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Jean-Noël Roux2

Ali Daouadji3

3

ABSTRACT4

Granular materials are the most recurrent form of solid-state matter on Earth. They challenge5

researchers and engineers in various fields not only because they occur with a broad variety of6

grain sizes, shapes and interactions in nature and industry, but also because they show a rich7

panoply of mechanical states. Despite this polymorphism, all these different types of soils, powders,8

granules, ores, pharmaceutical products, . . . are instances of the granular matter with the same9

least common denominator of being sandlike (psammoid in Greek), i.e. solid grains interacting via10

frictional contacts. This review describes milestone contributions to the field of granular materials11

since the early elastic-plastic models developed for soils in the 1950s. The research on granular12

materials has grown into a vast multi-disciplinary field in the 1980s with increasing focus on the13

microstructure and owing to new experimental tools and discrete simulation methods. It turns out14

that the granular texture, particle-scale kinematics and force transmission are far more complex15

than presumed in early micromechanical models of granular materials. Hence, constitutive relations16

cannot easily be derived from the particle-scale behavior although advanced continuum models have17

been developed to account for anisotropy, intermediate stress and complex loading paths. The subtle18

elastic properties and origins of bulk friction will be discussed, as well as the effects of particle shape19

and size distribution. The review covers also recent developments in macroscopic modeling such20

as the thermomechanical approach, anisotropic critical state theory, nonlocal modeling approach,21

inertial flows and material instabilities. Finally, a brief account is given of open issues and some22

new frontiers and challenges in the field.23

Keywords: granular materials, constitutive modeling, micromechanics, multiscale modeling, ther-24

momechanics, gradient plasticity, hypoplasticity, yield function, fabric tensor, flow rule, shear band,25

state parameter, non-associated flow rule, critical state theory, internal friction, dilatancy, force26
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chains, fabric tensor, nonaffine velocity, nonlocal model, jamming, entropy, second-order work,27

discrete element method28

INTRODUCTION: AN OVERVIEW29

Granular matter has been a source of inspiration as much to little builders of sand castles on30

the beach as to philosophers and poets who have been seeking in grains a window opening to the31

invisible secrets of matter and life. “To See a World in a Grain of Sand . . . ”, wrote William Blake.32

Modern physics tells us that, depending on the resolution of measurement devices, a single grain33

contains almost all about the laws of nature at increasingly smaller scales. But at larger scales,34

those grains hold also the secrets of granular matter. Dissipative interactions among grains give rise35

to an extraordinarily rich and complex bulk behavior of an assembly of grains. Eminent figures of36

science and engineering were deeply concerned about odd behaviors arising from those interactions.37

The unique properties of friction between two solid grains and its consequence for the stability of38

a granular talus were introduced by Charles Coulomb (Coulomb 1773; Coulomb 1781). Dilatancy39

(volume change under shear), discovered by Osborne Reynolds, appeared as much counterintuitive40

as friction (Reynolds 1885). Memory effects, or “historical element” as put by James Maxwell,41

were also recognized as a distinguishing feature of granular materials (Darwin 1883). The grains42

can move like molecules in a gas but they dissipate energy by inelastic collisions and can get43

“jammed” in a variety of configurations allowed by friction between grains and the action of their44

weights or a confining stress. Terzaghi was intrigued by the variability of soils under different45

loading conditions and the quasi-impossibility of arriving at the same level of scientific reliability46

as in other materials (Terzaghi 1943). In a similar vein, as a result of energy dissipation at the47

grain scale, granular materials do not seem to fit the general principles upon which the statistical48

mechanics and thermodynamics of molecular fluids and solids were built (Jaeger and Nagel 1996).49

There can be no comprehensive review of research on all aspects of granular matter in a single50

paper – even when limited to cohesionless dry granular materials as in the present paper. Here, the51

focus will be on those features that are believed to have strong bearing on the future developments in52

this field. It should also be borne in mind that, despite many multidisciplinary workshops organized53

for 30 years, there still remain high cultural barriers between various communities involved in54

research on granular materials. The level of expectation from such a research and the ultimate55
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goals are often quite different. Our goal here is to contribute to cross fertilization among disciplines56

by mainly emphasizing the guiding ideas and concepts and avoiding technical developments.57

During the 20th century, two scientific communities were involved in modeling granular materi-58

als: soil mechanics and powder technology. The Mohr-Coulomb plastic behavior is and remains at59

the heart of soil mechanics which has been primarily interested in predicting soil failure whereas60

powder technology has mostly been concerned with large deformations and continuous flow of61

granular materials often regarded as a suspension. In the 10th Rankine Lecture in 1970, Roscoe62

emphasized the need to understand the stress-strain behavior of soils well before failure under63

complex loading conditions as encountered in engineering practice (Roscoe 1970). Fully aware of64

the need for a fundamental approach, he indicated the route towards a fundamental understanding65

of soils by working “with soils in their simplest possible states (e.g. well graded sands and satu-66

rated remolded clays) so that their properties can be defined by the minimum possible number of67

parameters”, preparing “soil samples in initially uniform states”, developing test equipments and68

“non-destructive methods of checking the uniformity of the behavior of the soils at all stages of69

these tests” and developing “scanning electron microscopy methods of studying the change of soil70

fabric during mechanical deformation”. This is the route which was followed during the coming71

decades.72

A consistent model of soil plasticity was actually achieved through the “critical-state soil me-73

chanics” of the Cambridge School (Roscoe et al. 1958; Schofield and Wroth 1968; Wood 1990). By74

accounting for both frictional and volume-change behaviors of soils and, more importantly, by rec-75

ognizing a family of memoryless states reached after long enough shearing, it provided for the first76

time a general framework for the quasi-static behavior of both clays and granular soils. The critical77

state theory is the core of nearly all constitutive models that were developed later to account for78

complex loadings paths. Critical states are asymptotic states approached for large enough strains,79

applied monotonically and quasistatically. Constitutive laws predicting this gradual approach are80

traditionally elastoplastic in nature. The elastic properties of granular materials have been clari-81

fied, over the past 25 years, thanks to improved experimental techniques apt to measure very small82

strain intervals (Shibuya et al. 1992; Hicher 1996). Elastic waves (Goddard 1990a) are actually the83

reflection of the quasistatic elastic behavior of small amplitude perturbations about an equilibrium84

state of a solid granular assembly (Thomann and Hryciw 1990; Shibuya et al. 1992; Geoffroy et al.85
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2003). Due to nonlinear contact elasticity, their velocity depends on the stress level. While grain-86

scale disorder induces incoherent propagation, larger wavelengths propagate coherently (Liu and87

Nagel 1992; Liu 1994; Liu and Nagel 1994; Jia et al. 1999).88

Micromechanical approaches to the plastic (Christoffersen et al. 1981; Bathurst and Rothenburg89

1988; Chang and Misra 1990) and elastic (Walton 1987; La Ragione and Jenkins 2007) behaviors90

of granular materials have been an active area from the outset of modern research on granular91

materials. The onset of instabilities in granular materials as a function of the loading program has92

also been a subject of extensive investigation under homogeneous boundary conditions (Vardoulakis93

1979; Lade 1994; Vardoulakis and Sulem 1995; Nova 1994; Darve and Laouafa 1999; Lade 2002;94

Nicot and Darve 2007; Chang et al. 2011). Directional loading reveals that material instability95

can occur in a diffuse form or be localized in a shear band. Imaging techniques have been used to96

analyze shear bands in which plastic deformations are fully developed (Desrues et al. 1983; Desrues97

et al. 1996).98

Besides quasi-static deformations, which may be coined as “Coulomb regime”, granular materi-99

als can be found in at least two dynamic regimes depending on the time scales involved (Goddard100

2014): 1) Inertial flows (Bagnold regime), and 2) granular gases. Stresses in dense inertial flows101

have been known since Bagnold to scale quadratically with the shear rate (Bagnold 1954), but the102

full scaling was more carefully analyzed only recently by introducing a dimensionless inertial num-103

ber and applied to different flow geometries (inclined plane, tube, rotating drum, . . . ) (GDR-MiDi104

2004; da Cruz et al. 2005). This scaling indicates that the Coulomb friction angle can be extended105

to the inertial regime, where energy is dissipated by both inelastic collisions and friction between106

grains, and increases with inertial number. In the limit of high shear rates or vibration-induced107

fluidization, long-lasting contacts disappear and the granular material turns into a gas governed108

by collisions. Granular gases differ from molecular gases in requiring continuous energy input from109

outside and, hence, they are never in statistical equilibrium (Walton and Braun 1986; McNamara110

and Young 1992; Goldhirsch and Zanetti 1993; McNamara and Young 1994). Despite their local111

inhomogeneities induced by inelastic collisions, they can be described by a kinetic theory in which112

quadratic velocity fluctuations play the role of granular temperature (Jenkins and Richman 1985).113

The thermodynamic temperature plays, by definition, no role in the dynamics of granular materials.114

For this reason, the velocity fluctuations are basically controlled by energy input rate.115
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Alongside macroscopic testing and modeling approaches, photoelastic experiments of Dantu116

(Dantu 1957) and careful measurements by Biarez (Biarez 1962) and Oda (Oda 1972) revealed117

the highly inhomogeneous and anisotropic nature of granular materials at the grain scale under118

shearing. Computer simulations by the Discrete Element Method (DEM), based on incremental in-119

tegration of rigid grain displacements and rotations by accounting for frictional contact interactions120

between grains, provided for the first time direct access to the full dynamics of grains and evolution121

of granular fabric (Cundall and Strack 1979; Cundall and Strack 1983; Thornton and Randall 1988;122

Bathurst and Rothenburg 1988; Moreau 1993). It was then believed that by including microstruc-123

tural information, a macroscopic model of quasi-static behavior can soon be achieved with internal124

variables fully based on the granular microstructure. However, packing properties induced by steric125

exclusions between particles and geometrical disorder are complex and rich.126

This was actually the point where the mechanics of granular materials joined the physics of127

amorphous materials such as liquids and glasses in which the packing of hard grains plays a central128

role (Bernal 1960; Berryman 1986; Pavlovitch et al. 1991; Jullien et al. 1992; Torquato 2010). The129

concept of Random Close Packing (RCP) was revisited in this context, (O’Hern et al. 2003; Donev130

et al. 2005; Agnolin and Roux 2007a; Peyneau and Roux 2008a) and that of jamming was intro-131

duced (Berryman 1986; Cates et al. 1998; Liu and Nagel 1998) to characterize stability of equilibria132

in which external forces are balanced by steric impenetrability constraints. Statistical characteri-133

zations of granular microstructure have been pursued for 20 years in a multidisciplinary context.134

Force distributions (Liu et al. 1995; Radjai et al. 1996; Mueth et al. 1998; Radjai et al. 1998),135

nonaffine particle displacements (Radjai and Roux 2002; Combe et al. 2015), local rearrangements136

and particle rotations (Kuhn 1999; Bardet 1994; Oda et al. 1997; Kuhn and Bagi 2004; Estrada137

et al. 2008) and many other features have been carefully analyzed. A rigorous relation between138

shear stress and fabric anisotropy was introduced by the partition of stress tensor (Bathurst and139

