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Abstract

Generative models have proved to be useful tools to rep-
resent 3D human faces and their statistical variations. With
the increase of 3D scan databases available for training, a
growing challenge lies in the ability to learn generative face
models that effectively encode shape variations with respect
to desired attributes, such as identity and expression, given
datasets that can be diverse. This paper addresses this chal-
lenge by proposing a framework that learns a generative
3D face model using an autoencoder architecture, allowing
hence for weakly supervised training. The main contribu-
tion is to combine a convolutional neural network-based en-
coder with a multilinear model-based decoder, taking there-
fore advantage of both the convolutional network robust-
ness to corrupted and incomplete data, and of the multilin-
ear model capacity to effectively model and decouple shape
variations. Given a set of 3D face scans with annotation
labels for the desired attributes,e.g. identities and expres-
sions, our method learns an expressive multilinear model
that decouples shape changes due to the different factors.
Experimental results demonstrate that the proposed method
outperforms recent approaches when learning multilinear
face models from incomplete training data, particularly in
terms of space decoupling, and that it is capable of learning
from an order of magnitude more data than previous meth-
ods.

1. Introduction

Generative models of 3D faces are commonly used as
priors when solving under-constrained problems such as
reconstructing 3D face shape from partial or noisy data,
recognition of faces or expressions, and face or expression
transfer among others,e.g. [6]. They proved to be bene�cial
in these tasks as they provide parametric representations for
sampling 3D face models which can differentiate changes
due to natural factors including identity, expression or even
age,e.g. [26, 1]. An important challenge is then to learn
these models from datasets that can be diverse and so that
they effectively encode shape variations with respect to de-

sired attributes. This is especially true with the recent in-
crease of available databases of 3D face scans that can be
used as training data,e.g. [18].

Methods that build generative face models should there-
fore ideally present the following characteristics. First, the
methods should leverage all available training data, which
prohibits strategies assuming speci�c factor representativity
in the data,e.g. a complete training data tensor that captures
all combinations of identities and expressions. Second, the
methods should handle data corrupted by noise including
both geometric noise and erroneous labels for the factors.
Third, the methods should require little or no preprocess-
ing, and hence avoid the need for accurate registrations of
the training data. Fourth, the resulting generative models
should encode the rich shape variation of 3D faces while
decoupling the effects of the different factors considered.

In this paper, we take a step towards achieving these
goals by proposing a novel framework that learns a gen-
erative 3D face model using an autoencoder architecture.
The main innovation is to combine a convolutional neural
network (CNN)-based encoder with a multilinear model de-
coder. By leveraging that classical autoencoders are unsu-
pervised, our modi�ed autoencoder framework allows for
weakly supervised model learning. It further combines the
advantages of convolutional networks of being robust to
corrupted and incomplete data, as assured by the encoder,
with the advantages of multilinear models of effectively
modeling and decoupling shape variations, over data at-
tributes, in the decoder. Our approach inherits the advan-
tage of autoencoders of being scalable for large datasets.
Moreover, using a multilinear model as decoder rather than
a CNN allows our approach to explicitly take advantage of
redundant training data showing the same factor, and to ef-
fectively decouple shape variations in the learned represen-
tation. Note that while we choose a multilinear model for
the decoder, our architecture easily generalizes to other gen-
erative models with similar properties.

Our approach builds on recent works that use deep neu-
ral networks for 3D face modeling. In particular, two of
them [16, 24] have successfully explored the combination
of a CNN-based encoder with a linear generative model as



decoder for the 3D reconstruction of faces from 2D pho-
tos and videos. We follow a similar strategy however, un-
like Tewari et al. [24] our decoder is learned with the rest
of the network, and unlike Laineet al. [16], our learned
model generalizes to various factors captured for different
subjects.

Our method takes as input a set of 3D face scans an-
notated with labels for each factor,e.g. identities and ex-
pressions are given, and provides: (i) A multilinear model,
which is able to accurately reconstruct the training data
and decouples shape changes due to different factors; (ii)
Improved registrations of the training data; (iii) A trained
autoencoder with a CNN-based encoder and a multilinear
model decoder capable of regressing from any 3D face scan
to the registered model, thus allowing to ef�ciently compute
correspondences for new data.

