 100 countries
that represent economic regions from all around the world. We apply the methodology of multivariate singular
spectrum analysis (M-SSA) to identify oscillatory modes and to detect whether these modes are shared by
clusters of phase- and frequency-locked oscillators. An extension of the M-SSA approach is introduced to help
analyze structural changes in the cluster configuration of synchronization. With this novel technique, we are
able to identify a common mode of business cycle activity across our sample, and thus point to the existence
of a world business cycle. Superimposed on this mode, we further identify several major events that have
markedly influenced the landscape of world economic activity in the postwar era.

Despite a long tradition of systematically analy-
zing cyclic behavior in economic data,1–3, the na-
ture of aggregate fluctuations is still one of the
most controversial topics in macroeconomics.4,5

Although the emergence of business cycle sy-
nchronization across countries has been widely
acknowledged6–9 — especially in view of the on-
going globalization of economic activity — there
is still no agreement on basic issues like the quan-
tification of comovements. Over the years, eco-
nomic developments, changes in resource availa-
bility, and changes in political systems can result
in more or less drastic changes in the patterns
of economic activity, and therefore change many
aspects of synchronization. In the present work,
we apply multivariate singular spectrum analysis
(M-SSA) to identify common spectral properties
in a sample of macroeconomic time series from
over 100 countries that represent economic regi-
ons from all around the world. An M-SSA exten-
sion introduced herein helps us explore the clus-
ter configuration of synchronization in this sam-
ple, as well as identify several major events that
have markedly influenced world economic activity
in the postwar era. A common mode of business
cycle activity is found and it points to the exis-
tence of a world business cycle.

I. INTRODUCTION

Over the last quarter-century, multivariate singular
spectrum analysis (M-SSA) has proven its efficiency and
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reliability in the spatio-temporal analysis of large da-
tasets in several fields of the geosciences and of other
disciplines.10 M-SSA provides insight into the unknown
or partially known dynamics of the underlying pheno-
mena by decomposing the delay-coordinate phase space
of a given multivariate time series into a set of data-
adaptive orthogonal components. These components can
be classified essentially into long-term trends, oscillatory
patterns and residual noise, and they allow one to re-
construct a robust “skeleton” of the dynamical system’s
structure.10–12 While this skeleton does not yield, in ge-
neral, the dimension of the system’s attractor,11,13,14 it
can greatly help phase synchronization analysis and pro-
vides considerable insight into the mechanisms of rhythm
adjustment.15

Phase synchronization refers, in general, to an adjus-
tment of rhythms of coupled oscillators that is reflected
in a locking of both their frequencies and phases.16–18

In the presence of spiral behavior, the phase is typically
defined as an angle of rotation with respect to an origin
in phase space.19–21 For low-dimensional systems, this
phase definition can be based on visual inspection; for
high-dimensional systems and in the presence of noise, it
may become more difficult to formulate a phase definition
that is both useful and robust. In practice, approaches
relying on the definition of an angle usually depend on a
priori knowledge about the analyzed system.

The data-adaptive M-SSA approach, on the other
hand, is able to automatically identify oscillatory mo-
des and detect cluster synchronization in large systems
of coupled oscillators, while no detailed knowledge of in-
dividual subsystems nor a suitable phase definition for
each of them is required.15,22–24

Despite the algorithm’s proven skill in identifying cou-
pled oscillatory modes, the standard M-SSA approach
assumes stationarity in the cluster configuration of the
underlying system, a stationarity that does not appear
to be very realistic in the context of economic activity.
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Over the years, economic developments, changes in re-
source availability, or changes in political systems can
result in more or less drastic changes in the patterns of
economic activity. These changes in the way a market or
an economy operate can result in changes of the synchro-
nized portion of activity and in the cluster configuration
of synchronized subsystems.

In the present paper, we introduce an extension of the
M-SSA approach to the analysis of structural changes
in the patterns of synchronization. The two-stage ap-
proach implemented herein combines the M-SSA analysis
with a subsequent complex empirical orthogonal function
(EOF) analysis. Our approach helps systematically de-
compose the possibly intricate spatio-temporal structure
of the identified oscillatory modes into a set of distinct
clusters in time.

The interested reader might note the strongly interdis-
ciplinary character of the paper — which combines (i) an
advanced method of time series analysis, namely M-SSA;
(ii) applied dynamical systems theory, in the shape of
synchronization analysis; and (iii) a state-of-the-art as-
pect of macroeconomic theory, namely synchronization
of business cycles — and the challenges this interdisci-
plinarity may pose upon a first reading. Every effort
has been made to present the methodology, as well as
the results, as simply and self-consistently as possible.
Remaining difficulties are entirely the authors’ fault and
may be overcome upon a second reading.

In Sec. II, we give a brief overview of the economic
background and the synchronization of economic activity.
In Sec. III, we review the main properties of the standard
M-SSA methodology and introduce a two-stage approach
that combines a complementary M-SSA algorithm with
a subsequent complex EOF analysis. In Sec. IV, we show
how this two-stage approach can help detect changes in
the pattern of synchronization in a chain of coupled os-
cillators, while in Sec. V we study the synchronization of
economic activity in the large sample of macroeconomic
indicators selected herein. A summary and concluding
remarks make up Sec. VI, and two appendices provide
further technical details.

II. ECONOMIC BACKGROUND

Macroeconomic time series are dominated, over many
decades, by a long-term upward trend; they also exhibit
smaller but still significant shorter-term fluctuations that
are often associated with business cycles.25 The causes
and characteristics of these cycles have been extensively
studied in modern economic theory, while the debate on
their nature — such as the endogenous vs. exogenous na-
ture of business cycles and their propagation mechanisms
— is still very much alive.5,25–27

A number of approaches have been proposed to se-
parate the shorter-term fluctuations from the long-term
trend.28–30 Since there is, however, no fundamental the-
ory — and hence no generally accepted definition — of

the trend, the resulting residuals have to be analyzed
very critically.

On the other hand, it is widely acknowledged that busi-
ness cycles are multi-national phenomena, showing com-
mon characteristics across countries.31,32 Still, there is no
agreement on basic issues like the quantification of como-
vements, the existence of supranational cycles6–9 — for
instance at the European Union or G7 level — and the
determinants of economic synchronization. For this rea-
son, many theoretical and empirical studies disagree in
their results, due to different datasets as well as different
methodologies. Hence, lack of agreement on the extent
and nature of macroeconomic synchronization persists.

Univariate singular spectrum analysis has already been
applied to study business cycles of individual macroeco-
nomic indicators in a single country,33,34 while a first ap-
plication of M-SSA across indicators has been shown to
give deeper insights into the dynamical properties of US
business cycles.35 Only quite recently, though, has busi-
ness cycle synchronization been studied in a joint M-SSA
analysis of a small set of three European economies and
the US.36 In the latter study, common cyclical charac-
teristics have been identified, both across countries and
across indicators.

The present paper extends the study of business cy-
cles and of the determinants of economic synchroniza-
tion to the global scale. In an M-SSA analysis of more
than 100 countries, covering economic regions from all
around the world, we investigate here, in Sec. V, com-
mon dynamical properties of business cycle fluctuations
and their spectral properties across countries, regions,
and the world. The comprehensive dataset is analyzed
in a unified M-SSA analysis, which provides us with a
consistent separation into a permanent trend component
and transient fluctuations that are orthogonal to it.