Rothenburg 1988; Radjai and Richefeu 2009). But the relevant internal variables for the plastic140

behavior of granular matter remain still open to current research.141

Granular matter came vigorously to the focus of physics through a “sandpile” metaphor of142

self-organized criticality (SOC) (Bak et al. 1987): A sandpile can be built by allowing grains to fall143

successively into a substrate. As the pile grows, a steady state is eventually reached without tuning144

any control parameter (self-organized) and with fluctuations (avalanches of grains on the surface145
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of the pile) distributed as a power law (criticality), reflecting the absence of intrinsic time and146

length scales in this state, as in a second-order phase transition. Although a power-law distribution147

of grain avalanches was not experimentally observed, the SOC brought to the light the highly148

nonlinear behavior of granular materials and their phase transformations (from solid-like to liquid-149

like) under moderate energy inputs or stress increments (Jaeger et al. 1990). That is how simple150

sand was suddenly transformed into a paradigm of complexity, inviting researchers from various151

fields to develop a fresh look at old real problems.152

Most of research in the past thirty years has focussed on model granular materials. The fact that153

simple spherical particles with frictional contacts produce nearly all complex behaviors of granular154

materials, extends the status of simple packings as the core model of all granular materials. This is155

all the more fortunate that the effects of numerous parameters describing real granular materials can156

be characterized by comparison with this model. Assemblies of rigid, frictionless particles (Roux157

2000; Combe and Roux 2000; Wyart et al. 2005; Peyneau and Roux 2008a) have also been studied158

as extreme case models in which all mechanical response is determined by geometric constraints.159

Going away from the simplest models, particle size distribution (PSD) is crucial for both space-160

filling and shear properties of granular materials. Surprisingly, recent simulations seem to show161

that the internal friction angle is not dependent on the PSD since force transmission is controlled162

by the class of largest particles (Voivret et al. 2009).163

The effect of particle shape has been more systematically investigated for a few years, and here164

again the space-filling aspects are counterintuitive and the shear behavior and its relation with the165

microstructure are complex (Donev et al. 2004; Azéma et al. 2007; Azéma et al. 2009; Torquato166

2010; Katagiri et al. 2010; Nguyen et al. 2014; Jaeger 2015). The concept of jamming transition has167

emerged in physics for unifying the rheology of granular materials with other amorphous materials168

such as glasses, colloids and foams (Liu and Nagel 1998). Slight variations of temperature close to169

such a transition lead to the increase of viscosity by orders of magnitudes in a supercooled liquid in170

the same way as small variations of packing fraction in a granular material control transition from171

a liquid-like to a solid-like state (Jaeger 2015). This emergence of shear strength is quite rich when172

particles of strongly nonconvex shape are considered. By monitoring particle shape parameters and173

assembling method, innovative structures may be designed with applications to material science,174

architecture and engineering mechanics (Reis et al. 2015).175
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Working with objects such as grains is different from dealing with laws governing a continuum176

in that the grains materialize the degrees of freedom of a packing. It is maybe this essence that177

makes granular materials so accessible and attractive to many people. Deriving coarse-grained laws178

arising from the collective behavior of grains is a fundamental research goal. This has been and will179

be the goal of soil mechanics, which has a long background of engineering practice and deals with180

granular materials on an everyday basis. The increasing interest in the grain-scale behavior and181

micro-mechanical approach is not just a luxury. It reflects a real need for enhanced understanding182

and predictive modeling of soils and powders (Mitchell and Soga 2005). In this endeavor, continuum183

mechanics provides the framework for a rational analysis but the shift towards multi-scale modeling184

is unavoidable. The query is how much of the rich information obtained at the micro-scale is relevant185

to the macro-behavior.186

In the following, the authors discuss some major milestones in each of the aspects briefly men-187

tioned above. In practice, these aspects are developed by different communities and their relation-188

ships are not always well understood. But it is useful to mention here, even very briefly, relevant189

contributions for a broad understanding of the field. The first section reviews classical continuum190

modeling as elaborated, essentially in the soil mechanics community, before roughly 1990. Next, the191

particle-scale behavior is considered in terms of granular texture, force transmission and particle192

displacements, followed by a number of bottom-up developments based on particle-level investiga-193

tions, which benefited, in the three last decades, from a renewed interest in the condensed matter194

physics laboratories, and from micromechanical approaches. Finally, more recent developments in195

macroscopic modeling are reviewed. The last section will describe some of the new frontiers and196

open issues for future research.197

CONTINUUM MODELS198

Granular materials can be found in gas-like, liquid-like and solid-like states, but, unlike molec-199

ular systems, they are governed by dissipative interactions and steric constraints that make their200

behavior depend on both pressure level and porosity. Furthermore, as in colloids and foams, their201

plastic deformations are controlled by substantial evolution of particle arrangements. In this sec-202

tion, the foundations of the continuum models of granular behavior are briefly discussed with203

pressure, void ratio and anisotropy as basic variables.204
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Critical State Theory (CST)205

Granular materials are characterized by both material variability (grain shapes and size distri-206

butions, grain surface properties . . . ) and microstructural variability (organization of grains and207

their contacts). The incremental stress-strain response of a granular material depends on minute208

details of its microstructural state, encoding the past deformations and stresses experienced by the209

material, as shown in Fig. 1. Under complex loading, the microstructure evolves but the memory210

of the initial state persists and determines the mechanical response. For this reason, the possibility211

of a unique constitutive framework for the plastic behavior of granular materials with measurable212

internal variables remained out of reach for a long time. However, a host of mechanical tests on213

soils in the first half of the 20th century gradually established the fact that a sheared soil tends to214

a well-defined state in which the memory of the initial state is fully lost.215

In this critical state (CS), as put by Casagrande and formulated by Roscoe et al. in 1958,216

the behavior of granular materials can be described by relationships among shear strength, mean217

effective stress p and void ratio e (or equivalently packing fraction ρ = 1/(1+e)) (Casagrande 1936;218

Roscoe et al. 1958). Using p = tr(σij)/3 and q = (3sijsij/2)1/2, where σij is the effective stress219

tensor carried by the granular backbone and sij = σij − pδij , the CS is generally described by two220

relationships (Schofield and Wroth 1968; Wood 1990):221

η =
q

p
= M(θL) (1)222

e = f(p/pi) (2)223

where f(p/pi) is a function of the effective mean stress p and characteristic stresses pi of the224

material such as the crushing strength or the cohesive strength, and M characterizes the frictional225

behavior depending on ϕ and intermediate stress σ2 via Lode angle θL. An important observation226

is that the CS may well be localized inside a sub-volume such as a shear band (Coumoulos 1967).227

The Critical State Theory (CST) is based on the assumption of homogeneity and isotropy of the228

material. Objective strains can only be measured in a volume where uniform deformation occurs.229

The identification of CS makes it also possible to characterize different states of a granular230

sample by state variables based on the “distance” from the CS (Been and Jefferies 1985; Jefferies231

1993). This is, for example, the case for void ratio e, whose evolution largely depends on its232
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distance Ψ = e− ec, as a state parameter, from the CS line ec(p), dilatant if below the CS line and233

contractant if above the CS line. The function f in (2) may also depend on the lowest and largest234

void ratios, emin and emax, accessible to a granular material (depending on its grain properties).235

For example, the following fitting form provides a simple function that works reasonably well for236

sands (Verdugo and Ishihara 1996):237

e = emax −
emax − emin

log(pi/p)
(3)238

As will be seen below, the state parameter Ψ, with its variants, plays a central role in most239

constitutive models developed for sand. ‘240

Stress-dilatancy relation241

Besides critical states, which reflect self-sustaining microstructures of a granular material under242

monotonic shearing, energetic considerations were used to derive the first constitutive models of243

sands and soils. The fact that both stress ratio and void ratio vary with shear strain led Taylor244

to consider the work done by shear and dilation and formulate a stress-dilatancy relation in 1948245

(Taylor 1948). Let ε̇p and ε̇q be the volumetric and shear deformation rates in a planar shear flow.246

The total rate of supplied work is Ẇ = qε̇q + pε̇p. Hence,247

η =
q

p
= − ε̇p

ε̇q
+
Ẇ

pε̇q
(4)248

For a constant value of pε̇q (shear rate and mean stress being imposed) and assuming that Ẇ249

is nearly constant, equation (4) suggests a linear relation between η and dilatancy defined by250

D = − sinψ ≡ ε̇p/ε̇q. The dilatancy D vanishes in the CS and, according to (4), η = M = Ẇ/pε̇q251

in the critical state so that252

η = D +M (5)253

The above relation is in good agreement with experiments and simulations only in a limited254

range of stresses. Alternative versions of this relation did not alter the fundamental conclusion that255

dilatancy plays a major role in stress-strain behavior of granular materials (Newland and Allely256

1957; Rowe 1962; Nova 1982; Bolton 1986). In particular, it controls the shear peak in dense sand257

and compaction for loose sand. To account for experimental observations, it was modified by Nova258
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by introducing a new parameter N such that η = (N − 1)D + Mθ with the material-dependent259

parameter N (Nova 1982). The value of the latter is observed to be ' 0.2 (Jefferies and Been 2006).260

However, a more fundamental criticism was introduced by Li and Dafalias (Li and Dafalias261

2000). By recalling the basic observation that the same value of η may give rise to either contractive262

or dilatant behavior depending on the current void ratio and/or mean pressure, they remarked that263

dilatancy can not be a unique function of the stress ratio η (unless little change occurs in the internal264

state) but it should depend on the current state of the material. They showed that major effects265

of the current void ratio and effective stress can indeed be captured by making depend D on the266

state parameter Ψ = e− ec in such a way that D vanishes for Ψ = 0 and η = M . This requirement267

is satisfied by the function268

D = D0

(
emΨ − η

M

)
, (6)269

where D0 and m are material parameters. This function suggests that the dilatancy D depends on270

the difference of the current stress ratio η from a reference stress ratio MemΨ, as in Rowe’s stress-271

dilatancy theory but with the difference that this reference stress ratio varies with Ψ instead of272

being fixed. A similar concept was actually used by Manzari and Dafalias for constitutive modeling273

(Manzari and Dafalias 1997).274

Constitutive models of granular plasticity275

It is important to emphasize that the CST is not a constitutive model but a theoretical expres-276

sion of robust observational facts. The granular behavior can be described by various elasto-plastic277

constitutive models of increasing complexity incorporating the CS as a reference state (Manzari278

and Dafalias 1997; Radjai and Roux 2004; Li et al. 2012; Gao et al. 2014). Cam-Clay model was the279

first consistent constitutive model based on the CST and Taylor’s stress-dilatancy relation, together280

with the assumptions of associated plasticity and isotropy (Roscoe and Schofield 1963; Schofield281

and Wroth 1968). In this framework, the stress-dilatancy relation is used to derive a yield surface282

in which the pre-consolidation pressure plays the role of history parameter. The predictions of this283

model and its modified version, in both drained and undrained triaxial tests reproduce correctly284

many observed features of clay behavior under triaxial conditions. The gradual plastification of the285

clay before stress peak is accounted for by introducing a sub-loading surface evolving isotropically286

with the state parameter (Hashiguchi 1979; Hashiguchi and Chen 1998).287
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Nor-Sand is a model similar to Cam-Clay based on the CST but specialized to sand (Jefferies288

1993). The yield surface is derived from Nova’s stress-dilatancy relation (Nova 1982), and the289

pre-consolidation pressure is replaced by the critical state pressure. Nova’s stress-dilatancy relation290

leads to the following yield function:291

F = η −Mθ

{
1 + (N − 1)

(
p

pi

)N/(N−1)
}

(7)292

where pi is a pressure parameter replacing pc and representing the critical state pressure. To account293

for plastic hardening, it is further assumed that the stress state lies on a sub-loading surface similar294

to the above yield surface with varying value of pi until a limit value pmaxi is reached. In other295

words, pi scales the size of the yield surface. The surface evolves as a function of the state parameter296