Our model performs favorably against other recent ap-
proaches that learn multilinear face models from incomplete
training data tensors [4, 27]. Especially, we show experi-
mentally that our method is capable of building rich mod-
els which achieve a better decoupling of factors. This is
demonstrated by a classi�cation rate of synthetically trans-
ferred expressions that is over13%higher than for the com-
peting methods. While experiments in this paper focus
on identity and expression attributes present in the train-
ing data, our formalism readily generalizes to other factors
as well such as age. Our code and models are available at
http://mae.gforge.inria.fr/ .

2. Related Work

There is an extensive amount of work on 3D human face
modeling and recognition, and a full review is beyond the
scope of this work. In the following, we focus on the works
most closely related to the proposed method.

Generative modeling of 3D facesLinear models have �rst
been introduced to model face shape in neutral expression
along with appearance information [3] and later been ex-
tended to include expression change as a linear factor [1].
These linear models are often called 3D morphable models
(3DMM), and such models have recently been learned from
large training sets [5] and with high-quality appearance in-
formation [9]. These models do not account for correlations
of expression and identity spaces.

Multilinear models were introduced to model the in-
�uence on face shape of different factors as independent,
which allows for expression transfer [26]. They were later
used to edit 2D images and videos with the help of 3D face
reconstructions [10, 6]. FaceWarehouse [6] is a popular
publicly available multilinear 3D face model. While mul-
tilinear models effectively decouple shape variations due
to different factors, they require carefully acquired training
data where each subject is captured in every factor.

Li et al. [18] recently introduced a generative model
learned from a large collection of 3D motion sequences of
faces. Pose changes due to skeletal motion is modeled us-
ing a skinning approach, while shape changes due to iden-
tity, expression, and pose correction are modeled as linear
factors similar to 3DMM. Interestingly, they note that it is
an open problem to extend tensor-based multilinear models
to handle dynamic training data.

We take a step in this direction by deriving an ef�cient
method to learn a multilinear model, from an incomplete
tensor of training data, that effectively decouples factor ef-
fects.

Learning a multilinear model from partial or noisy data
Traditionally, multilinear models are learned by assembling
a set of training data into a tensor and performing a tensor
decomposition [17]. This requires each training face to be
present in all factors to be modeled. Furthermore, noise
in the data, registration or labeling affect the quality of the
model. While tensor completion methods can be used to
solve the problem of incomplete data, they do not scale well
in practice, especially if the tensor is dense as in our case.

Two recent methods were proposed to address these
problems. A groupwise optimization was proposed to han-
dle both missing and noisy data and was shown to outper-
form tensor completion methods [4]. However, this method
is computationally costly and hence does not scale to large
datasets with high dimensionality in two or more factors.
Another work proposed an unsupervised method to com-
pute a multilinear model from partial data [27]. While this
method is computationally more ef�cient, it uses a non-
standard tensor decomposition that leads to a generative
model that does not fully decouple the modes.

We present in this paper a scalable solution to this prob-
lem.

Deep neural networks for 3D face modelingDeep neu-
ral networks have experimentally been shown to summarize
large groups of data and automatically extract only the rel-
evant features for a large variety of problems. They provide
an ef�cient structure for the optimization of large datasets.
This motivates the use of deep learning as a more scalable
and robust approach with such datasets.

Recent works use CNN frameworks to recover detailed
3D models from a single input photograph [30, 20, 21,
25]. To represent the solution space a linear 3DMM is
used, which restricts the solution from being very detailed.
Richardsonet al. [21] improve the initial 3DMM estimate
with the help of a �ne-scale network that allows to recover
mid-scale facial detail. CNNs have also been used for shape
regression of 3D faces in-the-wild [13].

