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Abstract Based on Proper Orthogonal Decomposition

(POD), a new method is presented in order to sta-

tistically characterize arbitrary particle shapes using

an optimal choice of shape functions identified on a

set of 1000 digitized railway ballast particles obtained

through 3D Scan. The coefficients of the POD expan-

sion enable a description of ballast grains with vary-

ing levels of accuracy. On exploiting the knowledge of

their statistical distribution we are able, implement-

ing an appropriate Multivariate Kernel Density Esti-

mation (Multivariate KDE) method, to generate irreg-

ular particles with similar morphological features. The

description and generation methods are validated by

comparing statistical distributions of basic characteris-

tics: surface area, volume, average radius, elongation,

flatness, and aspect ratio. Using suitable geometric de-

scriptors defining local curvatures, we identify which

surface points might be regarded as forming faces. This

shows that the proposed particle generation method is

well suited for irregularly shaped granular materials, as

a first geometric definition step, before numerical sim-

ulations of their collective mechanical properties are

carried out by a Discrete Element code dealing with
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polyhedral shapes. We illustrate this process with the

simple case of the assembling of a granular pack from

a loose configuration, by one-dimensional compression,

using different levels of accuracy in the representation

of grain shape.

Keywords Railway Ballast · Shape · Characteriza-

tion · Modelling · Proper Orthogonal Decomposition ·
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1 Introduction

Understanding the mechanical behaviour of the bal-

lasted track [1] is a major issue for railway companies.

As with other granular materials, numerical simulations

by the Discrete Element Method (DEM) [2,3] are a
particularly valuable tool, thanks to its unique ability

to control independently the micromechanical parame-

ters (e.g. friction or restitution coefficients), and to the

insights it provides on granular materials at different

scales.

An important question, though, is the modeling of

grain shape and of its influence on mechanical proper-

ties. As shown in Fig. 1, the ballast grains, with sizes of

the order of a few centimeters, assume rather different,

irregular shapes. They typically exhibit angular shapes

and rough surfaces composed of large quasi planar faces

limited by sharp edges. The issue of how to charac-

terize the size and shape of solid particles is currently

being investigated in many different fields of applied

physical sciences and engineering, including chemical,

atmospheric, pharmaceutical and soil sciences [4–8]. A

number of numerical studies [9–16], as well as labora-

tory experiments [13], have shown the strong influence

of grain shape on granular material behaviour, in both

quasistatic and inertial flow regimes.
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(a)

(b)

Fig. 1 (a) Railway Ballast. (b) Two ballast grains on a larger
scale.

The principal goal of this paper is to provide a quan-

titative method to model the shape of ballast grains,

a necessary step in a research effort based on DEM,

towards a quantitative and relevant evaluation of the

sensitivity of ballast performance to shape variability.

In this paper, we propose a novel statistical method

to achieve an optimal and exhaustive particle shape

characterization. The input quality is rendered relevant

by the millimetric accuracy of 3D scans of real ballast

grains. Our approach enables a DEM modelling of bal-

last grains as polyhedra with, in theory, an arbitrarily

high accuracy.

In order to characterize particle shape, various shape

descriptors of different levels of complexity have been

introduced. As for railway ballast, we can find several

shape indicators in the European and French norms

(BS EN 13450, 2003). They are categorized in 1D, 2D

and 3D descriptors, and are based on simple formulas

combining some basic properties such as surface area,

volume, or diameter. Such simple descriptors (e.g., elon-

gation or roundness), while providing global shape in-

formation, fail to capture the complex morphology of

ballast grains (faces,edges, angularity,etc.). More ad-

vanced shape descriptors have been introduced in the

last years in order to both quantify and represent the

realistic geometric characteristics of granular particles

before incorporating them in DEM simulations[17–24].

Most of these approaches are based on computing sta-

tistical properties of different shape features, and using

them to describe the shape of a set of particles.