Ψ. The pressure pmaxi is a reference parameter from which the evolution of the pi can be simply297

modeled by a linear law: ∂pi/∂εp = H(pmaxi − pi), where H is the hardening modulus.298

The isotropic nature of the plastic model used in Nor-Sand and similar models, makes them299

inadequate for modeling cyclic behavior. Volumetric hardening models are adequate for clays, but300

for granular materials the shear hardening is an essential ingredient. For this reason, and also due301

to practical calibration problems, later developments in this framework focused mainly on a more302

general plastic framework with kinematic hardening (Mroz et al. 1978; Manzari and Dafalias 1997).303

These concepts are more particularly incorporated in SANISAND, the name for a class of304

Simple ANIsotropic SAND constitutive models extended from the original two-surface plasticity305

model developed by Manzari and Dafalias (Manzari and Dafalias 1997; Dafalias and Manzari 2004;306

Taiebat and Dafalias 2008). This model is based on the CST and bounding surface plasticity, which307

represents the memory of the material. It uses a narrow open cone-type yield surface obeying308

rotational (kinematic) and isotropic (volumetric) hardening. The rotational hardening is assumed309

to reflect the evolution of structural anisotropy. The plastic strain rate is composed of two parts310

resulting, respectively, from the change of stress ratio (dilatancy) and loading under constant311

stress ratio. The isotropic hardening depends on the volumetric component of the latter. This312

model is non-associated and the state parameter Ψ is used to define the peak and dilatancy stress313

ratios. When calibrated by experiments, it is able to correctly describe the behavior of sand under314

general conditions, both monotonic and cyclic. It should be noted that the most recent constitutive315

11



models account for the anisotropy and its evolution by extending the concept of the critical state316

and introducing state-dependent stress-dilatancy relations (Li et al. 2012; Gao et al. 2014). Such317

models account naturally for the non-associated feature of flow rule and non-coaxiality between318

strains and stresses (see section 5).319

The above models assume the concept of simple materials (Noll 1955), which implies that the320

material behavior can be fully characterized under homogeneous strains. Shear banding, however,321

seems to counter this assumption. One of the early constitutive models fully based on slip planes322

was the dilatant double shearing model of Mehrabadi and Cowin (Mehrabadi and Cowin 1978). In323

this model, it is assumed that the deformation of a granular material is composed of two dilatant324

shear deformations along the stress characteristics, which are interpreted as slip lines. This model325

in its later developments was enriched by incorporating elastic deformation, plastic work hardening326

and, more recently, the fabric tensor (Nemat-Nasser et al. 1981; Zhu et al. 2006). The shear rates327

along the two slip systems are related to the density of contacts along them. While several internal328

variables introduced in the model are phenomenological, the model can describe monotonic and329

cyclic responses of granular materials, the evolution of void ratio and the evolution of fabric tensor330

with the stress tensor (see section 3).331

It is useful to briefly mention also here the framework of hypoplasticity, which was developed332

with the strong idea of finding the most general and objective expression of the stress rate σ̇ as a333

function of the current stress state σ and velocity gradient tensor D (Kolymbas 1991; Kolymbas334

et al. 1995; E. 1996; Gudehus 1996; Lanier et al. 2004). The application of representation theorems335

of isotropic functions leads to a generically nonlinear dependence of the material behavior on the336

direction of strain rate. The incremental nonlinearity being intrinsic to the evolution equation,337

there is no need to explicitly distinguish between loading and unloading paths. This framework338

postulates no yield function and flow rule, and the usual partition of the strain-rate tensor into339

elastic and plastic parts disappears. However, those concepts can be obtained as predictions of the340

model for different forms and values of model parameters (Wu and Niemunis 1996).341

Advanced hypoplastic models account for void ratio as scalar state variable and pressure level,342

as well as the critical state (Huang et al. 2008; Masin 2012; Fuentes et al. 2012). The tensorial fabric343

state can also be incorporated in the model at the price of extending the framework and number of344

material parameters (Wu 1998). The latest developments tend to show that almost all elasto-plastic345
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models can be equally formulated in the hypoplastic framework (Huang et al. 2006). A unification346

was actually achieved by Einav, who considered the class of hypoplastic models that are compatible347

with thermodynamics and showed that elasto-plasticity is a singular limit of hypoplasticity (Einav348

2012).349

Another general framework applied to granular materials is that of micropolar theories, which,350

by introducing a length scale into their continuum description, offer the possibility of accounting for351

size effects, e.g. in shear banding. This length may be interpreted as the scale below which particle352

rotations can significantly differ from those deduced from the rotational of the displacement field.353

At a larger scale the difference vanishes and thus, upon coarse-graining, the standard theory is354

recovered (Tejchman and Wu 1993). These models attribute micro-rotations and couple stresses to355

material points, extending thus the number of constitutive relations for elastic and plastic behavior.356

In association with hypoplasticity, they can lead to realistic results in large deformations with shear357

banding (Grammenoudis and Tsakmakis 2005).358

Elastic behavior359

An elastic or quasi-elastic response is observed in granular materials when small stress incre-360

ments are added to a pre-stressed equilibrium configuration by static or dynamic (resonance, sound361

propagation) experiments. The linear response to such increments is then, as a good approxima-362

tion, reversible, and associated to some quadratic elastic energy, the initial prestressed configuration363

defining the reference state, which is at the origin of elastic displacements and strains. An elastic364

model applies, for sands stabilized under confining stresses between 10 kPa and a few MPa, to365

strain intervals not exceeding some limit of order 10−6 or 10−5 (Hicher 1996; Shibuya et al. 1992;366

Kuwano and Jardine 2002; Geoffroy et al. 2003). For larger strains, the dissipation is no longer367

negligible in stress-strain cycles.368

The accuracy of strain measurements in soil mechanics has made significant progress over the369

last decades, and measurements in the very small strain, quasi-elastic regime, about differently370

prestressed states are now feasible. Static measurements of elastic moduli agree with dynamic371

measurements deduced from resonance wave frequencies or propagating wave speeds (Thomann372

and Hryciw 1990; Shibuya et al. 1992; Geoffroy et al. 2003). The elastic moduli should not be373

confused with the slopes of stress-strain curves on the strain scale (say, of the order of 1%) corre-374
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sponding to the mobilization of internal friction. Those slopes are considerably smaller than true375

elastic moduli, by more than an order of magnitude, and do not correspond to an elastic response.376

Simplified elastic-plastic models (Vermeer 1998) used in engineering applications, in which the ma-377

terial is linear elastic until the Mohr-Coulomb criterion for plasticity is reached, corresponding to378

full internal friction mobilization, should not be misinterpreted: the elastic part of the material379

behavior in such models is essentially a computationally motivated simplifying assumption.380

PARTICLE-SCALE BEHAVIOR381

Granular materials are disordered at the micro-scale with strong fluctuations of particle envi-382

ronments from one particle to another. Within the rigid-particle approximation, the local behavior383

can be described by vectorial quantities (branch vectors, contact forces), which underly macroscopic384

tensorial variables (stress, strain, fabric). In this section, the main features of granular texture,385

force transmission and particle displacements are discussed.386

Granular texture387

In a fundamental approach, the state parameters are of geometrical nature. Such descriptors388

of the texture are generally known as fabric parameters. The level of description depends on the389

choice of these parameters, which should naturally comply with both the accuracy and tractability390

of the formulation and which can be scalar or tensorial parameters or functions. Two constraints391

make the plastic behavior of granular materials depend on nontrivial aspects of the microstructure:392

1) the steric hindrances among neighboring particles, which constrain the accessible geometrical393

states, and 2) the condition of mechanical equilibrium, which controls to some extent the range of394

admissible particle configurations (Roux and Radjai 2001; Troadec et al. 2002; Radjai 2009).395

Figure 2(a) displays a representation of the contact geometry between two neighboring particles.396

The relevant geometrical variables are the contact vector ~r joining the particle center to the contact397

point, the branch vector ~̀ joining the centers of two contacting particles and the contact orientation398

vector (contact normal) ~n′ defined as the unit vector normal to the particle boundary at the contact399

zone α. The reaction forces ~f and −~f acting on the two particles at their contact zone have a unique400

application point that may be considered as their contact point. The local frame is composed of401

the radial unit vector ~n and one orthogonal unit vector ~t in an ortho-radial plane (orthogonal to402

the contact vector). In 2D, the local frame is uniquely defined by a single tangent unit vector ~t.403
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One needs a statistical description due to granular disorder, with the basic feature that the404

local vectors vary discontinuously from one contact to another. The local environments fluctuate405

in space both in the number k of the contacts of each particle (topological disorder) and in their406

angular positions ~rα (metric disorder). For the formulation of the local constraints only the first407

contact neighbors of a particle are sufficient. Two functions are required to describe this first shell408

environment (Roux and Radjai 2001; Troadec et al. 2002):409

1. Pc(k): Connectivity function defined as the proportion of particles with exactly k contacts410

(first shells with k members).411

2. Pkkrf (~r1, . . . , ~rk, ~f1, . . . , ~fk): Multicontact probability density function of k contact forces ~fα412

and k angular positions ~rα for a shell of k particles.413

The average connectivity of the contact network is the coordination number z =
∑∞

k=1 kPc(k).414

Integration of Pkkrf over all angular positions yields the multicontact force pdf’s Pkkf (~f1, . . . , ~fk) =415 ∫
Akr

Pkkrf d{~rα}, where Akr is the accessible domain of angular positions. In the same way, the416

multicontact pdf of angular positions is Pkkr(~r
1, . . . , ~rk) =

∫
Akf

Pkkrf d{~fα}, where Akf is the417

integration domain. In the particle shells, the steric constrains manifest themselves as angular418

exclusions. Two particles belonging to a shell cannot approach one another below a minimum419

angular interval δθmin; see Fig. 2(b). In other words, the multicontact probability density Pkkr420

vanishes if the angular exclusions are violated.421

These multicontact probability density functions are too rich to be accessed experimentally or422

tackled theoretically. The information that they contain can be reduced in three steps. In the first423

step, one extracts the 1-contact distributions for the shells of k contacts by integration over all424

contacts except one. In the second step, the 1-contact distributions are averaged over the shells by425

weighting them by Pc. The third step consists in extracting the angular behavior. In particular,426

the probability density function P (~n) of contact normals is often used to represent the structural427

anisotropy. Its second moment F = 〈~n ⊗ ~n〉 ≡
∫

Ω ~n ⊗ ~n P (~n)d~n/2π, where Ω denotes the angular428

domain, defines the fabric tensor F with tr(F) = 1. The lowest-order anisotropies of the contact429

network are given by aijc = 2(Fi−Fj), where F1, F2 and F3 are the principal values of F (Oda et al.430

1980; Satake 1982; Rothenburg and Bathurst 1989; Cambou 1993; Radjai et al. 1998; Kuhn 1999;431

Ouadfel and Rothenburg 2001). Higher-order moments and anisotropies can also be extracted from432
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P (~n).433