A similar recent line of works have explored combining
a CNN-based encoder with a generative model as decoder

http://mae.gforge.inria.fr/


for the problem of 3D face reconstruction from 2D photos
and videos [16, 24]. Unlike our method, these works use
linear models to represent 3D faces, which captures limited
expression variation w.r.t. tensor-based models.

In most of these works the linear solution space is
learned a-priori and �xed during training. A notable ex-
ception is Laineet al. [16], in which the linear 3DMM is
initialized with principal component analysis, and re�ned
during �ne-tuning of the network. The model trained by
Laine et al. is person-speci�c and does not generalize to
new subjects.

Selaet al. [23] propose a model-free network that di-
rectly regresses from an input image to a depth image and a
correspondence map, thereby allowing to recover �ne-scale
geometric detail. However, as no model is used, noise, ac-
cessories and facial hair not present in the training data can-
not be handled by the network.

Inspired by these works, our approach takes a middle-
ground between the use of a linear model and a model-
free approach to represent 3D faces. We choose multilinear
models as they offer rich representations for various factors
across different subjects [6].

3. Overview

The goal of our method is to learn a generative model
of faces from a set of labeled 3D scans that are possibly
corrupted by both geometric noise and label errors. To
achieve this goal, we propose an autoencoder architecture
with a CNN-based encoder and a multilinear model-based
decoder, as illustrated in Figure 1 and detailed in the fol-
lowing section.

Input Data To train the autoencoder we consider 3D
face scans showing variations in different factors,e.g. iden-
tity and expression, along with the corresponding labels.
Not all combinations of factors are required in the input
scans, and part of the training data can come without la-
bels. The input scans are registered using a non-rigid ap-
proach,e.g. [2, 18], which enables reconstruction errors be-
tween the output meshes and the input scans to be estimated
in a consistent way. These registrations need not be precise
since they only serve as initialization and will be re�ned.

Encoder The CNN encoder maps each 3D face scan into
a low-dimensional representation that decouples the in�u-
ence of the different factors on the �nal shape. Extending
CNNs to unorganized 3D geometric data is an active �eld
of research (e.g. [19]) and beyond the scope of this work.
Instead, we take advantage of the fact that 3D faces can be
mapped onto 2D depth images for which regular CNN ap-
ply. Hence, the �rst step of the encoder is to project input
3D scans into grayscale images that contain depth informa-
tion. The remainder of the encoder consists of a ResNet-18

architecture [14] followed by three fully connected layers,
which transform depth images intod-dimensional vectors
with the concatenated coef�cients for each mode.

Decoder The multilinear decoder splits the encoder's out-
put according to the factors, applies mode-n multiplication
between latent vectors and the core tensor, and adds a previ-
ously computed mean face, as usually done with multilinear
models (see Section 4.1). The output of the decoder are 3D
vertex coordinates that, combined with the mean face con-
nectivity, de�ne 3D face meshes.

Training In addition to a generative loss that accounts
for reconstruction errors, the training phase optimizes
also a latent loss that measures whether input faces with
the same labels are mapped onto close-by points in the
parameter space, hence enforcing shape variations to be
decoupled with respect to their factors in the latent space.
The space that models face variations is large compared
to the available training data and a good initialization is
required to learn it. To this aim, both encoder and decoder
are pre-trained, as will be detailed in Section 4.4.

Once the autoencoder has been trained, it can be used to
regress from any 3D face scan to the model, thereby allow-
ing to ef�ciently register new data.

4. Multilinear Autoencoder

We now describe the proposed autoencoder architecture
that allows to learnk modes of variation in the input face
data through a multilinear model.