Sophisticated three-dimensional shape characteriza-

tions recently used include 3D extensions of Fourier

descriptors [25,26], or spherical harmonics (SH) series

(which appropriately generalize Fourier series in a spher-

ical topology) [27–31]. They were implemented for shape

characterization as well as generation of grain shapes.

As explained further in this paper, such approaches,

however powerful they may be, prove not convenient for

highly angular shapes, as in the case of ballast grains.

Thus, the method we propose is based on the Proper

Orthogonal Decomposition (POD) technique [32]. His-

torically introduced in studies in turbulence as an ef-

ficient method to identify and extract coherent struc-

tures of a flow [33], POD can be regarded as a way

to substitute the Fourier decomposition [34] when the

flow directions cannot be assumed uniform or periodic.

POD is also known as the Karhunen-Loève Decompo-

sition [35,36] or Hotelling analysis [37], and may be

viewed as a variant of Principal Component Analysis

[38], or of Singular Value Decomposition [39]. It is be-

ing used through a broad range of applications (e.g.,

image processing, signal analysis, data compression and

optimal control [40]), for which the common objective

is to extract the dominant features out of a set of data,

and to build a reduced model. As shown in [22], this

method is also efficient for particle shape classification.

Sec. 2 presents the POD method and identifies its

ingredients on a set of scanned ballast grains. Using sta-

tistical distributions provided by POD, the numerical

generation of sets of equivalent grains is made possi-

ble as described in Sec. 3, on resorting to a stochas-

tic method known as the Multivariate Kernel Density

Estimation (Multivariate KDE). The method is vali-

dated by comparing statistical distributions of some

basic shape descriptors (e.g., surface area, elongation

or flatness) between the original grain and the numer-

ically generated grain sets. More advanced geometric

descriptors are discussed in Sec. 3.3, such as curvature

and large faces (identified as low curvature subsets of

the grain surfaces), allowing both more physical char-

acterizations and more stringent tests of the modeling

of grain morphology. Finally, Sec. 4 reports on a prelim-

inary numerical simulation of some mechanical proper-

ties of the model material.
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2 Grain shape characterization

2.1 Data Acquisition and Pre-processing

We start from a dataset (provided by SNCF) with n =

1000 point clouds obtained by 3D digitization (3D scan)

of n real ballast grain surfaces, each one comprising

about 300000 points. Fig. 2 shows 2 examples of these

point clouds. To increase POD efficiency we have to

Fig. 2 Scanned ballast grains.

maximize the resemblance between the grains. After

cleaning the point clouds from possible outliers, the

centre of mass of all grains is moved to the origin of

coordinates and the grains are rotated so that their

principal axes of inertia coincide with a common fixed

frame. The resulting grains (see Fig. 3), are represented

by the values of their radii, computed, from their cen-

tre of mass to their surface, along d = 800 isotropi-

cally distributed directions, that are common to all the

grains (using the point repulsion algorithm defined in

Ref. [41]). This relies on the assumption, reasonable for

ballast, of star-like grain shapes and uniquely defined

radii in each direction. Denoting as rij the radius of

grain i along direction j, we thus define a matrix A,

each line of which containing the d radii of one of the

n grains, along each one of the d directions. Each one

of the d columns of A contains the n radii of the grains

as measured in one direction.

We then define the average grain by its radii:

rj =
1

n

n∑
k=1

rkj (1 ≤ j ≤ d). (1)

The average grain, as shown in Fig. 4, is close to an

ellipsoid with large (L), intermediate (I) and small (S)

Fig. 3 Pre-processed grains: effects of reorientation (left), of
description with 800 directions (right).

lengths along principal axes given by:

L ' 29.6 mm; I ' 25.7 mm; S ' 21.6 mm. (2)

Fig. 4 Average grain shape.
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2.2 POD applied to particle shape

To organize morphological information more efficiently,

it is natural to work on the difference between each

grain and the average grain, using

∆rij = rij − rj . (3)