III. METHODOLOGY

A. Multivariate singular spectrum analysis (M-SSA)

In this subsection, we summarize the main as-
pects of the standard textbook-version of the M-SSA
algorithm.10,37 The algorithm involves four main steps,
(a) embedding, (b) decomposition, (c) rotation, and (d)
reconstruction; these steps are outlined in the following.
a. Embedding. We rely here on the trajectory-

matrix approach,38,39 which starts by embedding each
channel d of the multivariate time series x = {xd(n) :
d = 1, . . . , D; n = 1, . . . , N}— with D channels of length
N — into an M -dimensional trajectory matrix by using
lagged copies,

XXXd =


xd(1) xd(2) · · · xd(M)
xd(2) xd(3) · · · xd(M + 1)

...
...

xd(N −M + 1) · · · xd(N)

 . (1)
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Each matrix XXXd has M columns of reduced length N ′ =
N−M+1, and we form the augmented trajectory matrix
by concatenating all the D channels,

XXX =
[
XXX1 XXX2 . . . XXXD

]
, (2)

The full trajectory matrix XXX has, therefore, DM columns
of reduced length N ′.

b. Decomposition. The M-SSA algorithm proceeds
by performing a singular value decomposition (SVD),

XXX = η1/2PPPΣΣΣEEE′, (3)

where the prime EEE′ denotes the transpose of EEE. The
normalization factor η equals max{N ′, DM}. The ma-
trix ΣΣΣ has κ non-vanishing diagonal elements, which
are its singular values {sk : k = 1, . . . , κ}, where κ =
min{N ′, DM}. The two matrices of singular vectors PPP
and EEE have both rank κ and they provide a set of em-
pirical orthogonal functions (EOFs). A schematic dia-
gram of the SVD decomposition in Eq. (3) is provided in
Fig. 1(a).

It becomes clear that the matrix EEE of right-singular
vectors is composed of D consecutive segments EEEd of size
M × κ,

EEE′ =
[
EEE′1 EEE′2 . . . EEE′D

]
, (4)

each of which is associated with a channel XXXd in XXX. These
vectors are referred to as space-time EOFs (ST-EOFs)
and represent a set of multivariate data-adaptive filters
of length M .

The window length M of the filter is equivalent to the
embedding dimension in Eq. (2) and it is typically cho-
sen to cover more than one oscillation period. This way,
oscillatory behavior is captured via so-called oscillatory
pairs of two ST-EOFs in phase quadrature.11,40 These
pairs are the analogs of sine-and-cosine pairs in Fourier
analysis, and M here needs to be no less than a small
multiple of its period for any such pair to be reliably
identified by the M-SSA analysis.

The matrix PPP of left-singular vectors has size N ′ ×
κ. These vectors are referred to as temporal EOFs (T-
EOFs) and reflect the corresponding temporal behavior
of an oscillation, as captured through the filter lens of the
ST-EOFs. This filtering step becomes more apparent via
the equivalent projection of the trajectory matrix onto
the ST-EOFs,

AAA = XXXEEE ≡ η1/2PPPΣΣΣ, (5)

from which we obtain the principal components (PCs);
i.e. the PCs are proportional to the T-EOFs in matrix
PPP, scaled by the singular values ΣΣΣ.

c. Rotation. To better separate distinct oscillations
for large D, we rely here on a modified varimax rotation
of the ST-EOFs;15,41 see also appendix A for further al-
gorithmic details.

(b)

M
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Figure 1. Schematic diagram of the time series analysis
methodology. (a) The standard M-SSA algorithm in Eq. (3);
(b) the complementary M-SSA algorithm in Eq. (8), followed
by (c) the subsequent complex EOF analysis in Eq. (13). The
diagram illustrates the simple case of two variables, D = 2.

d. Reconstruction. Dynamical behavior in XXX that is
associated with a subset K ⊆ {1, . . . , κ} of EOFs can be
reconstructed from Eq. (3) by

RRRK = η1/2PPPΣΣΣKKKEEE′, (6)

with KKK a diagonal matrix of size κ× κ, in which the ele-
ments Kkk equal unity if k ∈ K, and Kkk = 0 otherwise.
Upon averaging along the skew diagonals of RRRK, i.e. over
elements of the same time instance in Eq. (1), we finally
obtain the reconstructed components (RCs).

Remark. We have chosen here to obtain the two ma-
trices PPP and EEE from the SVD of XXX in Eq. (3). Alterna-
tively, one could also start with the covariance matrix
CCC = η−1XXX′XXX to first obtain EEE from the eigendecompo-
sition of CCC, CCC = EEEΛΛΛEEE′, and then PPP from a projection
PPP = η−1/2XXXEEEΣΣΣ−1, according to Eq. (5). However, the lat-
ter projection requires computing the inverse of ΣΣΣ, which
becomes problematic in the presence of small eigenvalues
in ΛΛΛ = ΣΣΣ2. Moreover, the calculation through straig-
htforward eigendecomposition provides a more complete
picture in the case of a rank-deficient covariance matrix,
i.e. MD > N ′. In the latter case, one needs to calculate a

reduced covariance matrix, C̃CC = η−1XXXXXX′, and its eigende-

composition, C̃CC = PPPΛΛΛPPP′.23,42 Irrespective of these issues,
there exist efficient and robust algorithms to compute
the nonvanishing eigenelements directly from a reduced
version of the SVD in Eq. (3).43
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B. Structural changes

The projection in Eq. (5) is optimal in the sense that
a maximum amount of variance in XXX is captured by a
minimal number of PCs. Optimality, though, is only
given in a total least-mean-square sense, and the PCs
describe overall temporal behavior that is most common
to all input time series.

In the joint M-SSA analysis of extensive atmospheric
and oceanic datasets,44 for example, coupled ocean-
atmosphere modes were most prominent, while separate
M-SSA analyses of the oceanic and atmospheric datasets
unveiled small but significant mismatches in the tempo-
ral behavior of the two fluid media. It was shown that
a gradual decline of interannual variability in the atmos-
pheric forcing was not accompanied by a similar decline
of interannual variability in the ocean response; i.e., in
some regions of the North Atlantic basin, the hypothe-
sis of an ocean response to atmospheric forcing could be
rejected with high confidence. Furthermore, separate M-
SSA analyses over distinct time intervals showed that the
spatio-temporal structure of interannual variability has
changed over time.

Analyzing, however, extensive datasets by separate M-
SSA analyses on subsets of the space-and-time domain
can become quite cumbersome, and a more systema-
tic approach is clearly preferable. In the following sub-
section, we discuss, therefore, a complementary version
of the M-SSA algorithm that is flexible enough to re-
construct oscillatory behavior that undergoes structural
changes in the space–time domain. The M-SSA oscil-
latory modes will then be analyzed in greater detail in
Sec. III E, using a complex EOF analysis to systemati-
cally identify structural changes.

C. Complementary M-SSA algorithm

The projection in Eq. (5) averages over all input chan-
nels, while the T-EOFs of length N ′ provide a compre-
hensive least-mean-square picture of the temporal beha-
vior. This property of M-SSA analysis arises from the
decomposition of XXX in Eq. (3) into an outer product of
a single set of T-EOFs in PPP and the channels’ individual
contributions in EEE′.

Hence, in a typical situation, the window length M has
to be chosen to cover at least once the longest oscillation
period of interest. In the original M-SSA formulation,
though, it was desirable to use M < N/3 or smaller in
order to be able to identify temporal changes in the am-
plitude of the oscillation.45 While the complementary M-
SSA algorithm still involves the same four steps (a)–(d)
of Sec. III A, a simple restructuring of the trajectory ma-
trix in step (a) helps circumvent this limitation; cf. also
Fig. 1(b), in which a schematic diagram illustrates the
main properties of the algorithm.

a. Embedding. The complementary M-SSA algo-
rithm begins by concatenating the channel-wise trans-

pose of XXXd,

YYY =
[
XXX′1 XXX′2 . . . XXX′D

]
, (7)

into a new trajectory matrix YYY of size M ×DN ′.
b. Decomposition. This version of the M-SSA algo-

rithm then continues, as before, with the SVD of the
restructured trajectory matrix YYY,

YYY = η1/2UUUSSSVVV′, (8)

from which we obtain a new set of EOFs. In the follo-
wing, we assume that M < N/2, and therefore M < N ′,
so that UUU and VVV have both rank M , and the normaliza-
tion factor η equals DN ′.