Obviously, the fabric anisotropy can equivalently be defined from other characteristic orien-434

tations such as those of branch vectors (joining particles centers) or voids, which generally have435

elongated shapes (Satake 1982; Kuhn 1999). The choice should naturally be guided by the mod-436

eling approach and the variables of interest. The yield function is more closely related to contact437

anisotropy or branch-vector anisotropy since the condition of force balance is enforced at the level of438

each particle with forces exerted by neighboring particles whereas the flow rule reflects the evolution439

of void volumes for which the compatibility condition of particle displacements can be formulated,440

and hence the void anisotropy and valence number (average number of particles in a loop of par-441

ticles) seem to be essential; see Fig. 2(c). The connection between these two anisotropies is an442

important ingredient for relating local strains and stresses in a micromechanical approach (Roux443

and Radjai 2001). A related aspect is the scale at which the fabric is defined. Particle-scale fabrics444

are fluctuating variables both in space and in time. They are well-defined only at a mesoscopic445

scale. In this sense, the averaged fabric tensors are macroscopic objects and their use in a macro-446

scopic model assumes that the Representative Volume Element (RVE) exists not only for stresses447

and strains but also for the fabric tensors. In contrast, a micromechanical approach should be based448

on particle-scale fabric variables, which incorporate the constraints of force balance and kinematic449

compatibility (Troadec et al. 2002).450

Stress transmission451

The distribution of contact forces in model granular materials has been extensively studied452

initially by experiments and later amplified by Discrete Element Method (DEM) simulations. Geo-453

metrical exclusions and disorder in granular materials lead to a highly inhomogeneous distribution454

of forces (Dantu 1957; Drescher and de Josselin de Jong 1972; Liu et al. 1995; Radjai et al. 1996;455

Thornton 1997; Mueth et al. 1998; Radjai et al. 1999; Majmudar and Behringer 2005; Miller et al.456

1996). Filamentary patterns of stresses observed on photoelastic images are induced by strong457

contact forces and are known as force chains. The forces were more accurately measured by using458

carbon paper to record normal force prints at the boundaries of a bead packing (Mueth et al. 1998).459

They were found to have a nearly uniform probability density function (pdf) in the range of weak460

forces followed by an exponential falloff of strong forces. Similar force distributions were found by461
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means of numerical simulations (Radjai et al. 1996; Thornton 1997; Radjai and Wolf 1998; Radjai462

et al. 1999; Antony 2001).463

All further investigations of force distributions have shown that the exponential distribution464

of strong forces is a robust feature of granular media. In contrast, the weak forces appear to be465

sensitive to the packing state resulting from the deformation history (Antony 2001; O’Hern et al.466

2001; Snoeijer et al. 2004). In an isotropic packing state, the distribution shows a relatively small467

peak below the mean force, and the probability density of small forces does not fall to zero (Metzger468

2004a; Metzger 2004b). The peak disappears in a sheared packing and the distribution of weak469

forces turns to a nearly decreasing power law (Radjai et al. 1999; Antony 2001; Azéma and Radjai470

2014). Fig. 3(a) shows a map of contact forces in a strongly polydisperse packing. This is what471

generally is observed in frictional packings composed of aspherical grains or broad size distributions472

(Voivret et al. 2009; Azéma et al. 2007; Azéma et al. 2009; Saint-Cyr et al. 2011; Azema et al.473

2013; Nguyen et al. 2014). Increasing the confining stress of elastic grains leads to considerable474

deformation of the grains and increase of the coordination number beyond its rigid limit value,475

while the force distribution tends to assume a narrower nearly Gaussian shape (Makse et al. 2000;476

Agnolin and Roux 2007b).477

The q-model was the first statistical model of force distributions (Liu et al. 1995; Coppersmith478

et al. 1996). The forces are assumed to be scalar quantities that “propagate” from site to site479

(particles) along the links (contacts) of a regular network. The total incoming force from the480

particles of a layer to each site is redistributed to the particles of the next layer according to a481

random process. This model predicts that the force pdf converges to a purely exponential function482

P (f) = βe−βf with the exponent β depending on the number of supporting contacts per grain. A483

statistical approach developed by Metzger et al. provides a correct estimate of the force pdf by484

analyzing the local constraints and accounting for the density of states in a first-shell approximation485

(one grain with its contact neighbors) (Metzger 2004b). Another simple analytical model based486

on the assumption that a force of a given value can only be generated from the population of487

higher forces but requires weaker forces for its equilibrium, leads to an expression with a single free488

parameter that fits well the force distributions (Radjai 2015).489

Detailed analysis of sheared dry granular materials provides evidence for the bimodal organiza-490

tion of the force network in well-defined “weak” and “strong” networks, with the strong network491
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contributing almost exclusively to the shear strength, and weak forces acting mainly to prop strong492

force chains (Radjai et al. 1998; Radjai et al. 1999). The supportive effect of weak forces is re-493

flected in the anisotropy of weak contacts with their privileged direction that is perpendicular to494

that of strong contacts. In the case of polygonal grains in 2D, this supportive action appears in495

the anisotropy of the weak forces rather than weak contacts (Azéma et al. 2007).496

In the absence of stress gradients (macroscopically homogeneous shear), the forces below the497

mean are in the weak network, which contains nearly 60% of contacts, which sustain 25 % of498

the average stress. Nearly all sliding contacts during shear belong to this network, i.e. plastic499

dissipation occurs almost fully in this network. But since the partial shear stress through this500

network is nearly zero, from a mechanical viewpoint it is a liquid-like phase whereas the strong501

network behaves as a solid skeleton for the medium. This bimodal feature suggests that granular502

materials can be modeled as two-phase media with two stress tensors (Zhu et al. 2006).503

Granular kinematics504

Kinematic fields (particle translations and rotations) at the particle scale in sheared granular505

materials have complex patterns that have been much less investigated than contact force distri-506

butions in exception to shear localization, which has for a long time been associated with failure507

at peak stress ratio. DEM simulations show that even at early stages of shear deformation, well-508

organized micro-bands of intense shearing occur despite overall homogeneous boundary conditions509

(Kuhn 1999; Lesniewska and Wood 2009). These micro-bands evolve rapidly in space and time,510

and the shear bands at larger strains seem to arise as a result of their coalescence.511

Grain rotations and rolling contacts play a crucial role in the local kinematics of granular512

materials. Shear zones are generally marked by intense particle rotations (Oda et al. 1982; Kuhn513

and Bagi 2004). Since rolling contacts dissipate much less energy than sliding contacts, grain514

motions in quasi-static shear occur mostly by rolling. Sliding contacts are actually a consequence515

of the frustration of particle rotations in the sense that all contacts within a loop of contiguous516

particles cannot be simultaneously in rolling state. The basic structure of a loop of three grains517

illustrates well this property (Tordesillas 2007). For this reason, it has been argued that such518

mesoscopic structures evolve and their statistics is correlated with plastic hardening and softening519

of granular materials. In general, long-range correlations, as those reflected in the structure of force520
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chains, indicate that single-contact models cannot fully capture the local behavior. A correlation521

length of the order of 10 grain diameters is observed in forces (Staron et al. 2005). As an internal522

length scale, it can be related to the thickness of shear bands.523

Another important feature of particle velocity fields is that, as a result of steric exclusions, the524

particle velocities {~ri} have a non-affine fluctuating component {~si} of zero mean with respect to525

the background shear flow, as displayed in Fig. 3(b) (Radjai and Roux 2002; Peters and Walizer526

2013; Combe et al. 2015). These fluctuating velocities have a scaling behavior which is very similar527

to those of fluid turbulence and were therefore coined by “granulence” by Radjai and Roux (Radjai528

and Roux 2002). In particular, the velocity probability density functions undergo a transition529

from stretched exponential to Gaussian as the time resolution is increased, and the spatial power530

spectrum of the velocity field obeys a power law, reflecting long-range correlations and the self-531

affine nature of the fluctuations. These observations contradict somehow the conventional approach532

which disregards kinematic fluctuations in macroscopic modeling of plastic flow in granular media.533

The long-range correlations of velocity fluctuations may be at the origin of the observed dependence534

of shear stress on the higher-order gradients of shear strain, implying that granular materials are535

not “simple” materials in the sense of Noll (Kuhn 2005; Noll 1958).536

A key aspect of granular kinematics is its discontinuous evolution. The contacts between par-537

ticles have a short lifetime and new contacts are constantly formed as the particles move. The538

overall picture is that more contacts are gained along the directions of contraction and lost along539

the directions of extension (Rothenburg and Bathurst 1989). A detailed balance equation can be540

written for the evolution of contacts along different directions. Only in the critical state the rates541

of gain and loss are equal (Radjai et al. 2004; Radjai et al. 2012). However, this is only an average542

picture and the effects of the chaotic fluctuating velocity field are not yet well understood (Pouya543

and Wan 2016). They may well behave as a noise or control the fabric evolution under complex544

loading conditions. When the direction of shear is reversed, for example, there is a clear asym-545

metry between the gain and loss processes, which leads to a decrease of the coordination number546

whereas the void ratio decreases at the same time (Radjai and Roux 2004). Such effects control547

the nonlinear behavior of granular materials under complex loading paths.548
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BOTTOM-UP APPROACH549

Beyond experimental validation, macroscopic models of granular behavior must provide a clear550

physical basis for their internal variables (or state parameters) at the grain scale. Considerations on551

grain-level mechanics and statistics of contact networks and their rearrangements, on the one hand,552

and ideas from condensed-matter physics and soft matter rheology, on the other hand, triggered553

or inspired different methods for bottom-up (micro-macro) modeling of granular materials that are554

discussed in this section.555

Numerical and multiscale modeling556

The bottom-up modeling refers to an approach fully or partially based on the particle interac-557

tions and granular texture. This implies upscaling through at least five scales: contact, particle,558

assembly, representative volume element (RVE) and structure, as schematized in Fig. 4. The up-559

scaling from the contact scale is mediated by particles (where equilibrium conditions are defined),560

and their assembly in mesoscopic microstructures (where compatibility conditions are defined).561

Besides extraordinary progress made in measurement techniques, computerized testing and562

imaging devices such as micro-tomography, the DEM (Discrete Element Method) allows accurate563

simulations of stiff particles for complex loading and significant cumulative strains. This has made564

it possible to characterize granular texture, force transmission and particle motions, and to address565

long-lasting issues such as the role of fluctuations, partial stresses carried by a specific class of566

contacts or particles . . . , which are clearly much more complex than naive pictures of local behavior567

used sometimes in earlier developments. Such details are, however, not straightforward to fit568

into continuum modeling approaches. Hence, the issue is to identify the lowest-order geometrical569

parameters that should be incorporated in a macroscopic model and understand the extent that570

mechanical behavior depends on higher-order parameters. This approach is not straightforward571

and has many drawbacks compared to advanced constitutive models, but will lead in the long run572

to predictive models.573

However, the DEM is not yet computationally efficient for solving boundary-value problems at574

large scales with large number of particles. For this reason, the DEM can be used as a means575

to access the meso-scale (scale of an assembly of grains) information, which can then be upscaled576

to the continuum level using the Finite Element Method (FEM) or averaging techniques (Kaneko577
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et al. 2003; Andrade and Tu 2009; Nitka et al. 2011; Andrade et al. 2011; Guo and Zhao 2016;578

Liu et al. 2016). Most of the recent work in the physics community addresses the first stage,579

i.e. the description of meso-scale structures from the grain-scale, whereas many micromechanical580

models are concerned with the second stage in which the meso-scale is represented as a continuous581

distribution of contact planes.582

The multiscale approach is often mentioned as an alternative to purely numerical DEM or583

micromechanical approaches. The FEM is employed to solve a boundary value problem while584

using the DEM to derive the required nonlinear material responses at each FEM Gauss integration585

point. Hence, this approach requires no constitutive model as in the conventional FEM simulations.586