The radius differences written in (3) define matrix A,

and its line vectors ∆ri for 1 ≤ i ≤ n, by subtracting

vector r from each line of A. Let us, for any matrix a

denote its Frobenius norm as ||a||: ||a||2 =
∑
i

∑
j a

2
ij .

||r|| being the norm of d-dimensional vector r, one has

by definition:

||A||2 = n||r||2 + ||A||2, (4)

and thus the importance of the variation from grain to

grain, relatively to the average shape, may be expressed

by the following ratio:

δ1 =
||A||

n1/2||r||
' 20% (5)

Applying the POD to the data contained in A con-

sists in carrying out a singular value decomposition of

this matrix, i.e.,

A = U ·Σ · TV (6)

in which U and V are orthogonal square matrices, of

respective order n and d, and Σ is a n× d matrix with

all elements equal to zero except the first r ones on

the diagonal, σk, 1 ≤ k ≤ r, which are positive and

classified in decreasing order, r being the rank of A.

Equivalently, matrix TA·A, which is square symmetric

of order d and contains the correlation coefficients of the

column vectors of A, has to be diagonalised. Its d ≥ r

eigenvalues λj are λj = σ2
j for 1 ≤ j ≤ r, λj = 0

for j ≥ r + 1, and, written in decreasing order from

the upper left corner, define diagonal matrix D. Matrix

V, as defined in (6), contains the coordinates of the

corresponding (normalized) eigenvectors, such that

TA ·A = V ·D · TV. (7)

As to matrix U, it is easily deduced from equality

U ·Σ = A ·V, (8)

on exploiting the simple diagonal structure of Σ.

The main interest of the POD in the context of data

modeling is its ability to define a set of approximations

A(k) for A, each one being optimal in the sense that

A(k) minimizes ||A− a||2 among all matrices a of rank

k.

A(k) is obtained on setting all singular values σl to

zero for l ≥ k + 1 in SVD decomposition (6), thereby

replacing Σ by Σ(k), containing only k non-vanishing

diagonal elements:

A(k) = U ·Σ(k) · TV. (9)

A relative error in approximating A by A(k) might be

defined as:

ε(k) =
||A−A(k)||2

||A||2
=

r∑
l=k+1

λl

r∑
l=1

λl

. (10)

By construction, it decreases as k increases and is equal

to 0 for k = r (with r = d in the present case, be-

cause 800 = d < n = 1000). Conversely, the difference

E(k) = 1 − ε(k), to which we refer as the information

content of the approximate morphological description

at order k, grows from zero to one. Returning to the

vectors (or sets of radius differences) ∆ri, with j coordi-

nates that describe the shapes of the n grains, relation 6

expresses them as linear combinations, with coefficients

Uilσl, of a set of basis vectors, hereafter referred to as

shape functions or modes, Sl, defined by the columns of

matrix V, Slj = Vjl (the eigenvectors of TA ·A). Upon

truncating the decomposition at order k one only uses

the k first functions, and characterise the shape of the

grains by the values taken by k coefficients.

2.3 Results and discussion

Fig. 5 shows the error defined in (10) as a function of

the number k of basis functions. This error measures a

relative shape deviation, averaged over all grains, be-

tween their real and their approximated shapes (trun-

cated at the order k). Fig. 5 shows that the method

is successful in extracting the important information:

keeping only the 20 first modes instead of 800 (2.5% of

the total number), the error remains below 10%. This

performance can be increased as we have larger sets of

particles. For more details, see [42].

It is interesting to test the sensitivity of the set of

basis functions to the initial number of scanned grains.

We reproduced the procedure using randomly chosen

subsets of the grain population, and compared the re-

sulting covariance matrices using the method of Ref. [43].

The outcome of this study [44] is that the differences

become negligible as soon as a population of 400 ballast

grains is used in the statistical analysis.