In the single-channel case with D = 1, we have XXX = YYY′,
and the two SVDs in Eqs. (3) and (8) yield the same
results, except that the two sets of EOFs interchange
their respective roles; see also Fig. A1 in Ref. 10.

In the multi-channel case with D ≥ 2, however, this
restructuring in YYY has far-reaching effects on the decom-
position of the spatio-temporal variability. The new ma-
trix of left-singular vectors UUU has now size M ×M . To
understand its role in the decomposition, remember that
UUU is also the matrix of eigenvectors of the covariance
matrix CCC = η−1 YYYYYY′ and, following Eq. (7), likewise of

CCC = η−1
∑D
d=1 XXX′dXXXd. Thus, UUU now describes spectral pro-

perties of the covariance structure that are common to
all channels. In contrast to PPP, these eigenvectors UUU have
now length M and take over the role of data-adaptive
filters; i.e. the analog of sine and cosine functions.

Note that a similar idea has already been discussed in
the context of Monte Carlo SSA hypothesis testing,23,46

in which the EOF test basis is determined from the eigen-
decomposition of the covariance matrix associated with
the null hypothesis; to wit, the latter is estimated from
the average over the entire set of all surrogate covariance
matrices. Here we likewise average over a set of covari-
ance matrices in CCC, and determine a new EOF basis UUU
that characterizes the common spectral properties of all
input channels.

Originally introduced for single-channel SSA
analysis,46 the Monte Carlo test for SSA turns out
to be potentially rather misleading in the multi-channel
setting of M-SSA.23 The EOF basis UUU describes only
common spectral properties. Hence, oscillations of simi-
lar periods but with distinct spatio-temporal features,
for example, could wind up as being subsumed in the
same oscillatory pair of UUU. This would be the case,
for instance, if the test were to associate the same
significance level to both oscillations, although their
corresponding eigenvalues might be quite different.23

In the present paper, however, it is exactly this pro-
perty of the EOF basis UUU that gives sufficient flexibility to
the complementary M-SSA algorithm in associating os-
cillations of similar period, but different spatio-temporal
patterns. The corresponding spatio-temporal behavior of
the oscillation is captured by the right-singular vectors VVV.
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Table I. Properties of the standard M-SSA algorithm in
Eq. (3) vs. the complementary M-SSA algorithm in Eq. (8).

Standard Complementary
Size of M-SSA M-SSA
Trajectory matrix XXX : N ′ ×DM YYY : M ×DN ′

Temporal EOF PPP : N ′ × κ VVV : DN ′ × κ
Filter EOF EEE : DM × κ UUU : M × κ
Singular values ΣΣΣ : κ× κ SSS : κ× κ
Rank κ : min{N ′, DM} κ : M

The matrix VVV has size DN ′×M and it is composed of
D consecutive segments VVVd of size N ′ ×M ,

VVV′ =
[
VVV′1 VVV′2 . . . VVV′D

]
, (9)

each of which is associated with a channel XXXd in YYY. In
contrast to the single set of T-EOFs in matrix PPP that
results from the SVD of Eq. (3), we have now D separate
sets of T-EOFs in Eq. (8); see again Figs. 1(a) and 1(b).

c. Rotation. The separability of distinct oscillations
is further improved by a modified varimax rotation of VVV,
as in the standard M-SSA algorithm; see appendix A for
further algorithmic details.

d. Reconstruction. Dynamical behavior in YYY that is
associated with a subset of EOFs can be reconstructed,
in a manner analogous to Eq. (6), from

RRRK = η1/2UUUSSSKKKVVV′, (10)

with RRR of size M ×DN ′, while averaging along the skew
diagonals of RRR — i.e., over elements that occur at the
same time in Eq. (7) — yields the RCs of x.
Remark. Table I compares the properties of the stan-

dard M-SSA algorithm in Eq. (3) with those of the com-
plementary M-SSA algorithm in Eq. (8). As already il-
lustrated in Figs. 1(a) and 1(b), the main differences in
the decomposition of the trajectory matrix between the
two versions of the M-SSA algorithm can be summarized
as follows:

1. The standard M-SSA algorithm captures tempo-
ral behavior in the univariate T-EOFs of ma-
trix PPP, which are common to all input channels,
while the complementary M-SSA algorithm captu-
res channel-wise temporal behavior in the multiva-
riate T-EOFs of matrix VVV.

2. The standard M-SSA algorithm projects the multi-
channel time series onto a multivariate spectral fil-
ter given by the ST-EOFs of matrix EEE, while the
complementary M-SSA algorithm projects all time
series onto the univariate filter of matrix UUU.

D. Example of harmonic oscillations

To better understand the differences between the two
versions of the M-SSA algorithm, we consider next the
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Figure 2. Spatio-temporal oscillations in the presence
of strong correlated noise. (a) Observed pattern; and (b)
noise-free reference pattern with D = 50 channels of length
N = 300. The reference pattern is composed of three dif-
ferent spatio-temporal oscillations in panels (c–e), with the
oscillation period T = 20 in all three patterns. Superimposed
on the reference signal is spatio-temporally correlated noise,
with the signal-to-noise ratio set to 1.5.

simple example of spatio-temporal harmonic oscillations.
While the oscillation period is fixed, amplitudes and pha-
ses can vary in space and time.

Figure 2(a) shows the observed input signal, while the
noise-free reference signal is shown in Fig. 2(b). The re-
ference signal is composed of three different signals with
varying spatio-temporal behavior, and which are shown
in Figs. 2(c–e). The superposition of the three signals is
meant to reflect structural changes in time: it is these
changes we try to identify in the noise-contaminated sig-
nal in Fig. 2(a). The superimposed red noise is generated
by AR(1) processes with parameter γ = 0.9, driven by
spatially correlated white noise processes whose covari-
ance matrix is given by WWWij = 0.8|i−j|.

To cover at least one oscillation period, we set the win-
dow length to M = 30. In both M-SSA analyses, the
standard and the complementary one, the leading pair of
EOFs 1-2 captures oscillatory behavior of period T = 20,
with the corresponding spatio-temporal reconstructions
shown in Figs. 3(a) and 3(b), respectively. It turns out,
though, that only the complementary M-SSA algorithm
in Fig. 3(b) is able to capture the time-varying spatio-
temporal structure in Fig. 2(b). The reconstruction of
the standard M-SSA algorithm in Fig. 3(a), on the other
hand, gives only a much fuzzier picture of the spatio-
temporal structure of the oscillation, while many struc-
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(a) Standard M-SSA EOFs 1-2
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Figure 3. Reconstruction of spatio-temporal oscillations with
the leading oscillatory pair RCs 1-2 of (a) the standard M-
SSA algorithm and (b) the complementary M-SSA algorithm.
The window length M = 30 and the leading 10 EOFs varimax
rotated. Panels (c–e) show partial RCs from a reconstruction
with the three leading EOFs of a subsequent complex EOF
analysis of M-SSA EOFs 1-2 of panel (b). The complex EOF
analysis in T-mode, with the 10 leading complex T-EOFs va-
rimax rotated.

tural details are completely missed.

Only the central part 20 . d . 40 of the signal
is correctly reconstructed by the standard M-SSA in
Fig. 3(a), while two further oscillatory pairs are neces-
sary to reconstruct the two adjacent parts 1 ≤ d . 20
and 40 . d ≤ 50, respectively (not shown). This de-
composition into spatially distinct patterns, though, is
characteristic for the varimax rotation of the ST-EOFs
in EEE, cf. Eqs. (3)-(4) and appendix A; it is less helpful,
however, in identifying structural changes in the time
domain.