The accuracy of the model depends on the number of Gauss points (FEM discretization) and587

the number of particles associated with each point (DEM discretization). This approach should588

therefore be considered as a hierarchical coupling approach and an integrated tool for solving589

boundary-value problems. But it should not elude a theoretical micromechanical approach with590

the goal of basing macrosopic models on internal variables pertaining to the granular texture for a591

better understanding the origins of the complex phenomenology of granular materials.592

Stress and strain tensors593

The discrete nature of granular materials makes them different from composites or other inho-594

mogeneous materials usually considered in micromechanics. In particular, the macroscopic tenso-595

rial variables such as stress and strain must be constructed from statistical averages of vectorial596

variables such as contact forces and relative displacements of grains over representative volume ele-597

ments (RVE). As pointed out by He, the definition of macroscopic stress and strain tensors should598

be based on the boundary data of a RVE since they should satisfy the equilibrium and compati-599

bility equations, respectively (He 2014). For granular materials, the expression of the stress tensor600

as a function of contact forces and branch vectors is classical since equilibrium conditions are well601

defined (Love 1929) whereas compatibility equations are less well formulated.602

The approach recently introduced by He consists in considering grain centers and taking the603

domain generated and partitioned by the Delaunay tessellation as the domain of a representative604

volume element filled with a continuum medium (He 2014). Following a similar work by Kruyt605

and Rothenburg in 2D (Kruyt and Rothenburg 1996), the 3D compatibility equations for the606
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grain center displacements is thus established and an explicite micromechanical expression for the607

macroscopic strain rate is derived. The expressions of stress and strain rate tensors are608

σij = nc〈fi`j〉c (8)609

ε̇ij = np〈δu̇iaj + δu̇jai〉p/2V (9)610

where nc is the number density of contacts, np is the number density of neighboring grain pairs611

(pairs of grains in contact or separated by a small gap), `j is the j-component of the branch vector612

joining grain centers, fi is the i-component of contact force, V is the total volume, δu̇i is the613

i-component of the relative velocity between two neighboring grains, and aj is the j-component614

of the area vector perpendicular to the Delaunay plane separating the the two grains. The first615

averaging runs over all contacts c whereas the second one runs over all adjacent pairs of grains.616

Granular elasticity617

The elasticity of a granular packing is a direct consequence of the elasticity of particles, as ex-618

pressed in contact laws (Johnson 1985). Elastic moduli of granular packings are primarily sensitive619

to the stress level, via the average contact stiffness, which is proportional to P 1/3(zφ)−1/3 under620

pressure P , where φ is the solid fraction and z is coordination number, if contacts are Hertzian621

(factor zΦ, expressing the contact density, appears here because the average contact force scales622

as P/(zΦ) (Agnolin and Roux 2007a)). Assuming contacts through angular asperities (Johnson623

1985), local stiffnesses should rather scale as P 1/2(zφ)−1/2. Such power law stress dependences are624

experimentally or numerically observed, with, most often, an exponent slightly larger than 1/3 for625

spherical particles (Kuwano and Jardine 2002; Agnolin and Roux 2007c), or than 1/2 for angular626

sand grains (Hicher 1996). This difference between predicted and measured exponent values might627

partly be attributed to the change of contact numbers under varying stresses (Goddard 1990b),628

although increases of coordination numbers under growing stresses is mostly influential (Makse629

et al. 1999; Agnolin and Roux 2007c) under rather large confining stress levels (in the MPa range).630

Recent numerical studies show that the departure from theoretical exponents, under lower pres-631

sure, is most often due to the singular properties of poorly connected networks (Wyart 2006; Somfai632

et al. 2005), in which the small degree of force indeterminacy entails (Wyart et al. 2005) a large633

excess of “soft modes”, associated to anomalously low eigenvalues of the contact network stiffness634
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matrix, in comparison to those of a homogeneous elastic continuum. In the limit of vanishing635

force indeterminacy, which is indeed approached for small stresses with frictionless objects (Roux636

2000; Silbert et al. 2002), the moduli tend to scale with the degree of force indeterminacy per unit637

volume (Wyart 2006; Agnolin and Roux 2007c; Somfai et al. 2007), whence a proportionality to638

the difference between the coordination number of the force-carrying network and its minimum639

(isostatic) value: to z − 6 for frictionless spheres, or to z − 4 for frictional ones. The resulting640

anomalously low moduli increase faster with pressure, as they are sensitive to small increases of co-641

ordination numbers. This is apparent in Fig. 5, showing an increase of shear moduli with pressure,642

for poorly coordinated sphere packings, with an exponent notably larger than the theoretical value643

1/3. Such effects, in isotropic systems, do not influence the bulk modulus, for which simple predic-644

tions based on the Voigt assumption of affine elastic displacement fields provide reasonable approx-645

imations (Somfai et al. 2007; Agnolin and Roux 2007c). For anisotropic stress states (Peyneau and646

Roux 2008b), the non-singular modulus is the one associated with stress increments proportional647

to the pre-existing stress values.648

Figure 5 also illustrates the greater sensitivity of moduli to coordination number z, than to649

solid fraction Φ (Agnolin and Roux 2007c; Magnanimo et al. 2008). z varies, between different650

preparation procedures, independently of Φ for dense systems (Agnolin and Roux 2007a; Magnan-651

imo et al. 2008). Of course, elastic moduli also reflect the anisotropy of the reference, prestressed652

state, both due to stresses and to internal fabric. Anisotropic elastic properties have been probed653

in experiments for some time (Hoque and Tatsuoka 1998; Kuwano and Jardine 2002; Duttine et al.654

2007) and are currently being explored by numerical simulations (La Ragione and Magnanimo655

2012a; La Ragione and Magnanimo 2012b).656

The elastic behavior, albeit restricted to very small strain intervals, is an essential ingredient657

in the discussion of incremental elastoplastic properties, the detailed form of which is important658

for instability criteria. Elastic moduli also indirectly provide access, in a nondestructive way, to659

geometrical data on the contact network, such as coordination number and fabric anisotropy.660

Granular plasticity661

Most micromechanical models are based on a relationship between force and relative displace-662

ment vectors on contact planes or mobilized planes, and a dependence of the parameters on the663
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distribution of contact planes (Christoffersen et al. 1981; Chang and Hicher 2005; Chang et al.664

2009; Chang et al. 2011). Such models are conceptually simple but capture the main features665

of the stress-strain behavior in monotonic shearing. An important element of such models is the666

relation between local and global strain or stress variables. A rational assumption is that the forces667

on each contact plane are equal to the components of the stress tensor. This is obviously not668

an exact assumption since the contact forces have a highly inhomogeneous distribution. Another669

possible assumption is a kinematically constrained microstructure in which the local displacements670

are components of the macroscopic strain tensor. This is equivalent to the assumption that the671

velocity field has no non-affine components, which is wrong and leads to over-estimated predic-672

tions for elastic moduli, for example (Kruyt and Rothenburg 2002a). Another constraint used in673

micromechanical approach is the equality between energy dissipation rate σij ε̇ij and frictional674

dissipation at all sliding contacts (Cambou 1993). This is a strong assumption since only a small675

proportion of contacts are critical and the friction forces have a broad distribution. Furthermore,676

careful numerical simulations indicate that nearly 25% of energy dissipation in the quasi-static limit677

is due to inelastic collisions between grains (Radjai and Roux 2004). This energy is dissipated by678

micro-instabilities during shear and their signature on the critical-state shear stress can be observed679

in the form of fluctuations.680

The current challenge in micromechanics of granular materials is to account for fabric anisotropy681

required for understanding and modeling complex loading paths (Wan and Guo 2004; Dafalias and682

Manzari 2004; Li and Dafalias 2015; Radjai 2009; Sun and Sundaresan 2011; Radjai et al. 2012;683

Chang and Bennett 2015). Because of the problems arising from a proper definition of grain-scale684

kinematics from the boundary or far-field displacements via a localization tensor, there is presently685

no general expression for the evolution of the coordination number, fabric tensor and dilatancy.686

For this reason, most models consider only the effects of geometrical anisotropy by introducing,687

for example, different elastic moduli for loading and unloading. It should be noted that in a688

constitutive model developed on the basis of monotonic loading behavior or involving no tensorial689

internal variable, the response upon unloading is elastic. In practice, however, a granular material690

is “fragile” in the sense that stress increments in directions opposite to the shear directions cannot691

be supported without plastic deformation (Cates et al. 1998). This leads to long plastic transients692

when the direction of shearing is changed before the critical state is reached in the new direction693
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(Radjai and Roux 2004). If shear reversal is repeated at small strains, the system is attracted to a694

new state that has not yet been investigated from a micromechanical viewpoint (Alonso-Marroquin695

and Herrmann 2002). This state is a consequence of subtle memory effects that pull the packing696

towards a high density but low coordination number.697

Origins of internal friction698

Frictional behavior is the most basic and common feature of the plasticity of granular materials.699

In contrast to dry friction between two solid bodies, it is a bulk property. It has also been described700

as friction between two “blocks” of a granular materials separated by a shear band. The localization701

of shear deformation along a thin interface inside a dense granular material or with a structure is702

an interesting analogy with dry friction between solid bodies but it masks the general properties703

of granular friction and those of loose granular materials and steady flows, which cannot simply be704

described by shear bands.705

Granular friction reflects the collective motions of a large number of grains and it has a tensorial706

nature. In particular, it is not a simple function of friction between grains. The internal (or global)707

friction coefficient µ∗ in steady flow (or in the critical state of soil mechanics) has a non-vanishing708

value even for frictionless grains (Peyneau and Roux 2008b). The energy dissipation in this limit709

results from inelastic collisions between grains and, since the collision velocity is proportional to710

the mean effective stress p, it increases proportionally to p, as required by a Coulomb-like friction.711

Furthermore, as the grain-grain friction coefficient µs increases, µ∗ increases but it levels off for712

µs ' 0.4 (Taboada et al. 2006). Above this value, µ∗ is independent of µs. The expression (8)713

of stress tensor makes it possible to calculate from DEM simulations the contribution of friction714

forces to the total shear stress and hence internal friction angle µ∗ = tan(σt/σn) along a granular715

shear flow by considering only the tangential components ft of forces. Quite unexpectedly, this716

contribution is quite small (below 10%) (Thornton and Randall 1988).717

Another quantity that is expected to correlate with internal friction coefficient is the proportion718

of sliding contacts or critical contacts, i.e. contacts where friction is fully mobilized ft/fn = µs.719

For spherical grains, in the quasi-static state the proportion of sliding contacts is below 10%. In720

a granular pile gradually tilted from horizontal to its maximum angle of stability, this proportion721

increases exponentially towards its maximum value (Staron et al. 2002). The sliding points inside a722
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packing can be described as dislocations that carry plastic deformations. Their percolation across a723

packing eventually leads to failure. This viewpoint is interesting as it hints at avalanche precursors.724

But it does not provide a clear understanding of the properties of granular friction.725