4.1. Multilinear Model

In a multilinear model a face is represented by a set of
vectors

�
w T

2 ; w T
3 ; : : : ; w T

k+1

	
, w j 2 Rm j , wherek is the

number of linear modes attached to faces in the model. Let
x be the vector of 3D coordinates associated to then ver-
tices of a face mesh, then the multilinear model relates the
latentk factorsw i with the 3D facex by:

x = �x + M � 2 w T
2 � 3 w T

3 : : : � k+1 w T
k+1 ; (1)

where �x is the mean face,M 2 R3n � m 2 � m 3 � :::m k +1 is
a tensor that combines the linear modesw j called thecore
tensorof the multilinear model, and� j is the product ofM
and a vector along modej [15]. The full model is therefore
represented by the entries ofM in addition to the set of
coef�cientsw ( i )

j for thei -th face and thej -th factor.
The training process seeks to obtain good reconstruc-

tions of the data, while at the same time decoupling the la-
tent representation with respect to the factors of variation.
Hence, we will use two loss functions: a geometric loss
that measures the reconstruction error, and a latent loss that



Figure 1: Architecture for our multilinear autoencoder. The encoder takes as input a 3D mesh, which is rendered into a
heightmap, processed by a deep CNN architecture, and transformed into a latent representation by the fully-connected layers.
The decoder splits the latent representation according to the speci�ed factors and performs a multilinear transformation in
order to get the output mesh. Both encoder and decoder are optimized during training.

softly evaluates how decoupled the latent space is, by mea-
suring how close two embeddings with the same label are.

Generative lossThe loss of a generative multilinear model
over a datasetX of faces is measured as the error between
the reconstructions by the generative model (see Equation
1) and the observed facesx i :

L G =
X

x i 2 X






 x i �

�
�x + M � 2 w ( i )

2 : : : � k +1 w ( i )
k +1

� 






2

2
; (2)

As shown by Wanget al. [27], this equation can be writ-
ten in matrix form as:

L G =
X

x i 2 X
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�x + M (1)
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k +1



j =2
w ( i )

j
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2

2

; (3)

where
 represents the Kronecker product of vectorsw j ,
and M (1) is the matricized version ofM containing the
mode-1 �bers ofM as columns [15]. Writing the trans-

formationM (1)

�

 k+1

j =2 w ( i )
j

�
as layers of a neural network

allows to learn the multilinear modelM while training the
autoencoder. Note also that Equation 3 allows to represent a
given label in modej by different coef�cientsw j for differ-
ent faces. This can be an advantage when the labeling is not
trust-worthy, allowing for �exibility in the factor separation.

Latent loss The previous formulation does not evaluate the
coef�cients w j directly but the reconstruction they yield.
Hence, a given mode of variationj might be affected not
only by its mode coef�cientsw j , but possibly also by the
others. In other words, a simple geometric loss can lose the
ability to decouple the different modes of variation, which
impacts the expressiveness of the model. For instance, ex-

pression transfer can then not be performed by simply ex-
changing the expression coef�cients.

To overcome this, we de�ne a loss function that softly
constrains latent parameters. Considering the subsetX ( j )

l
of training faces with provided labels in modej , and the set

W ( i )
j =

n
w ( i 1 )

j ; w ( i 2 )
j ; : : :

o
of all mode-j coef�cients in

the training data that share the samelabel in modej asx i ,
the function writes:

L L =
k +1X

j =2

X

x i 2 X ( j )
l

1
�
�
�W

( i )
j

�
�
�

X

w ( p )
j 2 W ( i )

j






 w ( i )

j � w ( p)
j








2

2
; (4)

where the average over coef�cients accounts for very dif-
ferent sizes of the setsW ( i )

j . We choose this soft constraint
to preserve some �exibility over the labels.

4.2. CNN Encoder

The encoder transforms the 3D face input data into a vec-
tor w which contains the concatenated model coef�cients,
i.e. the latent parameters of the face. In order to do this
both robustly and ef�ciently, we leverage recent advances
achieved by convolutional neural networks.

The �rst layer of the network takes as input a 3D scan
and converts it into a 2D depth image that encodes heights
from a �xed plane, computed by casting rays in the di-
rection normal to the plane. The regression from the 2D
heigthmap to the model coef�cients is implemented using
ResNet-18 [14], a state-of-the-art architecture which has re-
cently shown very good performances in face-related prob-
lems [20, 25]. The CNN reduces the image to a256-
dimensional vector, after which three fully-connected layers
perform the regression towards the coef�cient vectorw T of
the speci�ed dimensions.