In the complementary M-SSA algorithm, all input
channels are projected onto the same set of univariate
filters in UUU. Since the oscillation period is identical
in the three oscillatory patterns of Figs. 2(c–e), a sin-
gle oscillatory pair in UUU suffices in Fig. 3(b) to recon-
struct the complex spatio-temporal structure in Fig. 2(b).
Despite the algorithm’s excellence in identifying the com-
plex spatio-temporal structure of the oscillation in the
presence of strong correlated noise, it still lacks more spe-
cific information about the existence of structurally dis-
tinct patterns. In the present example, visual inspection
can already provide useful information in this direction,
but a more systematic approach is necessary for high-
dimensional systems, as presented in the following sub-

section.

E. Complex EOF analysis

For a more systematic decomposition of the spatio-
temporal structure of the oscillation, recall that the com-
plementary M-SSA algorithm in Eq. (8) captures tempo-
ral behavior in the multivariate T-EOFs of matrix VVV, cf.
Eq. (9) and Fig. 1(b). Suppose we have identified oscilla-
tory behavior in a pair of two T-EOFs, vp and vq, namely
the p-th and q-th columns of VVV, respectively. The sub-
sequent complex EOF analysis involves four main steps
(a)–(d), similar to those in Secs. III A and III C; these
steps are described in the following.
a. Embedding. Upon varimax rotation of VVV, cf. ap-

pendix A, the two T-EOFs are in phase quadrature and
will therefore provide an expansion of the oscillation in
the complex plane,

z = vp + i vq . (11)

According to Eq. (9), the complex-valued column vector
z of length DN ′ is likewise composed of D consecutive
segments zd of length N ′, each of which is associated with
a channel VVVd in VVV.

Concatenating the channel-wise segments zd,

ZZZ =
[
z1 z2 . . . zD

]
, (12)

will finally provide the complex input signal ZZZ of size
N ′ ×D; see Fig. 1(c) for an illustration.

b. Decomposition. The complex EOF analysis then
continues with the SVD

ZZZ = UUUcSSScVVV
′
c . (13)

This SVD provides a factorization of ZZZ into two uni-
tary matrices, UUUc and VVVc, and a diagonal matrix SSSc

of real numbers, all three of which have rank κ =
min{N ′, D}.47,48 The left-singular vectors UUUc describe
the temporal behavior of the oscillations and we refer to
them as complex T-EOFs. The right-singular vectors VVVc

provide spatial information and describe the correspon-
ding phase and amplitude relations for each of the input
channels, and we refer to them as complex S-EOFs.

c. Rotation. Complex EOF analysis is known to be
useful in identifying propagating and standing waves.49

By analogy with the varimax rotation of ST-EOFs in M-
SSA, cf. Sec. III D, we seek to simplify the interpretation
of the complex EOFs by a varimax rotation. In contrast
to the M-SSA rotation, which attempts to simplify the
spatial structure of the oscillations, there are two pos-
sibilities for achieving simpler oscillatory structures by
varimax rotation in complex EOF analysis.50

In the so-called S-mode,51 a simple structure rotation
is applied to the complex S-EOFs and will result in spa-
tially distinct clusters, same as in the ST-EOF rotation
for the M-SSA algorithm.
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In the alternative T-mode, a rotation is applied to the
complex T-EOFs and will result in distinct clusters in
time. In the geosciences, the S-mode is more frequently
used, although the T-mode is not uncommon either.52,53

Later on, we will see that these two modes provide com-
plementary information about the system under study.

d. Reconstruction. To reconstruct dynamical beha-
vior in the original input time series x from the two-stage
decomposition of Eqs. (8) and (13), we first reconstruct
the dynamical behavior ZZZk that is associated with the
k-th complex EOF,

ZZZk = UUUcSSScKKK VVV′c ; (14)

here KKK is a diagonal matrix of rank κ, in which the k-
th diagonal element equals unity and the other diagonal
elements are set to zero. Following Eq. (11), the real
and imaginary parts of ZZZk are associated with T-EOFs
vp and vq, respectively; see once more Figs. 1(b) and
1(c), in which the association is illustrated by two dashed
arrows. That is, by replacing the T-EOFs vp and vq in
Eq. (10) by their counterparts in ZZZk, we obtain, again
upon diagonal averaging, the corresponding partial RCs.

Note that
∑κ
k=1 ZZZk yields a complete reconstruction of

ZZZ, i.e. of T-EOFs vp and vq, and the sum of all partial
RCs from the subsequent complex EOF analysis likewise
yields the original RCs from the M-SSA analysis.

In the above example of harmonic oscillations, we have
already seen that the time-varying spatio-temporal struc-
ture in Fig. 2(b) is well captured by RCs 1-2 of the com-
plementary M-SSA algorithm in Fig. 3(b). Figures 3(c–e)
show the resulting partial RCs as derived from a recon-
struction with the three leading EOFs of a subsequent
complex EOF analysis in the T-mode. In this analysis,
the complex T-EOFs are varimax rotated, while the par-
tial RCs give the desired reconstruction of the three refe-
rence patterns in Figs. 2(c–e). A complex EOF analysis
in the alternative S-mode (not shown) yields only spa-
tially distinct patterns, similar to the standard M-SSA
algorithm in Fig. 3(a).

F. Qualitative comparison with other methods

In this paper, we discuss a two-stage approach that
combines the M-SSA analysis with a subsequent com-
plex EOF analysis. Namely, in the first step, the M-SSA
algorithm identifies a spatio-temporal oscillation and ex-
pands it into the complex plane, cf. Fig. 1(b), while
the complex EOF analysis then decomposes this spatio-
temporal oscillation into structurally distinct patterns,
cf. Fig. 1(c).

Complex EOF analysis is often used to recognize wave
patterns, and it is commonly based upon a complex ex-
pansion of the input signal via a Hilbert transform.47–49

Unless some bandpass filtering is performed beforehand,
no particular time scale is attached to a pattern obtained
in this way. The Hilbert transform approach is, moreo-
ver, subject to problems arising from end effects, which

render this approach useless in the presence of strong
trends. M-SSA, on the other hand, discriminates between
different frequency peaks in a natural, data-adaptive way,
and provides a robust decomposition into trends and dif-
ferent oscillatory patterns.

In the present work, we focus on structural changes in
single oscillatory patterns that are embedded in possibly
high-dimensional systems. To detect such changes, se-
veral authors have proposed implementing change-point
detection algorithms that are limited, though, to scalar
time series and rely on sequential application of SSA.54–57

In the context of M-SSA forecasting, Hassani and
Mahmoudvand 58 have concatenated the channel-wise
trajectory matrix XXXd into a full trajectory matrix XXX as
well as YYY, cf. Eqs. (2) and (7), respectively. These aut-
hors concluded that the forecasting performance on XXX,
their VMSSA algorithm, is generally better than on YYY,
their HMSSA algorithm. This is not surprising, insofar
as the VMSSA algorithm uses cross-channel information,
and the forecasting procedure can benefit from extra in-
formation when the distinct channels share common fre-
quencies. In the present work, we rely on a subsequent
varimax rotation in both cases, which improves the iden-
tification of common oscillatory behavior and reduces the
risk of spurious correlations.59

IV. SYNCHRONIZATION OF COUPLED SYSTEMS

To illustrate the insights into phase synchronization
that are provided by the standard and the complemen-
tary M-SSA algorithm, respectively, we consider a chain
of J = 20 Lotka-Volterra models,60,61

ẋj = G(xj)− yj F (xj) + c(xj+1 − 2xj + xj−1) ,
ẏj = ε yj G(xj)− µ yj .

(15)

These 20 models are diffusively coupled via their x–
component, with c ≥ 0 being the coupling strength.
The position in the chain is given by j = 1, . . . , J and
we assume free boundary conditions x0(n) = x1(n) and
xJ+1(n) = xJ(n). Each model in the chain is an exten-
ded Rosenzweig-MacArthur version62 of a Lotka-Volterra
predator–prey model, with a density-dependent logistic
growth G(x) = rx(1−xK−1) and a Holling-type63 functi-
onal response F (x) = αx(1 + αhx)−1.