In order to prove the efficiency of our method, we

compare its results with those of the well known method

shape characterisation method relying on an expansion

in Spherical Harmonics (SH). Using the same number of
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Fig. 5 Error ε(k), as defined in Eq. 10, versus number k of
shape functions.

coefficients, Nc = 800, corresponding to 100% of the in-

formation within the POD approach, we reconstructed

our dataset with different shape precision levels and

compared with POD results. Fig. 6 shows an example

of a grain reconstructed with 800 coefficients using POD

and using SH, and one can notice that for a complex

shaped particle as ballast, a larger SH basis is required:

SH expansions with 800 coefficients fail to construct a

grain similar to the scanned one. On trying different

basis sizes, we found that the complete precision (100%

of the shape information) is approached with 3000-3500

SH coefficients. Fig. 7, plotting SH and POD errors ver-

sus the number of coefficients, clearly shows that the

POD approach is, by far, the more efficient one.

(a)

(b)

Fig. 6 A grain reconstructed using (SH) analysis (a) and
POD procedure (b).

As in the SH analysis, the POD modes of increasing

order tend to characterise details of smaller scale, from

global shape to surface texture and roughness details.

This is apparent in Fig. 8, showing the first mode, con-

taining more than 50% of the morphological informa-

tion (E(1) > 0.5), to have roughly ellipsoidal shape,

Fig. 7 Error ε(k), as defined in Eq. 10 for POD and SH,
versus number Nc of coefficients.

while the following ones, with positive and negative

lobes, are associated with regions of higher curvatures.

The first mode (Fig. 8a) is quite similar to the average

(a)

(b)

(c)

(d)

Fig. 8 First shape functions. From top to bottom: mode 1
to mode 4.)

grain (Fig. 4), albeit slightly more elongated in shape
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????????DE COMBIEN ???? Consequently, the coeffi-

cient of the first mode is, to a large extent, character-

istic of the grain size, but also of its shape, which is

correlated to it.

Fig. 9 illustrates how the shape of one grain is grad-

ually retrieved by an increasing number of modes used

to reconstruct the shape. Table 1 lists the number of

shape functions necessary to achieve the different levels

of accuracy illustrated on this figure, as well as in the

measurements of characteristic morphological data in

the following.

Table 1 Number of modes corresponding to different error
levels. The error decreases to zero for 800 modes.

Error 20% 15 % 10% 5% 1% 0.1%
Mode number 11 16 22 40 117 350

Fig. 9 One grain, approximated with the different levels of
approximations of Tab. 1, improving from (a) to (f), com-
pared to exact shape (g).

To quantify the evolution of shape descriptors with

shape accuracy, we computed surface areas Si, volumes

Ωi, and average radii Ri, 1 ≤ i ≤ n, defined as fol-

lows, from radius values interpolated along directions

distributed over the unit sphere such that both angles

θ and φ vary by constant steps, ∆θ and ∆φ. ????

Si = ∆θ∆φ

d∑
j=1

r2ij(θj , φj) sinφj

Ωi =
∆θ∆φ

3

d∑
j=1

r3ij(θj , φj) sinφj

Ri =
∆θ∆φ

Si

d∑
j=1

r3ij(θj , φj) sinφj =
3Ωi
Si

.

(11)

Other morphological featured are also investigated.

Identifying three linear dimensions of a grain, as length

(largest dimension L), width (intermediate dimension

I) and thickness (smallest dimension S), as in Ref. [17]

(which involves embedding the smallest projected sur-

face of the grain onto a plane within a minimum rect-

angle), one defines the grain flatness as F = S/I, its

elongation as E = I/L and its aspect ratio as a = EF =

S/L. The shape of mode 1 is such that the larger grains

(with large positive coefficient C1) have larger flatness

and aspect ratio than the samller ones (those with neg-

ative C1 of larger absolute value).