4.3. Multilinear Decoder

The multilinear decoder takes as input the vectorw T ,
which is seen as a concatenation of mode coef�cientsw T =�

w T
2 ; w T

3 ; : : : ; w T
k+1

	
, and transforms it into 3D vertex co-

ordinates by performing mode multiplications with the core
tensor. As explained in Section 4.1, this operation can be
written as the product between the matricized version of the
tensorM (1) and the Kronecker product of each mode co-
ef�cient (see Equation 3). Thus, in order to learn the core
tensorM parameters, we implement each of these opera-
tions as a layer in the global network, and allow the linear
module represented byM (1) to be learned with the rest of
the parameters. This way, we bene�t from the capacity of
CNNs to robustly summarize the representative aspects of
an entire dataset, and from the associated optimization ma-
chinery to �nd the model in a scalable manner.

4.4. Estimation

The multilinear autoencoder estimation proceeds in two
stages. First, we initialize both CNN encoder and multilin-
ear decoder since our training data is limited with respect to
the number of parameters involved in the multilinear au-
toencoder. Initializing the multilinear decoder with ran-
dom values does not yield good results in our experiments.
Thus, we initialize it by performing Higher Order Singular
Value Decomposition (HOSVD) [17] on a complete subset
of the data,i.e. a subset in which all the factors of varia-
tion are present for all elements. To subsequently pre-train
the CNN encoder, we optimize it separately using the gen-
erative loss in Equation 2 with the �xed initial multilinear
model, and with both registered and unregistered scans to
augment training data.

Second, the full network is optimized with all available
face data. This is achieved by minimizing the following
combined generative and latent loss:

arg min
M (1) ; f w ( i )

j g

L G + � L L ; (5)

where� weighs the contribution of the latent loss.

5. Evaluation

This section starts by presenting implementation details
and an evaluation protocol (Section 5.1). As the �nal goal
of this work is to obtain a generative model of 3D faces,
we subsequently present in Section 5.2 evaluations of the
multilinear model that can be extracted after training,i.e.
of the multilinear decoder independently of the rest of the
network. We measure both the quality of the model and
the decoupling of the latent space, and compare to state-of-
the-art methods that learn multilinear 3D face models from
incomplete data. Finally, Section 5.3 evaluates the multilin-
ear autoencoder and its ability to register raw scans into the
new model.

5.1. Implementation and Evaluation Protocol

Implementation details To pre-train the encoder and to
learn the generative model during �ne-tuning we use the
AdaDeltaalgorithm [29], with parameters as provided in
the paper. We use a mini-batch size of32, a learning rate
of 0:1 and no weight decay. The encoder was pre-trained
for 17 epochs. For model learning, the full autoencoder is
�ne-tuned for 100 epochs. The fully connected layers are
initialized to random Gaussian weights. Unless speci�ed,
we set the dimensions of identity and expression spaces to
65 and20, respectively, and use� = 1e� 1. The framework
was implemented using Torch7 [7].

Training data for initialization As explained earlier, ran-
dom initializations are not satisfying and we perform there-
fore HOSVD on a complete tensor; particularly on the BU-
3DFE [28] dataset, which provides 100 identities perform-
ing 25 expressions. To pre-train the CNN encoder we use
the BU-3DFE and Bosphorus [22] datasets, with the regis-
trations provided by Bolkart and Wuhrer [4], which gives
� 5000registered scans. To augment the training data, we
sample from the initial multilinear model, randomly rotate
each face by an angle� 2 [� 30� ; 30� ] in yaw, pitch or roll
axes, and apply a random scale in[0:7; 1:1]. Furthermore,
we use both the registered data and the corresponding raw
3D scans, for which the registered versions allow to recover
ground truth vertex correspondences for training. This aug-
mentation allows the CNN encoder to learn richer feature
extractors, as the raw scans contain larger geometric errors,
holes and extra parts such as hair and the neck. This results
in a training set of about500; 000depth images.