The Lotka-Volterra equations have long been used
in economic theory as well.64,65 In a highly simplified
way, the model captures adjustment delays in the socio-
economic system, for example between production and
demand or capital and labor. These delays can give rise
to endogenous business cycle dynamics.27,66

With the parameters set to r = 0.5, K = 400, h = 0.3,
ε = 0.3, and µ = 0.4, the system undergoes a Hopf bi-
furcation at α & 0.0194, after which a periodic solution
arises and is stable. The amplitude and period of this
limit cycle both increase with increasing α. In our si-
mulation, we choose α = αj to vary linearly with j in
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Figure 4. Synchronization for a chain of J = 20 cou-
pled Lotka-Volterra oscillators (15). Spectrum of singular
values from (a) the standard M-SSA algorithm, and (b,c)
from the complementary M-SSA algorithm, with a subsequent
complex-EOF analysis of ST-EOFs 1-2; here the latter ana-
lysis uses (b) the S-mode, and (c) the T-mode. The M-SSA
window length is M = 30 and the 20 leading EOFs are vari-
max rotated.

the interval [0.0195, 0.026], in which the period T varies
between 22 . T . 25 time units.

The system (15) is integrated with an explicit Runge-
Kutta (4,5) solver67 and an initial step size of 10−3. The
solution is sampled at time intervals ∆t = 1, from which
we discard the first 1 000 samples to avoid transient beha-
vior, while we keep time series of length N = 5 000 sam-
ples. In our M-SSA analysis, the window length M = 30
is chosen to cover at least once the longest period of the
oscillators.

In a similar experiment on a chain of coupled chao-
tic Rössler systems, the standard M-SSA algorithm has
already proven to provide insightful information about
the formation of synchronization clusters.15,24 In the pre-
sent case of coupled Lotka-Volterra oscillators, synchro-
nization of the distinct limit cycles manifests itself like-
wise via a clustering of the oscillators. As the coupling
strength c increases, the number of clusters decreases:
this is reflected by a decreasing number of singular va-
lues in the standard M-SSA algorithm in Fig. 4(a).

In the complementary M-SSA algorithm, the leading
oscillatory pair captures always more than 95% of the
total variance, irrespective of the coupling strength (not
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Figure 5. Chain of purely periodic oscillators (15) at coupling
strength c = 0.1. (a) Observed spatio-temporal oscillation of
the x-components; and ( b–d) partial RCs from a complex
EOF analysis in S-mode. Parameter values and details given
in Fig. 4.

shown); it is this pair that is then analyzed in a subse-
quent complex EOF analysis. In the S-mode analysis of
Fig. 4(b), it is not surprising that the picture resembles
qualitatively very well the picture of the standard M-SSA
algorithm in Fig. 4(a), since both algorithms seek to sim-
plify the spatial structure. The essential difference is in
the representation of oscillatory behavior: an oscillatory
pair of two lines in Fig. 4(a) corresponds to a single line
of a complex oscillation in Fig. 4(b).

In the T-mode in Fig. 4(c), we likewise observe a cas-
cade of vanishing singular values as the coupling strength
increases, although the behavior at successive bifurcation
points is somewhat less abrupt. To understand the small
but visible differences between the results in the S- and
T-mode in Figs. 4(b) and 4(c), respectively, we compare
next the underlying spatio-temporal oscillations in grea-
ter detail.

Figure 5(a) shows a segment of the observed spatio-
temporal behavior at coupling strength c = 0.1. At this
coupling strength, the regime of global synchronization
has not yet been reached, and the collective oscillation of
the elements in the chain is interrupted by phase slips at
the border that separates neighboring clusters.

In S-mode, the spectrum of singular values in Fig. 4(b)
indicates two significant clusters at c = 0.1, while the
corresponding partial RCs associated with the complex
EOFs 1 and 2 in Figs. 5(b) and 5(c), respectively, show
a clear separation into two spatially distinct oscillatory
patterns. The combination of the two partial RCs in
Fig. 5(d), on the other hand, captures most of the de-
tails of the observed spatio-temporal pattern in Fig. 5(a).
Note that a similar two-cluster configuration is also
found with the standard M-SSA algorithm at c = 0.1
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Figure 6. Same as Fig. 5, but with partial RCs from a
complex EOF analysis in T-mode.

in Fig. 4(a), while the corresponding RCs show patterns
similar to that of the S-mode in Figs. 5(b–d) (not shown).

In T-mode, the spectrum of singular values in Fig. 4(c)
likewise indicates two significant clusters at c = 0.1, but
the corresponding partial RCs from a reconstruction with
the complex EOFs 1 and 2 in Figs. 6(b) and 6(c), re-
spectively, show a different picture. The temporal clus-
tering in the T-mode now separates between epochs of
global synchronization in Fig. 6(a), interrupted by epo-
chs of antiphase behavior in Fig. 6(b). As in the S-mode,
the combination of the two patterns in the T-mode cap-
tures most of the details of the observed spatio-temporal
pattern, cf. Fig. 6(c) As the coupling strength incre-
ases further, epochs of global synchronization become
more frequent, while the corresponding singular value in
Fig. 4(c) gradually increases before the onset of complete
synchronization at c & 0.23.

V. SYNCHRONIZATION OF ECONOMIC ACTIVITY

In this study, we analyze macroeconomic data from
the World Development Indicators (WDI) database of
the World Bank.68 The annual datasets provides a com-
prehensive collection of global development data, from
which we select five variables: Gross domestic product
(GDP) at market prices, gross fixed capital formation
(GDI, formerly gross domestic fixed investment), final
consumption expenditure (CON), exports (EXP), and
imports (IMP) of goods and services. All variables are
in constant 2010 US$.

We restrict ourself to the interval 1970–2015 of length
N = 46 years, for which we have 104 economies with no
missing values from at least one of the five macroecono-
mic indicators above. In this subset of the WDI dataset,
each of these 104 economies is thus represented by at least
one variable out of the five selected. The total number
D = 336 of input time series for our analysis lies, the-
rewith, between the (number of economies = 104) × (5

variables) = 520 and half this number. Additional es-
timates for the remaining countries and variables with
missing values in the WDI dataset complete the global
picture, as described in appendix B.

A. Complementary M-SSA analysis

In our analysis of the macroeconomic data, we have
chosen to separate the shorter-term fluctuations from the
long-term trend in a single M-SSA analysis. In contrast
to the common idea of first detrending the data,28–30 the
single-step M-SSA analysis provides us with a more con-
sistent separation into a permanent trend component and
transitory fluctuations that are orthogonal to it.33

Figure 7 shows the GDP time series of ten major eco-
nomies, together with their reconstruction by the leading
pair of RCs 1-2. This leading pair captures about 99% of
the total variance, and it is associated with the growth
trend component of the dataset.

In classical spectral estimation methods, like the Fou-
rier transform, the dominant character of this growth
trend component can lead to a strong influence on neig-
hboring low-frequency bands, due to leakage effects.69

For this reason, the dataset is often detrended first, prior
to any spectral analysis.35,36 In the present analysis,
though, a careful varimax rotation of the M-SSA EOFs
helps reduce mixture effects and improves the separation
of nearby frequencies.59

Figure 8 shows the residuals after subtracting the trend
component given by RCs 1-2 from the raw data. The
success of a reasonable separation between the growth
trend component and transitory fluctuations is clearly
visible in the GDP trend residuals of the US economy.
In this case, the downward fluctuations align very well
with the official NBER-defined US recessions,70 while the
stylized fact of an asymmetric business cycle — with the
recession phase much shorter than the expansion phase
— becomes strikingly apparent.71,72

The ups and downs in the trend residuals of the other
countries in Fig. 8 are not aligned that well with the ups
and downs in the US trend residuals. This raises there-
fore the question of whether the transitory fluctuations
of various countries are synchronized and, if so, whether
the cluster configuration changes over time.