Probability density functions (PDF) of all these de-

scriptors computed for reconstructed particles with dif-

ferent levels of shape precision are compared with those

of the scanned set. Fig. 10 plots the probability density

functions (PDF) of S, Ω, R. The ability of the sequence

of shape approximation to describe those distributions

is more quantitatively appreciated on evaluating the

Kolmogorov-Smirnov (KS) likelihood parameter (which

quantifies the probability, assuming equidistribution of

two sets of data, that the difference in their empirical

distributions is as large as the one that is actually mea-

sured). Likelihood values for all 6 descriptors are very

good, showing that the distributions of morphological

features are well reproduced, even with more than 10%

error on shape (Tab. 2).

Table 2 Kolmogorov-Smirnov test results, at different levels
of approximation k, for the distributions of volume Ω, surface
area S, average radius R, flatness F , elongation E and aspect
ratio a.

k 11 16 22 40 117 350

KS (Ω) 0.866 0.879 0.984 0.997 0.997 0.997
KS (S) 0.975 0.984 0.997 0.999 0.999 0.999
KS (R) 0.725 0.737 0.764 0.785 0.849 0.947
KS (F ) 0.926 0.943 0.965 0.973 0.987 0.998
KS (E) 0.934 0.941 0.945 0.981 0.986 0.996
KS (a) 0.887 0.888 0.919 0.928 0.965 0.983

The POD modeling scheme thus enables the control

of shape precision, but also significant data reduction,
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(a)

(b)

(c)

Fig. 10 Convergence study for distributions of morphologi-
cal properties (a) surface area, (b) volume, (c) average radius.

as we noticed the very good agreement of shape ap-

proximation with truncated information when it comes

to simple shape descriptors. This raises the question

of comparing descriptors that are representative of a

complex shape (faces, edges, angularity etc.). In other

words, if the method shows significant reduction, then

we should be able to generate grains that are equivalent

to the scanned set (in terms of shape), using only a re-

duced number of modes. According to the obtained KS

results, we are able to generate equivalent grains using

only 117 modes instead of 800 modes, since it repre-

sents 99% of all information. This will be the objective

of Sec. 3.

3 Generating new grains

3.1 Procedure

We now exploit the POD procedure output statistics

in order to generate distinct and representative 3D bal-

last point clouds. The distributions of some of the co-

efficients of the expansion of grain shapes as series of

basic shape functions are shown in Fig. 11. By con-

struction, these coefficients are uncorrelated [45] and

of zero mean, while their variances add up to ||A||2/n.

In order to generate grains with properties similar to

Fig. 11 Distributions of the first POD coefficients.

the scanned ballast grains from which the basic data

set was obtained, one should reproduce those distribu-

tions, as well as the dependencies between the different

coefficients. From a stochastic point of view, generating

statistically equivalent particles means to estimate the

multivariate probability density functions (PDF) repre-

senting our experimental data. To do so, the paramet-

ric approaches propose to search this PDF in an alge-

braic class of distributions, which are parametrized by

a relatively small number of quantities. However, when

the dependence structure associated with the unknown

PDF is complex, the definition of a relevant parametric

class can become very difficult. For instance, assuming

for the PDF of the grain coefficients simple representa-

tions (such as the multidimensional Gaussian distribu-

tion) can lead to the generation of non physical shapes,

once the generated coefficients have been applied to the

modes.

To circumvent this problem, nonparametric approaches,

such as the multivariate Kernel Density Estimation, are

generally preferred. This method consists in approxi-

mating the PDF of the coefficients as a sum of multi-

dimensional Gaussian PDFs, which are centred at each

available value of these coefficients. In that case, the de-

pendence structure that is present in the available data

is directly integrated in the modeling of the PDF. How-



8 Noura Ouhbi et al.

ever, to correctly concentrate the new generated coeffi-

cients on their regions of high probability, and therefore

obtain realistic and representative grain shapes, the co-

variance of these Gaussian PDFs has to be carefully

chosen. This is particularly important when the num-

ber of available data is not very high compared to the

number of coefficients. More details about the method

and the algorithm associated with this covariance op-

timization are presented and discussed in another pub-

lication [46]. The method enables generating as many

grains as wanted in some seconds. To be able to com-

pare correctly PDFs with the scanned set, 1000 new

ballast grains are thus generated, using 100 shape func-

tions – a limitation motivated by the observation made

in Sec. 2 (see Fig. 5) that modes of higher order only

contain about 1% of the total information.