Training data for model optimization We demonstrate
the capabilities of the multilinear autoencoder (MAE)
trained on two different datasets. A �rst MAE is learned
from static data, using the combined Bosphorus and BU-
3DFE databases, with registrations provided by Bolkart and
Wuhrer, for a total of5194meshes. We will refer to this
MAE asBu+Bosph. The second MAE is learned by com-
bining the previous with a subset of the dynamic database
D3DFACS [8] using the publicly available registrations of
Li et al. [18], which allows to build a considerably larger
training set. We will refer to this MAE asD3DFACS. For
this data, we provide sparse expression labels by consider-
ing the �rst 5 frames of each sequence as the neutral ex-
pression, and frames located in the middle as peak frames,
which are assigned the indicated facial action unit. For test-
ing we leave all sequences of one subject out of the training
set, as well as two sequences for each of the other subjects.
In total, D3DFACSis trained from49169scans. Note that
the D3DFACStraining set is an order of magnitude larger
than the training sets used in previous methods [4, 27]. Us-



ing these training sets shows that MAE can be learned from
diverse data and handle inaccurate registrations obtained us-
ing fully automatic methods as well as missing labels.

Test data We test bothBu+BosphandD3DFACSon parts
of the sequences of the D3DFACS database that were left
out. In particular, we manually subsample these sequences
to keep the most relevant key-frames for testing and to avoid
evaluations on very similar scans. In total, there are270test
frames covering ten subjects and a large expression range.

Evaluation metrics We evaluate the quality of generative
models using the metricsgeneralizationandspeci�city [11].
Generalizationmeasures the ability of the model to adapt to
unseen data, and is evaluated by projecting test data into the
model space and calculating the reconstruction error. To
provide a common framework for comparisons, this is im-
plemented by iteratively �xing one space and �nding the
optimal coef�cients for the other one [26].Speci�citymea-
sures whether only valid members of the shape class are
modeled, or in other words, the model's suitability for gen-
erating synthetic data. To evaluate speci�city, we assume
the data to follow independent normal distributions in iden-
tity and expression spaces and sample1000faces. To com-
pute the normal distribution using a maximum likelihood
estimation while accounting for an imbalanced number of
training samples for different labels, we group the coef�-
cients by label and summarize each group by its medoid.
For each randomly drawn sample we measure its mean ver-
tex distance to all elements in the training data and keep the
minimum value; speci�city is de�ned as the average of this
process over all synthetically generated faces.

In Section 5.2, to objectively evaluate the capacity of the
model to decouple the spaces, we transfer a recent protocol
proposed for body poses [12] to faces. For this, we train
a classi�er to recognize expressions from a given depth im-
age. We then transfer expressions to each of the identities in
the test set and let the classi�er measure whether the trans-
ferred expression label is preserved. To perform the trans-
fer, we replace the expression weightw3 of the test face
by the medoid of all expression weights with a �xed label
over the training data. To train the classi�er, we �ne-tune
the encoder of our architecture, only this time for a classi-
�cation task. The expression classi�er is trained to distin-
guish7 prototypical expressions (anger, happiness, disgust,
sadness, fear, surprise and neutral) by using the Bospho-
rus and BU3DFE databases. Note that the goal here is to
objectively compare the expression transfer capabilities of
different models and not to build an accurate classi�er.

5.2. Generative Model Evaluation

This section shows evaluations on the quality of the
learned generative models, as well as comparisons to two

state-of-the-art methods on multilinear model learning of
3D faces from incomplete data.

In�uence of latent loss We �rst measure how different val-
ues of� affect the quality of the generative models, both
for BU+Bosphand D3DFACS. Results are shown in Ta-
ble 1. As expected, greater values of� result in better de-
coupling of the spaces, as well as more speci�c models.
Higher values also result in higher errors for the training
data, which can be explained by the fact that the reconstruc-
tion error takes less precedence and that the latent represen-
tation is more heavily constrained. For the same reasons,
the generalization ability also decreases with higher values
of � . Qualitative examples of the results can be seen in
Figure 2. All selected models produce plausible synthetic
faces, but there is a clear decrease in the quality of the trans-
fers when the value of� is too low. For this reason, we
select� = 1e� 1 for the following experiments.