Figure 8 furthermore shows the reconstruction of the
trend residuals with the leading oscillatory pair RCs 3-4,
whose broad periodicity is of 7–11 yr. The cyclic charac-
ter of successive expansions and recessions is very well
reproduced in many countries, while 73% of the residu-
als’ variance is captured by this oscillatory pair.

Beside this main oscillatory mode, we observe two ot-
her oscillatory modes of 5–6-yr and 3–4-yr period in RCs
5-6 and RCs 7-8, respectively. These two modes cap-
ture 18% and 5% of the trend residuals’ total variance,
respectively, and represent not just simply harmonics of
the main oscillatory mode, as we would expect from a
Fourier decomposition of asymmetric cycles.
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The second oscillatory mode of 5–6-yr period is shown
in Fig. 9, together with a reconstruction of the trend
residuals with a combination of the two leading oscilla-
tory modes, given by RCs 3-4 and 5-6. It turns out that
the combination of the two modes provides a remarkably
good fit to the apparently quite erratic behavior of the
trend residuals.

In the US GDP, the RCs 5-6 are characterized by a fai-
rly constant amplitude throughout the whole observation
interval. Groth et al. 35 have already shown that an os-
cillatory mode of similar period plays an important role
during US recessions, when the trajectory of the dataset
stays closer to a suspected limit cycle, like the one in the
non-equilibrium dynamic model (NEDyM) of Hallegatte
et al. 66 or in other endogenous business cycle models.27

The remarkably persistent character of RCs 5-6 in the
US economy is in contrast to a more transient behavior
in several of the European countries in Fig. 9. In the
latter, RCs 5-6 have a particularly high amplitude du-
ring the Great Recession of 2008–2009 and also indicate
a smaller second recession afterwards. This behavior has
often been called a double-dip recession in many Euro-
pean countries.73 An analysis of the phase relations in
RCs 5-6 suggests a leading role of the US in generating
this mode, i.e. the US economy leads the European coun-
tries by 3–12 month (not shown).

To understand the general characteristics of business
cycle synchronization, we focus in the next subsection on
the main oscillatory mode with a near-periodicity of 7–
11 yr, while more detailed analyses of the other modes
are left for future studies.

Note that oscillatory modes of similar periodicity have
already been identified in previous M-SSA analyses of
the US business cycle35 and of a subset of European
countries.36 These studies, however, relied on a prior de-
trending of the raw data, which is subject to the criticism
of business cycles being merely a spurious by-product of
the detrending procedure.74

Objective significance tests, though, have demonstra-
ted that these modes cannot be generated by random
shocks alone.35,36 The consistency in oscillation period
between M-SSA analyses of detrended data and raw data
is an even stronger indicator for the existence of shared,
universal properties of the underlying dynamics. More-
over, multi-annual cyclic behavior, such as the Juglar 1

7–11-yr cycles and the 3–4-yr Kitchin 2 cycles, has been
discussed at some length before.3

B. Subsequent complex EOF analysis

In the reconstruction of the trend residuals with RCs
3-4, a fairly complex structure of phase-and-amplitude
modulations becomes apparent in Fig. 8. To simplify the
interpretation, we continue with a subsequent complex
EOF analysis of this main oscillatory mode, in which we
try to identify structural changes over time.

Figure 10 shows the corresponding temporal patterns
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Figure 10. Complex EOF analysis in T-mode of ST-
EOFs 3-4 that corresponds to RCs 3-4 in Fig. 8. Shown are
the complex-valued temporal patterns that characterize the
spatio-temporal oscillations in the partial RCs, based on a re-
construction with the four leading complex EOFs. The real
and imaginary parts are plotted in blue and red, respectively,
while the envelope is plotted in green. The variance captured
by each mode is given in the legend of each panel (in %).

of the four leading complex EOFs, cf. appendix B. We
have chosen the T-mode version of the analysis, in which
we seek to identify distinct clusters in time via a varimax
rotation of the complex T-EOFs. It turns out that we
are indeed able to identify several oscillatory modes that
characterize distinct time intervals. This cluster identifi-
cation will be discussed in greater detail in the following
subsections.

Figure 11 displays rescaled versions of the GDP trend
residuals and their corresponding RCs 3-4 for the ten
major economies from Fig. 8. In addition, the partial
RCs from a reconstruction with the complex EOFs 1–4
are shown in Figs. 11(b–e).

1. Complex EOF 1

The leading oscillatory mode in complex EOF 1 rea-
ches its amplitude maximum during the Great Recession
of 2008-2009, and it remains high until the end of the time
interval, cf. Fig. 10(a). In terms of overall impact, the le-
ading complex EOF 1 captures more variance than all the
remaining complex EOFs together. Such dominance is in
agreement with the view that this recession was the most
severe global one during the postwar period.75 The per-
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Figure 11. GDP trend residuals of ten major economies (in color) and their reconstructions (black) with (a) RCs 3-4, as
reproduced from Fig. 8; and (b–e) partial RCs 1–4 from the complex EOF analysis in Fig. 10. For ease of comparison, the
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sistently high amplitude after the recession is, moreover,
consistent with the observation that the world economy
is still struggling with post-crisis adjustments.73

The corresponding partial RCs in Fig. 11(b) provide a
good visual approximation of the trend residuals in many
countries during this time interval, a fact that emphasi-
zes the global character of this crisis. For the US eco-
nomy, the good fit to the GDP trend residuals throug-
hout the full observation interval, together with the ups-
and-downs in phase with the NBER-defined recessions,
suggest that this mode plays an important role in its dy-
namics.

The global importance of the US economy on world
economic activity raises, therefore, the question of the
role that it plays in the generation of this recurrent pat-
tern elsewhere, too. For the other countries, though, we
get a more complicated picture, in which the phase and
the amplitude of this mode vary from country to country.

To get a better picture of the global pattern, we next
plot in Fig. 12 the corresponding phase and amplitude
relations for each of the countries on a world map. For
each country, the relations among the variables’ phase
and amplitude are shown in a polar coordinate system,

with the two-letter country code at the origin.
For the 104 economies and those variables with no mis-

sing values, the phase and amplitude can be directly de-
rived from the complex S-EOFs in VVVc; they are indicated
by opaque pointers. The map also shows estimates of
the phase and amplitude relations for time series with
missing data; these are indicated by transparent poin-
ters. Details of the estimation procedure can be found in
appendix B.

To guide the reading of the complex world map of
phase and amplitude relations, we have furthermore cho-
sen to rescale the land area of each country in proportion
to its importance in the oscillatory mode, i.e. propor-
tional to the maximum amplitude of its variables. To
calculate this so-called cartogram, we have used the Sca-
peToad toolkit;76 this toolkit applies a diffusion-based al-
gorithm to find a good balance between the correct size
of the land area and low distortion of map regions.77

In Fig. 12, the prominent role that the US economy
plays in the generation of this 7–11-yr oscillatory mode
becomes immediately apparent in several of its aspects.
In terms of amplitude, we see that the US economy con-
tributes a large part to the variance of the mode. This
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Figure 12. World map of phase and amplitude relations in complex S-EOF 1. For each country, the relations among the
variables’ phase and amplitude are shown in a polar coordinate system, with the two-letter country code at the origin. The
corresponding variable codes and colors of the pointers are given in the small compass inset at the lower left. Estimates for
variables with missing values are indicated by transparent pointers. Phase differences are given with respect to US GDP in
a clockwise manner; i.e., positive and negative values indicate a phase that leads or lags the US GDP, respectively. The land
area of each country is proportional to its maximum amplitude over all of its variables.

part is about the same order of magnitude as all the Eu-
ropean Union countries taken together, and also compa-
rable to the role of China, Japan and Russia taken toget-
her. In terms of phase, we see that almost all countries
and their variables lag behind the US GDP. The typi-
cally stronger link of the United Kingdom (GB) with the
US is reflected in a smaller phase difference between the
two economies, while other European economies, such as
Germany (DE), France (FR), Spain (ES), and Italy (IT)
show a larger phase difference.