The above observations indicate that the bulk friction of granular materials is not a direct726

consequence of frictional contacts between grains but rather a structural effect. This was clearly727

established by a new partition of the stress tensor introduced by Rothenburg and Bathurst (Bathurst728

and Rothenburg 1988). The expression of stress tensor can be evaluated as an integral from the729

probability density function P (~f, ~̀) of branch vectors ~̀ (vectors joining grain centers) and contact730

forces ~f . On needs also to introduce the angular distributions of contact normals P (~n) and force731

averages fn(~n) and ft(~n), where ~n is the orientation of the branch vectors. In a sheared granular732

material, these functions can be approximated by their truncated Fourier expansions in 2D (or733

expansions in spherical harmonics in 3D):734

P (θ) ' 1

π
{1 + ac cos 2(θ − θc)} (10)735

〈fn〉(θ) ' 〈f〉{1 + an cos 2(θ − θf )} (11)736

〈ft〉(θ) ' 〈f〉at sin 2(θ − θf )} (12)737

where 〈f〉 is the average contact force, θc is the preferred direction of contacts and θf is the preferred738

direction of forces. The above expressions together with the integral expression of the stress tensor739

yield two relations (here in 2D) (Bathurst and Rothenburg 1988):740

p = nc〈f〉〈`〉 (13)741

σ1 − σ3

σ1 + σ3
= sinϕ =

1

2
(ac + an + at) (14)742

where p is the mean effective pressure, 〈`〉 is the average branch vector length, ϕ is the internal743

friction angle, ac is contact orientation anisotropy (fabric anisotropy), an is normal force anisotropy744

and at is tangential force anisotropy. The above expressions are obtained by assuming that the745

principal major direction θσ of the stress tensor is the same as θc and θf . This is a reasonable746

assumption since all directions tend to coincide during a monotonic shear deformation.747

Equation (13) is similar to the perfect gas law with contacts playing the role of molecules748
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and 〈f〉〈`〉 replacing kBT , where kB is the Boltzmann constant and T is absolute temperature.749

Equation (14) is an explicite expression of the internal friction angle as a function of fabric and750

force anisotropies. These two equations are in excellent agreement with simulations in monotonic751

shear deformation. For unmonotonic deformations, the coaxiality of the branch vectors and forces752

is not verified and hence it is necessary to account for the phase factors (Radjai and Richefeu 2009):753

sinϕ ' 1

2
{(ac + a`) cos 2(θσ − θc) + (an + at) cos 2(θσ − θf )} (15)754

where the anisotropy a` of the branch vector length is also added and described by a truncated755

Fourier expansion. This expression is nicely verified in simulations both in cohesive and noncohesive756

materials, and under unmonotonic conditions. This indicates that the internal friction coefficient757

has three distinct origins: 1) fabric anisotropy ac+a`, 2) normal force chains captured by an and 3)758

friction mobilization quantified by at. The relation between at and friction mobilization is evident759

by noting that, according to equation (12), the largest value of the ratio 〈ft〉/f occurs along the760

direction θ = θf +π/4. Equation (15) clearly shows that friction mobilization is not the only factor761

giving rise to the internal friction but that the contributions of force chains and contact network762

anisotropy can even be more important.763

The respective weights of the above anisotropies vary with particle size distribution (PSD) and764

grain shapes. For example, in a packing of spherical grains the fabric anisotropy is above the765

normal force anisotropy whereas in a packing of polyhedral grains the normal force anisotropy766

is higher than fabric anisotropy (Azéma et al. 2009). This reflects the fact that force chains are767

reinforced by face-face contacts between polyhedral grains. The fabric anisotropy ac declines as768

PSD becomes broader but branch vector length anisotropy a` increases (Voivret et al. 2009). The769

force anisotropies remain unchanged since force chains are captured by the class of largest grains.770

As a result, the internal friction angle remains nearly independent of PSD.771

It is often assumed that the shear strength of granular materials increases with their compactness772

measured in terms of their void ratio e and/or coordination number z. However, the compactness773

does not explicitly appear in equation (15). Hence, the effect of compactness on the shear strength is774

mediated by the fabric and force anisotropies. The steric exclusions in the close environments of the775

grains imply that the maximum value of fabric anisotropy decreases as z increases, which seems to776
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be in contradiction with the increase of shear strength. The point is that the shear strength should777

not be evaluated only from the actual state of the microstructure but from the potential hardening778

of the material, which is clearly controlled by the evolution of the anisotropy. A material with high779

value of z may loose more contacts along the direction of extension without being destabilized, hence780

developing higher degree of anisotropy. This leads to a high peak strength. At still larger shear781

deformation, contact gain in the direction of contraction increases and the anisotropy declines to782

its critical-state value. In this way, the critical state is characterized by a detailed balance between783

the gain and loss processes of contacts along and perpendicular to the direction of shear strain rate.784

RECENT DEVELOPMENTS IN MACROSCOPIC MODELING785

Alongside micromechanical approach, recent progress in macroscopic modeling has mainly fo-786

cussed on the foundations of classical concepts and models of granular behavior. Among various787

developments in this context, the authors will present below the thermo-mechanical consistency of788

models, anisotropy as an independent parameter of the critical state, material instability, statistical789

physics approach and inertial granular flows.790

Thermo-mechanical framework791

Most macroscopic models of granular behavior address correctly the material objectivity and792

fit a group of experimental data. The objectivity, however, does not ensure the consistency of such793

models with the framework of thermodynamics along all deformation paths. Indeed, while the794

thermomechanics of materials has undergone significant developments (Ziegler and Wehrli 1987;795

Maugin 1992), its application to granular materials is rather recent (Collins 1997; Collins and796

Hilder 2002; Collins 2005). In this framework, the yield function, flow rule and hardening rules797

of an elasto-plastic or a hypoplastic theory should be determined from the knowledge of the free798

energy function A and a dissipation (or dissipation date) function Φ. The work increment is given799

by δW = σijdεij = dA+ δΦ with δΦ ≥ 0 in general, and δΦ > 0 when plastic deformations occur.800

Only A is a state function of elastic and plastic strains. The partial derivatives of A and δΦ with801

respect to plastic deformations give rise to a back stress and dissipative stress, respectively.802

The plastic dissipation is the product of the dissipative stress with the plastic strain increment803

whereas shift stress dissipates no energy. The back stress is equivalent to kinematic hardening with804

the displacement of the yield locus. Its physical origin as recoverable plastic work can be attributed805
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to “locked-in” elastic strains at the grains scale. This is also consistent with the observation that in806

granular materials only a weak fraction of frictional contacts slip and dissipate energy (Radjai et al.807

1998). More generally, it is suggested that the bimodal nature of stress transmission in granular808

materials is consistent with this partition and can be used to construct general elasto-plastic models809

with physical internal variables (Collins and Hilder 2002).810

Collins and Hilder showed that most models, including the modified Cam Clay, do involve back811

stresses and recoverable plastic work. They outlined a general method for the construction of the812

yield function and flow rule. These laws are first formulated in terms of dissipative stresses with813

associated flow rule. Then, they are transformed to the true stress space by adding the back stress.814

This procedure is applied to introduce families of isotropic and anisotropic models which include815

Mohr-Coulomb and Nor-sand models as special cases (Collins and Hilder 2002). The strength-816

dilatancy relation is shown to be a consequence of the intimate relation between dilatancy and817

anisotropy. One interesting feature of this energetic approach is that the flow rule arises from the818

transformation between dissipative and true stress spaces without requiring a plastic potential.819

Accounting for anisotropy in constitutive modeling820

The generic anisotropy of granular texture has been a permanent source of inspiration for821

improved modeling of granular behavior (Hoque and Tatsuoka 1998; Kruyt and Rothenburg 2004;822

Dafalias and Manzari 2004; Wan and Guo 2004; Radjai and Roux 2004; Alonso-Marroquin et al.823

2005; Li et al. 2012; Zhao and Guo 2013; Gao et al. 2014; Dafalias 2016). In particular, equation824

(15) clearly shows that the stress ratio is nearly proportional to the contact anisotropy and a825

phase factor that accounts for the difference between the privileged contact direction and major826

principal stress direction. If the phase effect were absent, then contact anisotropy would simply be827

a redundant parameter and could therefore be ignored in macroscopic modeling (the stress ratio828

playing the same role as contact anisotropy). However, this not the case since for a granular texture829

obtained along a strain path or through an arbitrary dynamic preparation method such as pouring830

into a container, the stress state (magnitudes and directions) can change almost instantaneously,831

and the transient deformations are then controlled by the evolution of the phase difference through832

the fabric change. Furthermore, not only the stress ratio but also the dilatancy depend on loading833

direction, a property that is ignored in the conventional CST (M et al. 1998).834
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In this way, the directional dependence of mechanical response raises a fundamental issue re-835

garding the definition of the CS, which is classically characterized by a critical value of the stress836

ratio ηc and a critical void ratio ec (depending on the ratio of the average stress to a characteristic837

stress of the material) with no reference to loading direction compared to the fabric state. The838

issue is the ‘dimensionality’ of the critical domain in the state parameter space and its uniqueness839

(Radjai and Roux 2004; Radjai 2009; Li et al. 2012; Zhao and Guo 2013; Dafalias 2016). This840

point was recently addressed by a subtle Anisotropic Critical State Theory (ACST) (Li et al. 2012;841

Dafalias 2016). In this theory, the CS is characterized not only by the critical values of stress ratio842

and void ratio but also by a critical value of fabric anisotropy. Since dilatancy is the most signifi-843

cant parameter of the CST, the combined effect of loading direction and fabric state is formulated844

in terms of a Dilatancy State Line (DSL), parallel to the Critical State Line (CSL) on the (e, p)845

plane, which evolves towards the CSL as a function of a scalar anisotropy parameter reflecting the846

distance of the current fabric state to its critical state. On the other hand, the DSL replaces the847

CSL in its role of specifying the dilative or contractive state, depending on whether the current848

void ratio e is smaller or larger than the corresponding void ratio ed at the same p. The new state849

parameter is defined by ζ = e − ed = (e − ec) − (ed − ec) = ψ − ψA, where ψ is the usual state850

parameter and ψA represents the anisotropy of the model. The uniqueness and attainability of the851

CS is proved on the basis of the Gibbs condition of stability. The model is completed by a simple852

evolution equation for ψA, incorporating the requirement that the latter vanishes in the CS.853

The ACST is a general framework within which various constitutive models may be formulated854

(Gao et al. 2014). It can be considered as a significant step beyond the CST with the advantage of855

shedding new light on the foundations of the CST and thus paving the way for further developments.856

The critical anisotropy may be evaluated from a grain-scale statistical approach. In particular, it can857

be shown that with an appropriate representation of local grain environments, the critical contact858

anisotropy a∗c is related to the values of the coordination number zmax and zmin in the densest and859

loosest isotropic states, respectively, through a simple relation a∗c = 2(zmax − zmin)/(zmax + zmin)860

(Radjai 2009; Radjai et al. 2012).861
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Higher-order models862

Most elastic-plastic models of granular behavior are local in the sense that the stress at each863

material point depends only on the strain or strain rate at the same point. Higher-order continuum864

models have been motivated by the finite size of shear bands, scale effects and particle rotations865

(Mulhaus and Vardoulakis 1987; Vardoulakis and Aifantis 1991; Vardoulakis and Sulem 1995).866

By introducing an internal length into the problem, such models remove the ill-posedness of the867

boundary-value problem arising in softening and shear localization. The internal length scale,868

which can be attributed either to grain size or the size of mesostructures, accounts for shear band869

thickness and allows for scale effects to be captured by the theory.870

The internal length scales are definitely larger than single grain size (∼ 10 grain diameters) as871

inferred from force-force correlations (see section 3). This force-related length reflects the correla-872

tions of the underlying texture and may thus partially depend on boundary conditions and fabric873

anisotropy, but it remains of the order of several grain diameters (Majmudar and Behringer 2005).874

However, non-affine velocities reveal much larger lengths involving correlated motions of particles875