3.2 Representativity: simple shape descriptors.

Fig. 12 shows some of these simulated grains. Beyond

(a)

(b)

Fig. 12 Two generated ballast grains.

their realistic visual appearance, their representativity

is tested with the distribution of the morphologic pa-

rameters measured on real grains: volume, surface area,

average radius, flatness, elongation, and aspect ratio.

The distribution of the three latter quantities is shown

in Fig. 13, showing good coincidence between original

and simulated grain data.

As a more decisive check, the Kolmogorov-Smirnov

test values are above 0.7 for all six quantities Ω, S, R,

F , E and a.

(a)

(b)

(c)

Fig. 13 Distributions of (a) flatness, (b) elongation and (c)
aspect ratios in simulated grains, compared to the real ones.

3.3 Representativity: advanced shape characterization.

While distributions of simple shape parameters appear

to validate our model, one essential motivation of the

study was the modeling of angular and facetted grains.

To assess the performance of the method in this respect,

we first have to explain how to identify normal vectors,

faces and edges on grains represented by point clouds.

3.3.1 Normal vectors and surface variation at vertices

We implement the method described in Ref. [41]. After

a selection of a local neighboorhood Np of each point

p (9 neighbours per vertex using the KDtree algorithm

from Scikit-learn [47]), an eigenanalysis of the covari-

ance matrix of Np is carried out. This amounts to ap-
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plying PCA to matrix C defined as follows:

C =

pi1 − p

...

pik − p

T ·
pi1 − p

...

pik − p

 , ij ∈ Np (12)

where p is the centroid of the neighbours pij of the

sample point p. This 3x3 matrix is used to solve the

eigenvector problem:

C · vl = λ · vl, l ∈ {0, 1, 2}. (13)

λl measure the variation of pi, i ∈ Np, along the di-

rection of the corresponding eigenvectors vl. Labelling

eigenvalues such that λ0 ≤ λ1 ≤ λ2, the plane:

T (x) : (x− p) · v0 = 0 (14)

through p minimizes the sum of squared distances to

the neighbours of p. Thus v0 approximates the surface

normal at p. Consequently, λ0 quantitatively describes

the variation along the surface normal. We define the

surface variation σm(p) at point p in a neighbourhood

of size m by:

σm(p) =
λ0

λ0 + λ1 + λ2
(15)

A small value of the surface variation at p signals a

well identified apparent tangential plane on the scale

of a neighbourhood of m points about point p. Large

values of σm(p), conversely, correspond to large surface

curvatures. Given a choice of m (in practice we set m =

9), to each vertex is attributed a normal vector and a

value of surface variation. Fig. 14 visualizes the normal

vectors computed at each one of the 800 points used to

represent one ballast grain, while the surface variation

values are shown in Fig. 15.

Fig. 14 Normal vectors at each vertex of one grain.

Fig. 15 Surface variation at each vertex of one grain, with
values encoded as dot size and color.

3.3.2 Clustering procedure, identification of faces and

edges.

The procedure for face detection is based on a clustering

algorithm called DBSCAN [47]. A clustering is defin-

ing groups of objects (points) sharing the same chosen

property. In this case, we chose to define a cluster as a

group of neighbouring points with normal vectors sat-

isfying the following condition:

|| →ni −
→
nj ||2 =

3∑
k=1

(ni
k−njk)2 ≤ ε2 (1 ≤ i, j ≤ d) (16)

The chosen value of ε has a significant impact on how

the points will be distributed in clusters. An optimal

choice, minimizing the sensitivity of the obtained set

of clusters to variations of ε in some range about the

set value, is identified on implementing the HDBSCAN

algorithm [48]. The best value is ε = 0.116, which cor-

responds to a solid angle of 0.17 steradians.