Furthermore, we see that in the US, the investment
sector plays a leading role in this mode, i.e. the GDI
(light green pointer) leads the GDP (dark blue pointer)
by 3–6 months. This is consistent with the situation at
the onset of the financial crisis in 2008, when large US
investment banks deteriorated most rapidly.75

On the other hand, one notices that the impact on
the German economy was strongest in exports (red poin-
ter), while the GDP impact was smaller and occurred
only considerably later. However, the apparently smal-
ler impact on the German GDP arises from the fact that
the RCs 3-4 capture a generally smaller part of the Ger-
man GDP trend residuals during the Great Recession; see
again Fig. 8. The otherwise strong impact on the GDP is
instead captured by RCs 5-6, as per Fig. 9; this higher-
mode impact is consistent with a double-dip recession in
many European countries.

In contrast to the strong synchronized decline of eco-
nomic activity in many countries across the world during
the Great Recession, Fig. 12 also indicates that the GDP
of China (CN) is in phase opposition to the US GDP. This
anti-correlation is interesting as it points to positive ef-
fects of the Great Recession on the Chinese economy, and
it is also visible in a strong increase of the corresponding
partial RCs during this epoch in Fig. 11(b).

2. Complex EOF 2

The second oscillatory mode, captured by complex
EOF 2, reaches its maximum amplitude at around 1987,
cf. Fig. 10(b). The corresponding partial RCs in
Fig. 11(c) provide a good visual fit to the GDP trend
residuals of Japan during this epoch. This good fit is
interesting insofar as Japan’s economy did suffer from an
economic bubble around 1987.

The importance of this mode for the dynamics of the
Japanese economy is clearly visible in the corresponding
map of phase-and-amplitude relations in Fig. 13. The US
economy, too, plays a major role in this mode, and the
US GDP leads the Japanese GDP by slightly more than
a quarter of a cycle, i.e. about 3 years. The correspon-
ding partial RCs of the US GDP, cf. Fig. 11(c), again
appear in phase with the NBER-defined recessions, alt-
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Figure 13. Same as Fig. 12, but for complex S-EOF 2.

hough their relative importance in the explanation of the
US GDP trend residuals is much smaller in comparison
with the leading oscillatory mode in Fig. 11(b).

European economies, on the other hand, show a less
consistent picture of phase relations in Fig. 13. While
the strong link of the United Kingdom to the US is again
reflected in a small phase difference between the two eco-
nomies, the German economy seems to follow Japan in
this mode.

3. Complex EOF 3

The next oscillatory mode is captured by complex EOF
3 and it reaches a maximum amplitude around the year
2000, cf. Fig. 10(c), although the amplitude increases
again toward the end of the observation interval. The
corresponding partial RCs in Fig. 11(d) provide a good
visual fit to the GDP trend residuals of China, while
this mode’s importance for the dynamics of the Chinese
economy is also reflected in the phase-and-amplitude map
of Fig. 14.

This mode also seems to capture several consecutive
events that have affected the world economy at the turn
of the millennium. On the one hand, we see in Fig. 14
that countries in Southeast Asia — like Indonesia (ID),
Thailand (TH) and Singapore (SG) — and in the Far
East, like South Korea (KR), show a phase lead of
. 2.5 years prior to the maximum around the year 2000,
a lead that could be attributed to the Asian financial cri-
sis in 1997. The latter crisis is known to have started in

Thailand, a timing that is reflected in Thailand’s phase
lead of about 2.5 years in the figure. The figure shows,
moreover, that the Japanese (JP) economy was also af-
fected, without any significant phase lag, maybe because
of its strong export links with these Asian economies.

The US economy, on the other hand, lags these Asian
economies by about two years. The corresponding par-
tial RCs of the US GDP in Fig. 11(d) again appear in
phase with the NBER recessions, and they show a strong
decline during the 2001 recession. Figure 14 also suggests
later effects of this mode in many European economies,
with a particularly strong impact on the German one.

4. Complex EOF 4

Finally, the present synchronization analysis yields an
oscillatory mode in complex EOF 4 that reaches its max-
imum amplitude during the time interval 1970–1980, as
seen from Fig. 10(d). Among the ten major economies
shown in Fig. 11(e), the partial RCs provide a good vi-
sual fit to the GDP trend residuals of Germany during
this interval. It is remarkable that the strong downward
swing in the partial RCs agrees in its timing with the
1979 oil shock.

Despite the small visual importance of the partial RCs
for the US GDP in this mode, the corresponding phase-
and-amplitude map in Fig. 15 indicates that the absolute
effects of this mode on the US economy are still quite
large. It appears that its impact was particularly strong
on US consumption (purple pointers in the figure), while
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Figure 14. Same as Fig. 12, but for complex S-EOF 3.

the impacts on German and Japanese consumption, but
also on that of other countries, like Mexico (MX), become
visible as well. With respect to the chronology of the
1979 oil shock, it is interesting to note that the mode
is characterized by a large lead in Iran’s (IR) exports, a
lead that is consistent with a preceding strong reduction
in Iran’s oil production (not shown).

C. Discussion

In this section, we have tried to assess the evidence
for synchronized business cycle activity across countries,
regions, and the world. Relying on the complementary
M-SSA algorithm introduced in Sec. III C, we were able
to identify a major oscillatory mode of 7–11-yr periodi-
city that already captures 73% of the trend residuals’ va-
riance, while a second oscillatory mode of 5–6-yr period
captures another 18%, for a combined total of 91%.

The combination of these two modes thus provides a
remarkably good reconstruction of the apparently rat-
her erratic behavior of the trend residuals. Despite the
appealing simplicity that the low-order approximation by
just two such modes involves, the details of the correspon-
ding spatio-temporal structure are still quite intricate. In
a subsequent complex EOF analysis, we have therefore
tried to break down this intricate structure into simpler
components.

In a complex EOF analysis in T-mode, as outlined in
Sec. III E, it turns out that the behavior of the leading
oscillatory mode with the 7–11-yr period can be essen-

tially decomposed into four distinct patterns. Each of
the four is more or less associated with a certain sub-
interval of time in Fig. 10. This clustering in time gave
birth to the heuristic idea of so-called “snapshots,” which
characterize the state-space evolution over time.47 The
individual snapshots, though, exhibit a rather complex
structure of phase and amplitude relations, which is con-
sistent with fairly sudden structural changes between the
snapshots. These results flesh out, therefore, the rather
complex nature of business-cycle synchronization as time
evolves.78

The idea of snapshots associated with distinct time
intervals is only partially valid, though, according to a
more careful inspection of Fig. 10. Note, for example,
the rather persistent character of the oscillation captu-
red by the leading complex EOF in Fig. 10(a), which has
a non-vanishing amplitude throughout the full observa-
tion interval. This oscillatory mode seems, therewith, to
provide substantial evidence for an objective, quantifia-
ble world business cycle, as suggested, for instance, by
Kose, Otrok, and Whiteman 8 . The mode’s strong in-
crease toward the end of the time interval we analyzed
is likely to be driven by an increasing global integration
of markets, an integration that may also have led to a
globally synchronized recession in many regions of the
world, cf. Fig. 12.

The present analysis was conducted with no particular
connection to the arguments about the causal mecha-
nisms of the cycles that we detected, like the endogenous
vs. exogenous nature of business cycles. Be that as it
may, the phase and amplitude relations in Fig. 12 ren-
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Figure 15. Same as Fig. 12, but for complex S-EOF 4.

der a remarkably diverse picture of the distinct countries’
state-space evolution and of the lag-and-lead ordering in
their macroeconomic variables. While some highly idea-
lized models — like the NEDyM model66, for instance —
have had remarkable success in reproducing certain sty-
lized facts of business cycles in an isolated economy, the
generalization of these results to groups of countries and
the inclusion of possible synchronization among them re-
mains a subject of ongoing research.