(see section 3) (Radjai and Roux 2002). One highly nontrivial observation is the creeping of grains876

far away from a moving boundary (the so-called split-bottom geometry) (Nichol et al. 2010). An-877

other well-documented observation is the decrease of the maximum angle of stability of a granular878

layer as a function of the thickness of the latter (Pouliquen 1999). Recently, S-shaped strain profiles879

were evidenced in experiments of plane shear flows indicating that the rheology is different close880

to the walls and its effects extends deeply into the medium (Miller et al. 2013). A local rheology881

predicts a linear profile when the stress state and all other fabric variables are constant across882

the flow. A more direct evidence for nonlocal behavior was provided by extensive simulations of883

Kuhn (Kuhn 2005). By imposing coerced nonuniform shearing, it was shown that the shear stress884

is strongly affected by both the first and second gradients of shear strain. The same simulations885

indicate that the dilatancy and particle rotations are not affected by gradients.886

The gradient elastic-plastic models have been extensively worked out in the past (Vardoulakis887

and Aifantis 1991; Goddard 2014). They all involve only the second gradient on the basis that888

the first gradient is not compatible with the symmetry of the flow. A plastic material length `p is889

introduced as well as a reduced stress rate depending on the Laplacian of the plastic strain rate.890

The Laplacian accounts for the assumption that the behavior at a given point in the flow depends891
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on the nature of the flow in the surrounding region. Recently, Miller et al. used the concept892

of granulence to introduce an eddy viscosity proportional to the imposed shear rate and squared893

distance to the walls in order to estimate S-shaped velocity profiles (Miller et al. 2013). Another894

successful nonlocal model is based on a state parameter field g called granular fluidity (Kamrin895

and Koval 2012). It enters the rheology through its definition and γ̇ = gµ and its value at each896

material point as a perturbation of its local value gloc = γ̇loc/µ by its Laplacian ξ2∆g where ξ is a897

cooperativity length proportional to grain size. This model has shown its ability to quantitatively898

predict all the above-mentioned nonlocal effects (Kamrin and Henann 2015).899

Failure and instabilities900

Instability refers to a state of impossibility of quasi-static monotonic loading so that any in-901

finitesimal load increment leads to dynamic evolution with a burst of kinetic energy or large de-902

formations (Lade 2002; Nicot and Darve 2007). Experimental observations show that the failure is903

either of geometrical nature as in column buckling, or of material origin as in constitutive behavior.904

The latter has generally been associated either with vanishing of the determinant of the constitutive905

tensor as precursor of homogeneous failure at the plastic limit or vanishing of the determinant of906

the acoustic tensor with the emergence of plastic strain localization. These two criteria coincide907

for an associative flow rule in which the elasto-plastic tensor is symmetric. But the non-associated908

behavior of granular materials implies the loss of symmetry so that shear localization may occur909

before the plastic limit.910

Undrained triaxial tests on loose sand show a different type of failure at peak deviatoric stress911

without shear localization (Nicot et al. 2007). The concepts of controllability and sustainability of912

equilibrium states were introduced to account for this diffuse failure. Recently, from experiments913

and DEM simulations it was shown that a whole bifurcation domain in the stress space exists with914

various possible failure modes (Daouadji et al. 2011). The diffuse failure mode has a directional915

character with respect to loading. The second-order work d2W = dσijdεij has been used to analyze916

failure modes inside the plastic domain. This criterion includes both the plastic limit condition917

and strain localization, which are special cases of the vanishing of second-order work. The micro-918

instabilities are always present in sheared granular materials in the form of local bursts of individual919

or collective inertial grain motions but they generally do not propagate to the macro-scale as a result920
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of disorder and energy dissipation. They propagate only when they are numerous and organized921

in such a way that single grain motions are amplified by an avalanche-like process (Staron et al.922

2002).923

This means that a crucial step for a better understanding of failure is a detailed investigation924

of the micro-transformations from the contact scale to the system scale, with due considerations925

of sample size effects. Such processes can be studied, e.g., by deviator stress increments under926

triaxial conditions. The general picture of the stress-strain behavior is a smooth process when927

shear deformation is controlled. But when stress increments are applied, a granular material can928

support finite stress increments without changes in the contact network (and without deformation929

if grains are rigid) followed by fast rearrangements corresponding to a finite strain step (Combe930

and Roux 2000; Roux and Combe 2002). With frictionless rigid grains, the finite strain jumps have931

a Levy statistics, i.e. a power-law distribution of infinite mean – and no deterministic strain can932

be associated to given stress increments, even in the large system limit (Combe and Roux 2000).933

Dilatancy vanishes in such systems but a finite shear resistance is observed. Friction modifies934

this distribution (Roux and Combe 2002), and smooth stress-strain curves are obtained for large935

samples. The micro-instabilities by which contact networks rearrange and the fabric changes in936

response to stress variations do not necessarily imply the existence of macro-instabilities (leading,937

e.g., to strain localization). No specific study has been carried out yet, though, of the dependence of938

the length scale associated to rearrangements on the proximity to a macroscopic instability criterion939

except on sandpiles tilted from horizontal towards their angle of repose, indicating that a length940

scale defined from friction mobilization increases and diverges as the maximum angle of stability is941

approached (Staron et al. 2002; Staron and Radjai 2005).942

Statistical mechanics approach943

Besides kinetic theory of granular gases, an increasing number of researchers have dealt with944

granular materials by means of concepts and theoretical tools of statistical mechanics. In such945

attempts, granular media are very often used as a metaphor of amorphous materials such as colloids,946

foams and glasses. For example, the SOC is a perfect model of out-of-equilibrium systems in which947

sandpiles are used for illustration (Bak et al. 1988).948

One of the earliest statistical models of granular matter is Edwards’ volume ensemble (Edwards949
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and Oakeshott 1989). Since the volume (or packing fraction) of a granular material can change,950

Edwards suggested that a microcanonical granular ensemble may be defined by all jammed mechan-951

ically stable states of equal volume (replacing energy). Hence, a statistical mechanical model can be952

built by assuming equiprobability of all such states. In particular, a “compactivity” variable can be953

introduced as the derivative of the volume with respect to entropy (analogous to thermodynamical954

temperature). There have been attempts to measure the volumetric entropy and compactivity of955

simple granular systems from the distribution of volumes of tessellation cells (Aste and DiMatteo956

2008). This has been further investigated by simulations and implies that the compactivity is a957

measure of void ratio (Oquendo et al. 2016). A dual approach consists in considering the force958

ensemble as the set of all force configurations with a given confining pressure (Snoeijer et al. 2004).959

The statistical entropy has more generally been employed to rationalize force distributions and960

local structures such as the distributions of coordination numbers, void valences and porosities (Bagi961

1997; Kruyt and Rothenburg 2002b; Goddard 2004; Troadec et al. 2002; Aste et al. 2005; Kuhn962

2014). Given a distribution Pi, maximizing the entropy S = −
∑

i Pi logPi for a set of constraints963

is equivalent to searching the most unbiased solution with respect to the missing information.964

The results obtained by this method with a proper account of constraints are often in excellent965

agreement with numerically simulated measures in the critical state for which meaningful statistics966

can be extracted. But whether and why the critical state should be a maximally disordered state967

(in the sense of the amount of missing information) is still a matter of discussion. One still needs968

to show that the entropy is lower below and above the critical state.969

Jamming transition, i.e. the arrest of particles from a dynamic state, has attracted considerable970

work (Liu and Nagel 1998). A supercooled liquid turns into a glass with a finite yield stress as the971

temperature is lowered. This process is very similar to the arrest of shaken grains in a packing of972

finite yield stress when the shaking intensity is decreased or the packing fraction is lowered (Jaeger973

2015). Such transitions may be described by the same jamming phase diagram with temperature,974

packing fraction and pressure as control variables. Granular materials have been extensively used975

as model system for the investigation of this jamming diagram.976

Static disordered packings of spheres have been a subject of great interest for their geomet-977

ric properties, which are relevant for all kinds of amorphous materials, made of atoms, colloidal978

particles or macroscopic grains (Aste and Weaire. 2000; Aste et al. 2005; Torquato 2010). In979
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the absence of friction, rigid grains generically assemble under confining forces into configurations980

devoid of force indeterminacy (i.e., given the geometry of the contact network, contact forces are981

entirely determined by the external load and the equilibrium requirement). This sets upper bounds982

on coordination numbers, which still apply to frictional grains. With spherical grains, isostaticity is983

achieved (no displacement indeterminacy or “floppy mode” (Roux 2000; Torquato 2010) exists on984

the force-contact network), which results in a coordination number equal to 6 if the “rattler” grains985

that carry no force are excluded. Without friction, those configurations – often termed jammed in986

the recent literature – are local minima of the potential energy of external forces (Roux 2000). If987

subjected to an isotropic state of stress, they realize a local maximum of solid fraction in configura-988

tion space – whence the identification (O’Hern et al. 2003; Agnolin and Roux 2007a) of the random989

close packing (RCP) state with such isotropically confined assemblies of rigid frictionless objects,990

provided it can be regarded as uniquely defined – all volume-minimizing configurations, if quickly991

assembled, sharing the same solid fraction in the limit of large systems. This latter condition992

appears to be satisfied for rapidly assembled packings (Agnolin and Roux 2007a), in which slow993

evolutions (toward crystallization for identical beads) or, possibly, towards separation for mixtures,994

do not take place (lack of uniqueness for slower protocols is shown in (Chaudhuri et al. 2010)).995

The absence of dilatancy reported for frictionless objects (Peyneau and Roux 2008a; Azéma996

et al. 2015) could partly explain that the same maximum density is recorded in various situations997

of packings assembled quickly, but in such a way that the mobilization of friction is circumvented:998

the stress state needs not be isotropic. The concept of the RCP, thus related to a mechanical999

definition, was however criticized as somewhat ill-defined by some authors (Torquato 2010), who1000

adopted instead a notion of a Maximally Random Jammed (MRJ) packing of hard particles. The1001

MRJ state minimizes some order metric under a condition of jamming. A discussion of jamming1002

(stability of equilibrium state under the given external load) for arbitrary-shaped, frictional grains1003

is provided in (Bagi 2007).1004

Inertial granular flows1005

Most modeling attempts mentioned above concern “quasi-static” deformations of granular ma-1006

terials, which are assumed be rate-independent. However, the flow of granular matter is common1007

in the transport of granular materials such as minerals and cereals, as well as at larger scales of1008
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rock avalanches, debris flows and other geological surface processes. Bagnold was the first to model1009

granular flows by considering grains of average size d and density ρs subjected to a controlled shear1010

flow of rate γ̇ at constant volume. With these parameters, a dimensional analysis implies that1011

the shear stress τ is propotional to ρsd
2γ̇2 with a prefactor depending on the packing fraction φ1012

(Bagnold 1954).1013

For a long time, the scaling of shear stress as γ̇2 was considered to be a consequence of mo-1014

mentum exchange whose average value and frequency are proportional to the shear rate. This1015

scaling was incorporated in a general theory of “rapid granular flows” but its applicability to dense1016

granular flows remained questionable as most flows encountered in practice are both frictional and1017

collisional (Hutter and Scheiwiller 1983; Campbell 1990). The general theory of collisional granular1018

materials was developed using the classical formalism of kinetic theory and by introducing a gran-1019

ular temperature T = 〈δv2〉, the mean square of nonaffine (or fluctuating) particle velocities, and1020

by introducing a dissipation term through restitution coefficients for mass conservation (Jenkins1021

and Savage 1983). In this theory, all stresses are of kinetic origin. It should also be recalled that1022

reference physical system in both rapid flows and granular gases has been constant-volume shear1023

and the rheology is described by normal and shear viscosities ηn and ηt, respectively, defined by1024

p = ηnε̇t and τ = ηtε̇t, where ε̇t is the shear rate.1025

It was only in 2004 that it became clear that frictional and inertial flows can be described in1026

the same framework if the volume as control parameter is replaced by the confining pressure p1027