Comparison to initialization We found experimentally
that the multilinear decoder needs to be initialized with a
previously trained multilinear model. Hence, we evaluate
how the autoencoder-based learning process improves this
initial model. To this end, we measure generalization, speci-
�city and expression transfer of the initial HOSVD model,
and compare it to the model learned with our MAE on the
same dataset (BU-3DFE). Table 2 shows the result. We
can see that while the generalization error remains approxi-
mately the same, the new model becomes more speci�c and
is better able to transfer expressions on unseen data, which
implies that our multilinear decoder effectively decouples
shape variations due to different factors.

Figure 2: In�uence of latent loss on expression transfer on
Bu+Bosph. From left to right: original registration, trans-
ferred expressions: happy, sad, surprise. From top to bot-
tom: � = 1 ; � = 1e� 1; � = 1e� 2.



� BU+Bosph D3DFACS
Training error Generalization Speci�city Expression Training error Generalization Speci�city Expression

1 1:60 0:93 0:92 36:95 0:48 0:43 1:39 19:66
1e� 1 1:11 0:92 1:53 48:87 0:44 0:40 1:68 20:03
1e� 2 1:02 0:90 1:61 34:37 0:41 0:40 1:84 19:93

Table 1: In�uence of latent loss. Median error in training data (mm), generalization error (mm), speci�city error (mm) and
percentage of correct classi�cations after expression transfer for our two training datasets. Best values in bold.

Model Generalization Speci�city Expression
Initial model 0:92 2:50 15:66
MAE 0:93 1:43 53:08

Table 2: Comparison between our MAE decoder and the
initialization in terms of median generalization error (mm),
speci�city error (mm), and percentage of correct classi�ca-
tions for expression transfer.

Method Generalization Speci�city Expression
RMM [4] 1:34 1:83 32:99
Wanget al. [27] 1:23 2:38 18:50
MAE 1:35 1:43 46:39

Table 3: Comparison between state-of-the-art and our MAE
decoder onBu-Bosph-subsetdata, in terms of median gen-
eralization error (mm), speci�city error (mm), and percent-
age of correct classi�cations for expression transfer.

Comparison to state-of-the-art We compare our model to
two closely related works, which learn multilinear models
of 3D faces from incomplete data: RMM [4] and Wanget
al. [27]. For RMM we use the publicly available model pro-
vided by the authors, which was built using a subset of the
databases we consider; in particular, all205 identites from
BU-3DFE and Bosphorus dataset, and7 expressions from
BU-3DFE plus23 expressions from Bosphorus. For a fair
comparison we use the same training data, which will be
referred to asBu-Bosph-subset, and select the same dimen-
sions of the representationsi.e. 23 for identity space and
6 for expression space. We build a model using this set-
ting for the method of Wanget al. with code provided by
the authors. Table 3 shows the results obtained. We can
see that our method outperforms the other two in terms of
speci�city and expression transfer, while keeping a general-
ization error close to the others. Figure 3 shows an example
of expression transfer results. Note that while RMM and
MAE achieve visually plausible results, Wanget al. gives
noisy implausible faces as their tensor decomposition does
not yield a good decoupling of the different modes.

(a) RMM [4]

(b) Wanget al. [27]

(c) MAE

Figure 3: Comparison between state-of-the-art and our
MAE decoder. From left to right: original scan, transferred
expressions: happy, sad, surprise.

5.3. Multilinear Autoencoder Evaluation

Finally we evaluate the full multilinear autoencoder by
its ability to reconstruct the original training data, and its
ability to register new, unseen data. We start by discussing
the computation times of the method.