As part of a better understanding of economic synchro-
nization, the complex EOFs 2–4 of lower variance can
also be seen as smaller transient shocks, superimposed
on the world business cycle of complex EOF 1. Several
of the features discussed in connection with the snapshots
of Figs. 13–15 appear to be associated with sector-specific
and region-specific synchronization effects.

In addition to the analysis in T-mode, we have further-
more analyzed the M-SSA ST-EOFs 3-4 using a complex
EOF analysis in S-mode (not shown). Such an S-mode
analysis tends to bring out regional and sectorial clus-
ters, cf. Sec. III E. In using it, we were able to identify
three main oscillatory modes, each of which is dominated
by the temporal behavior of the US, China, and Japan,
respectively. The leading US mode captures 66% of the
variance, while the two other modes capture only 11%
each. The corresponding phase-and-amplitude map of
the leading S-mode (not shown) resembles in many de-
tails that of the leading T-mode in Fig. 12, and thus
provide further evidence for the leading role of the US
economy in the generation of a world business cycle.

Beside these three S-modes, there was no further indi-

cation of smaller, supranational clusters in this leading
mode of 7–11-yr period, for example on the European
Union level. This finding is consistent with other ana-
lyses, in which global factors play a major role in the
business cycle dynamics in most countries, while region-
specific factors play a more minor role.8,79 On the ot-
her hand, the question of whether other higher-frequency
modes reflect more region-specific factors will be left for
future studies.

VI. CONCLUDING REMARKS

In the present paper, we have studied common dy-
namical properties of business-cycle fluctuations across
countries and macroeconomic indices. In a large sample
of over 100 economies that represent economic regions
from all around the world, we were able to identify shared
mechanisms and common spectral properties of business
cycle activity.

To identify shared oscillatory modes, we relied here on
the advanced spectral methodology of multivariate singu-
lar spectrum analysis (M-SSA; Ghil et al. 10 , Alessio 37 ,
and references therein). This methodology has already
proven its efficiency and accuracy in the spatio-temporal
analysis of large datasets and in the analysis of phase
synchronization.

In the present paper, we have furthermore introduced
a modification of the M-SSA approach to identify chan-
ges in the spatio-temporal structure of oscillatory modes.
We proposed herein a complementary M-SSA algorithm
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that is flexible enough to reconstruct oscillatory behavior
with structural changes in the space and time domain. A
subsequent complex EOF analysis49 helps the systematic
decomposition of the complex spatio-temporal structure
into simpler oscillatory patterns.

We have discussed two variants of simple-structure ro-
tation for complex EOFs. In the so-called S-mode, a
rotation is applied to the complex S-EOFs and results in
spatially distinct clusters, in a manner that is similar to
varimax M-SSA analysis15,23. In the alternative T-mode,
a rotation is applied to the complex T-EOFs and yields
a complementary view of distinct clusters in time. In a
numerical study of a chain of coupled oscillators, we have
shown that — in the case of intermittent synchronization,
in which global synchronization is not yet reached — the
T-mode rotation separates time intervals of global sy-
nchronization from those of asynchronous, out-of-phase
behavior.

These algorithmic developments and their numerical
results were applied next to our macroeconomic data.
The key finding is the identification of a common mode
of business cycle activity that is shared by many econo-
mies and their individual macroeconomic indicators. The
leading mode of variability, with its 7–11-yr period, has
a persistent component that supports the existence of a
world business cycle. Superimposed on this persistent
component, we were able to identify further components
that capture substantial fractions of variability over dis-
tinct time intervals. These lower-variance modes can be
linked to several major events in the world economic acti-
vity of the postwar era.
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Appendix A: Varimax rotation of M-SSA EOFs

Groth and Ghil 15 have proposed a modified version of
the varimax algorithm80 for the M-SSA eigenvectors, in
order to simplify their dynamical interpretation and to
reduce mixture effects. In this version, only the spatial
variance between the channels EEEd of EEE in Eq. (4) is max-
imized. Let edk(m) be the m-th row element of the k-th
column in segment EEEd. Prior to the calculation of the va-
rimax criterion in each rotation step, one computes the

participation index

πdk =

M∑
m=1

e2dk(m) (A1)

of channel d to the k-th ST-EOF.
The varimax algorithm then seeks to maximize the

quadratic functional

VM =

S∑
k=1

 1

D

D∑
d=1

(
πdk
hd

)2

−

(
1

D

D∑
d=1

πdk
hd

)2
 , (A2)

subject to the normalization hd =
∑S
k=1 πdk. The va-

rimax algorithm’s original simplicity of pairwise rotati-
ons of eigenvectors is also maintained in the maximiza-
tion of VM . Alternatively, a closed matrix formulation
of the algorithm for the simultaneous rotation of all S
eigenvectors by iterative SVD decompositions has been
proposed.41 Whichever algorithm is used to maximize
VM , the resulting RCs typically tend to yield a unimo-
dal, narrowband power spectral density that is clearly
associated with a unique frequency.59

In the complementary M-SSA algorithm, we likewise
seek to improve the separability of distinct oscillations
by a subsequent varimax rotation of VVV. Let vdk(n) be
the n-th row element of the k-th column in segment VVVd.
The modified varimax algorithm then seeks to maximize
the functional (A2) for the participation index

πdk =

N ′∑
n=1

v2dk(n) . (A3)

Appendix B: Phase composites and phase maps

In the standard M-SSA algorithm, a helpful tool for
the understanding of the spatio-temporal dynamics of
the reconstructed oscillatory behavior is that of a phase-
composite analysis,40 in which the SVD of the correspon-
ding RCs is calculated. A phase is then defined as the
argument of (i) the leading PC, expanded into the com-
plex plane via its first derivative;81 or of (ii) the leading
two PCs in phase-quadrature.44 In either case, the oscil-
latory behavior is sufficiently well represented in a two-
dimensional subspace, in which the oscillation is descri-
bed as the outer product of an instantaneous and a spa-
tial phase.44

In the complementary M-SSA analysis of Sec. III C,
however, the RCs can exhibit more complex oscillatory
behavior, as seen, for example, in Fig. 3(b). A subse-
quent complex-EOF analysis, cf. Sec. III E, then yields
a further decomposition of the complex oscillatory beha-
vior into a set of oscillations with simpler spatio-temporal
structures. According to Eq. (13), this simplification is
understood in the sense that the oscillations can be des-
cribed by the outer product of complex T-EOFs and S-
EOFs.
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Although this procedure is reminiscent of the phase-
composite analysis — with the complex S-EOFs already
providing spatial phase information — the complex T-
EOFs have reduced length N ′ only. Since Eq. (13) provi-
des a factorization of ZZZ, the complex T-EOFs do not con-
tain direct phase information within the window length
M .

It is only the RCs that capture the phase of the time
series in a well-defined least-squares sense, and a possible
solution to this problem could be to first calculate the
corresponding partial RCs from Eqs. (10) and (14), and
then the SVD.

A mathematically more elegant solution, without the
need for an additional SVD, starts by replacing T-EOF
vp and vq in (10) with the real and imaginary part of
the k-th complex T-EOF in UUUc, respectively. We obtain,
accordingly, two matrices RRRp and RRRq, each of size M×N ′,
while averaging along the skew diagonals yields the real
and imaginary part of a new complex vector u of length
N . The oscillation in the k-th partial RC, is finally given
by the outer product of u and the corresponding k-th
complex S-EOF in VVVc, as seen, for example, in Figs. 10
and 12, respectively.

To obtain estimates of the spatial phase and amplitude
for additional time series with missing values, we start by
setting all missing values to zero. Next, we project the
filled-in time series onto the oscillatory pair of “filter”
EOFs in the matrix UUU obtained by the complementary
M-SSA algorithm. This projection yields estimates for
vp and vq, which are then projected onto UUUc from the
complex-EOF analysis to finally obtain estimates of VVVc,
as done, for example, in order to obtain Fig. 12.
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