(GDR-MiDi 2004). The relevant dimensionless number is then the inertial number I:1028

I = γ̇d

(
ρs
p

)
(16)1029

This number is the ratio of the internal relaxation time of the grains d (ρs/p) to the shear time 1/γ̇.1030

At low values of I, typically below 10−3, the flow is rate-independent. At higher values of I, the bulk1031

friction coefficient µ increases with I whereas the packing fraction decreases. Phenomenological1032

laws µ(I) and φ(I) for steady granular flows in combination with continuum conservation equations1033

correctly predict the velocity and stress fields in various flow geometries (da Cruz et al. 2005; Jop1034

et al. 2006). The increase of µ with I despite an increasingly lower packing fraction reveals a1035

genuine microstructure. As I increases, the force chains become more sparse, the correlation length1036
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of connected particles decrease, the contact lifetimes decline, and an increasing number of impulsive1037

forces and frictionally mobilized contacts come into play. Azema and Radjai applied stress partition,1038

as in quasi-static deformations (see section 4), to show that the main mechanism for the increase1039

of µ is contact anisotropy (Azéma and Radjai 2014).1040

In the I-based rheology, µ(I) and φ(I) are the main variables. However, using the definition1041

of I, it is straightforward to obtain the φ-based rheology (constant volume) with ηn = I−2 and1042

ηt = µI−2. Using the data, it is shown that both viscosities diverge as (φc − φ)−α, with α ' 2,1043

when I → 0, corresponding to φ → φc (Boyer et al. 2011). The value of φc is ' 0.58 for spherical1044

particles of the same size and coincides with the CS packing fraction at low confining pressures.1045

A similar divergence is observed in dense suspensions. This indicates that the same framework1046

may be used to unify dense granular flows and dense viscous suspensions by accounting for viscous1047

forces as well as inertial and frictional forces.1048

CONCLUSIONS: EXPANDING FRONTIERS1049

The fast expansion of granular science does not yet seem to converge to a common denominator.1050

While new frontiers are constantly explored, there remain gaps and barriers that have been dodged1051

or left for future. The developments have been driven by so many problems of practical interest,1052

increasingly resolved measurements and imaging techniques, DEM simulations of increasing compu-1053

tational efficiency and fruitful analogy with glassy materials. The simple packing of equal spheres1054

has grown into a complex conceptual object in which the frontiers between trivial and fundamental1055

are sometimes confused. But these are only signs of an explosive expansion of the field.1056

Relating the macroscopic behavior of granular materials to their microstructure is a long-1057

standing dream, which has not yet been realized. A long path remains towards a multiscale ap-1058

proach based on the details of granular microstructure. For example, there is still only a partial1059

understanding of relevant fabric variables and no general model for their evolution. Many models1060

consider only simple loading paths in which a single scalar state parameter may just be enough.1061

The role of mesoscale structures and their correlations also remain to be clarified. Advanced con-1062

stitutive models can account for complex loading paths but their state variables are not explicitly1063

connected with variables pertaining to the microstructure. On the other hand, the particle-scale1064

variables such as forces and mobilized contacts have broad and scale-dependent distributions which1065
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are often well characterized from simulations and experiments but they elude statistical modeling.1066

In the same way, despite decisive progress made on inertial granular flows, the empirical expres-1067

sions of shear stress and packing fraction as a function of the inertial number have no theoretical1068

basis. Although nonlocal effects have been evidenced by experiments and simulations and captured1069

by models based on higher gradients of strain or a state parameter (as in the fluidity model), a1070

pending question remains as to the nature of fluidity and some observations such as the dependence1071

of the stress on the first strain gradient. It is important to note that the continuum equations as-1072

sume a representative volume element. The nonlocal effects refer mostly to the grain size, which is1073

clearly not a representative size of the material behavior. Moreover, the perturbations introduced1074

by the boundary walls in the microstructure and their long-range correlations together with a local1075

model thoroughly based on the microstructure may allow replacing nonlocal models to explain such1076

“nonlocal” effects. These aspects clearly need further investigation.1077

An important aspect of granular materials concerns particle geometrical properties such as their1078

shape and size distributions. Such geometrical effects are crucial in many applications and they1079

raise fundamental questions with respect to shear strength, dilatancy, stability and flow of granular1080

materials. For example, the packing fraction is not a monotonous function of the particle shape1081

as it deviates from a sphere; see Fig. 6. A generic shape parameter may be introduced to capture1082

this effect of asphericity, but second-order shape parameters are also important for shear strength1083

and space-filling properties of particles. This is a vast field that only begins to be investigated1084

in a systematic fashion. The shape and size effects need enhanced experimental and numerical1085

skills. The reason is that particle shapes cannot easily be controlled and numerical simulations1086

require more advanced techniques of contact detection and much larger numbers of particles as size1087

polydispersity and shape variability in samples increases.1088

3D printing of particles opens the way for systematic experimental research along these lines.1089

Particles of nonconvex and other exotic shapes can thus be produced. A packing of such particles1090

is governed by real interlocking of the particles leading to a “geometric cohesion” (Franklin 2012).1091

Star-shaped, Z-shaped and similar particles spontaneously jam in stable structures of high shear1092

strength when poured into a container. Hence, optimizing particle shape may allow one to design1093

structures that can emerge from random jamming of particles. This is what Jaeger calls “jamming1094

by design” as a “process that gets us from desired properties to requirements for the constituent1095
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components” (Jaeger 2015; Reis et al. 2015). Packings of nonconvex aggregates of overlapping1096

spheres can be optimized to create the densest packing (Roth and Jaeger 2016). This is not only1097

of immense interest to the design of special microstructures in sintered powders combining high1098

permeability, strength and manageability, for example, but also to the architecture and industrial1099

design communities to create innovative structures.1100

Besides particle geometry, there is presently a vast scope for research on several other aspects1101

that were omitted from this review. The topic of cohesive granular materials and their flow behavior1102

has been much less at the focus of recent research. Cohesive interactions may be due to solid surface1103

forces as in fine powders or a consequence of capillary forces as in unsaturated soils. The mixing1104

process of a powder with a liquid, distribution of liquid clusters, packing states and their rheology1105

have only recently been investigated at the particle scale. The agglomeration process in applications1106

to powders in food science and iron ores in steel-making industry is complex as it involves both1107

cohesive interactions and inertial flows.1108

Granular materials composed of crushable particles and their behavior while the particles can1109

break under evolving load and/or deformation have been mostly investigated in connection with1110

soils and rockfills. Particle breakage affects the stress-strain behavior as a result of the evolution of1111

particle size distribution, which affects in turn the dilatancy and hence shear strength (Daouadji1112

et al. 2001; Einav 2007; Russell et al. 2009; Daouadji and Hicher 2010). Other effects concern1113

the evolution of particle shapes and their frictional contacts that induce nontrivial effects. Such1114

evolving granular materials have often been modeled by assuming that each particle is an aggregate1115

of smaller particles. However, to avoid finite size effects, it is necessary to consider larger aggregates1116

and large packings of aggregates in order to be able to extract useful information from such discrete1117

models.1118

Another area of research, remaining almost fully unexplored, is that of ultra-soft particles. In1119

hard granular materials, the elastic deformations are assumed to be concentrated at the contact1120

points, and thus described as a function of the rigid-body degrees of freedom of the particles. This1121

approximation is too crude in many applications, and the particles undergo large deformations1122

(Nezamabadi et al. 2015). Metallic powders, for example, deform plastically without rupture.1123

Likewise, many pharmaceutical and food products are soft-particle materials. The particle shape1124

change occurs also in clays, which are composed of nano-scale aggregates. Such materials can1125
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undergo volume change by particle shape and size change under moderate external load with1126

enhanced space filling properties. The compaction and shear behavior beyond this “jamming”1127

limit require fundamental research effort in the future. Proper simulation methods, by coupling a1128

continuum description of the particles, with the Material Point Method that can allow for large1129

deformations, for example, coupled with contact dynamics method for the treatment of contacts1130

between deformable particles, need to be developed.1131

Although only the modeling aspects were at the focus of this paper, let us recall here that the re-1132

search on granular materials has been developed from increasingly precise experimental techniques1133

to measure particle displacement fields and forces (Lesniewska and Wood 2009). The development1134

of new measurement techniques and their applications to various granular experiments can be a1135

subject of a stand-alone review paper. Automated simultaneous measurements of applied stresses1136

and strains in arbitrary directions are already in use in soil mechanics. The experimental challenge1137

has been so far the perfect control of boundary conditions and homogeneity of samples. However,1138

the challenge has now shifted to the measurement of fabric variables in 3D packings of particles1139

by resolving contacts between particles. Today, high-resolution X-ray computed tomography can1140

provide access to this information (Andò et al. 2012). 3D photoelastic imaging of forces is cur-1141

rently being developed (Brodu et al. 2015), and it will be a valuable tool for accessing normal1142

and tangential forces and their evolution. The ultimate experiment for future will be simultaneous1143

measurements of particle displacements and contact forces in 3D with variable boundary conditions.1144
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Coulomb, C. A. (1781). “Théorie des Machines Simples.” Academie des Sciences, 10, 166.1250

Coumoulos, D. G. (1967). A radiographic study of soils. University of Cambridge.1251

Cundall, P. A. and Strack, O. D. L. (1979). “A discrete numerical model for granular assemblies.”1252
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FIG. 1. Evolution of stress ratio (a) and packing fraction (b) as a function of cumulative plastic
shear strain ε in DEM simulation of a packing of disks at constant confining pressure. Here,
qn = 0.5(σ1 − σ2) cos 2(θσ − θ0) and p = 0.5(σ1 + σ2), where σ1 and σ2 are the principal stresses
and θσ and θ0 are the principal stress direction and flow direction, respectively. The initial
state is prepared by isotropic compaction. Note the long transient and unmonotonic evolution
of packing fraction upon shear reversal.
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FIG. 2. (a) The contact geometry; (b) First-shell particle environment with angular exclusions;
(c) A loop of touching particles.
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(a) (b)

FIG. 3. (a) A map of normal forces in a polydisperse packing of disks. Line thickness is
proportional to normal force; (b) A map of nonaffine particle displacements in a sheared
packing of disks.
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FIG. 4. Relevant scales in granular materials: contact, particle, assembly (microstructure),
representative volume element (RVE) and macrostructure.
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FIG. 5. Shear modulus G versus confining pressure P in different types of numerically simulated,
isotropically compressed glass bead assemblies, denoted as A (crosses, continuous line), B
(asterisks, dotted line), C (square dots, continuous line) and D (open squares, dotted line).
Corresponding solid fractions Φ and coordination numbers z satisfy ΦA ' ΦC > ΦB > ΦD, and
zA > zB > zC ' zD The dashed line marked “KJ” corresponds to experimental data (Kuwano
and Jardine 2002) on loose bead packs between 50 and 400 kPa.
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FIG. 6. The packing fraction of an assembly of nonconvex agregates each composed of three
overlapping disks as a function of the degree of nonconvexity η.
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