The clustering procedure attributes cluster labels to

the vertices of each grain. All vertices belonging to the

same cluster abide by the criterion defined in Eq. 16.

Some points are not labelled, for lack of neighbours

sharing the same normal direction within the set tol-

erance. In order to interpret the geometrical meaning

of these clusters we classify them as follows.

F Large faces, clusters with more than 50 vertices: see

e.g. large faces 1, 2, 3 and 4 in Fig. 16.

sF Small faces, clusters with less than 50 vertices.

E Edge vertices, defined as non-labelled ones with a

high surface variation (we chose the threshold of

5%,the standard deviation of the surface variation

distribution of non-labelled points, whose mean is

0.5%)(Fig. 16).

R Remaining points (Fig. 16), which belong to none of

the previous categories.
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The result of such a clustering procedure enables the de-

tection of faces and edges, as shown in Fig. 16. Fig. 17

also illustrates this classification, showing edges and re-

maining points U, i.e., all points that do not belong to

large or small faces.

Fig. 16 Clustering of normal directions for one grain (differ-
ent colours represent different clusters).

Fig. 17 Edges E and remaining points U on the surface of
one grain.

The clustering method has shown its ability to de-

tect faces and edges in the same way we would while

looking at a ballast grain. To quantify the obtained re-

sults, Fig. 18 shows the distribution of the numbers of

large faces observed on both scanned and numerically

generated grains. Fig. 19 is a plot of distribution, among

the population of grains, of the proportion ζLF i of the

d vertices belonging to large faces. We clearly observe

a good agreement between scanned and generated dis-

tributions. The distributions of surface variation are

shown in Figs. 20 and 21 for large faces and edges.

The excellent agreement between the distribution

functions shows the success of the POD method to gen-

erate statistically representative ballast grains with the

correct facetted, angular morphology. The method also

Fig. 18 Statistical distributions of numbers of large faces for
scanned and generated grains.

Fig. 19 Statistical distributions of the proportion ζLF for
scanned and generated grains.

Fig. 20 Statistical distributions of surface variation of large
faces for scanned and generated grains.

Fig. 21 Distribution of surface variation of edges for scanned
and generated grains.

shows its ability to detect faces and edges of a particle

even with a high level of shape irregularity.

Next we turn, in a preliminary study, to the scanned

and generated grains mechanical properties.
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4 Meshing and Numerical Simulations

A necessary step to carry out DEM simulations of the

ballast grains as modelled via the POD approach is to

mesh them, so that the point cloud is transformed into

a polyhedron with a set of faces and edges. We may then

implement the DEM numerical platform LMGC90 [49]

to simulate mechanical tests.

The meshing procedure should be carried out in a

way that modifies the least the morphology of the point

cloud. Our practical procedure involves the three fol-

lowing steps. First, we resort to the α-shape method [50],

involving a Delaunay triangulation [51], thereby build-

ing a mesh on the grain surface, as a set of triangles,

whose number is chosen to produce the least error on

shape. The second step is a surface subdivision, for

which the “Loop S3 method” [52] is applied, within the

Meshlab software [53], resulting in a more regular mesh

with many faces. Finally, the third operation reduces

the number of faces to the preset value via the “edge

collapse” method [54].

Fig. 22 shows how these steps operate on one grain,

transforming the initial point cloud into a polyhedron

with a number of faces set to 100. Fig. 23 shows how

the choice of a number of faces may affect the grain

shape.

Fig. 23 One grain meshed, as in Fig. 22, using different num-
bers of faces: (a) 4000, (b) 400, and (c) 40.