Computation times Building the initial model using
HOSVD requires on average20 seconds. The pre-training
of the encoder takes about100ms per mini-batch on a
Nvidia Titan X GPU, which amounts to about25 minutes
per epoch for our training data. Fine-tuning the model takes
about300ms per mini-batch, which implies40s per epoch
for Bu+Bosphand about8 minutes forD3DFACS. Generat-
ing each depth image takes around30ms for the registered
data. Once the training is �nished, regressing from a sin-
gle raw scan to 3D vertices requires around0:5s, and this
timing can be improved by batch processing.



Improvement of initial registrations The MAE learning
process performs a simultaneous optimization over all train-
ing data. We observe that this allows to overcome geomet-
ric and registration errors that might be present in part of
the data. This can be quantitatively assessed by observing
thecompactnessof the training data, before and after model
learning [11]. The main idea of this quantitative evaluation
is that better registrations lead to more compact models as
drift in the registration is (erroneous) variation that needs to
be encoded. Compactness is computed by measuring the
percentage of variability explained by a �xed number of
principal components. Figure 4 shows the compactness of
the initial registration and the registrations afterBu+Bosph
training. Note that compactness improved signi�cantly: af-
ter training,99% of the variability can be explained with
less than15 principal components, whereas the initial reg-
istrations require90 principal components to explain this
variability. This increase in compactness is achieved while
keeping similar model generalization and slightly improv-
ing speci�city, as shown in Table 2.

Figure 4: Improvement of initial registrations shown by
compactness of theBu+Bosphinitialization and registration
after our MAE training.

Registration of raw scans To test on real data, we eval-
uate the reconstructions of the test set obtained by regress-
ing with the multilinear autoencoder when the input is the
original raw scan. For quantitative evaluation, we con-
sider initial registered versions of the scans as ground-truth
even though this might not be exact, since the registrations
were manually veri�ed to be globally correct. The MAE re-
construction obtains a median per-vertex Euclidean error of
3:1mm for Bu+Bosph, and a median per-vertex Euclidean
error of3:6mm for D3DFACS. Figure 5 shows examples of
the registrations obtained. Even though in both cases the er-
rors are relatively high, we observe that the registrations are
in general visually close to the expected identity and expres-
sion, and could be used as initializations for optimization-
based re�nements. Figure 6 presents further examples of
the registrations obtained withBu+Bosphfor scans with

different types of occlusion of a subject of the Bosphorus
dataset that were not used for training. This shows that the
MAE is robust to geometric noise and occlusion.

Figure 5: Registration of raw scans usingBu+Bosph. Top:
input scans. Bottom: registered results.

Figure 6: Registration of raw scans presenting different
types of occlusion usingBu+Bosph. For each pair, left: in-
put scan; right: registered result.

6. Conclusions and Future Work

We presented a multilinear autoencoder architecture for
3D faces that is capable of learning a generative model
from incomplete and varied datasets, as well as regressing
into this model from raw scans. Experimental evaluation
showed that our generative model outperforms current state-
of-the-art methods that learn from incomplete data, and that
the architecture can be used for fast registration into this
model.

The proposed method has limitations, among which the
most notable is the need to trade-off between detailed re-
constructions and decoupling the latent spaces. For future
work we will investigate different loss functions that could
remove the need for this trade-off, and improve both the
quality of the registrations and the decoupling of the spaces.
We believe this work opens possibilities for learning rich
generative 3D face models from large training sets; explor-
ing this direction is also a line of future work.
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with multilinear models. ACM Transactions on Graphics,
24(3):426–433, 2005.

[27] M. Wang, Y. Panagakis, P. Snape, and S. Zafeiriou. Learn-
ing the multilinear structure of visual data. InConference
on Computer Vision and Pattern Recognition, pages 4592–
4600, 2017.

[28] L. Yin, X. Wei, Y. Sun, J. Wang, and M. J. Rosato. A 3d fa-
cial expression database for facial behavior research. InCon-
ference on Automatic Face and Gesture Recognition, pages
211–216, 2006.

[29] M. D. Zeiler. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

[30] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Li. Face alignment
across large poses: A 3d solution. InConference on Com-
puter Vision and Pattern Recognition, pages 146–155, 2016.


	. Introduction
	. Related Work