In a first stage, the shapes are further simplified as

convex polyhedra that correspond to the convex hull of

our non-convex meshed polyhedra, which enables much

faster computations in terms of contact detection. This

entails a loss of precision on shape, which needs to be

quantified. In case a meshing is done with a high num-

ber of faces (50000), and thus a better quality, the loss

of information (in the sense of the POD error) is about

20% (which would be reduced to less than 5% with non-

convex polyhedra) (Fig. 24). In our case, we use only

100 faces, which induces a larger error.

The evolution of the error restricts the relevance of

simulations with large numbers of modes. Here we simu-

late an assembling procedure via one-dimensional com-

pression between parallel planes with periodic lateral

boundary conditions, without gravity. It is carried out

using 300 grains, with 100 faces and 3 different shape

precision levels after convex meshing: 30% (1 mode),

80% (11 modes) and 100% of information (800 modes).

The sample is first generated by depositing the spheres

circumscribed to the polyhedron (Fig. 25) in a cell with

a constant square section (S = 30 cm ×30 cm). Three

values of the inter-granular friction coefficient µ are

compared: 0, 0.3 and 0.8. As a reference, a similar simu-

lation is carried out with meshed spheres with 100 faces

(and µ=0.3). Contacts with the lower and upper plane

walls are frictionless. A constant force of F0 = 500 N

is applied to the upper mobile plane until an equilib-

rium state is approached, in which the contacts resist

further compression (Fig. 25). Figs. 26 to 29 show how

the solid fraction and the coordination numbers corre-

sponding to simple (vertex-face or edge-edge), double

(edge-face) and triple (face-face) contacts respectively

denoted as z1, z2, and z3 evolve in time towards their

final equilibrium values. We note that the force sup-

ported by the bottom fixed plane converges to F0 after

3.8s. The ratio K= Ec

σD3 of the kinetic energy per grain

Ec, to the characteristic energy scale σD3 (σ denoting
stress F0

S , and D the average grain diameter) gradually

decreases to 4.10−6 in 10 s. Such time scales are related

to the initial state density and to grain and upper wall

inertia.

Fig. 24 Meshing effect on POD error.

The final, equilibrium values of solid fraction ρ, of

coordination numbers z1, z2, z3 are given in Tab. 3,

along with those of x0, the proportion of “rattlers”
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Fig. 22 Meshing steps: (a) point cloud; (b) surface construction; (c) surface subdivision; (d) mesh decimation.

(a)

(b)

Fig. 25 Compression case: initial (a) and final (b) states for
polyhedra.

Fig. 26 Solid fraction vs time (µ=0.3).

Fig. 27 z1 vs time (µ=0.3).

Fig. 28 z2 vs time (µ=0.3).

(grains carrying no force), for different numbers of modes

and friction coefficients.

A slight increase of solid fraction ρ with the num-

ber of modes is observed, while z1 decreases and z2
and z3 increase. This effect of a more accurate, and

therefore more complex, shape description, could reflect

some evolution in the accomodation of steric hindrance.

This shape effect is stronger for low friction coefficients.
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Fig. 29 z3 vs time (µ=0.3).

Table 3 Final state characteristics for different numbers of
modes N and friction coefficients µ.

N µ ρ z1 z2 z3 x0

11 0 0.690 4.360 3.766 0.320 0%
800 0 0.697 3.877 0.997 0.427 0%
1 0.3 0.590 3.046 0.764 0.213 7.6%
11 0.3 0.594 2.893 1.440 0.280 7.3%
800 0.3 0.602 2.874 1.593 0.332 5.1%
1 0.8 0.566 1.893 0.860 0.080 26.6%
11 0.8 0.567 1.886 0.980 0.080 26.3%
800 0.8 0.567 1.884 0.981 0.094 22.4%

A strong increase of rattler fraction x0 should also be

noted for growing µ, as in spherical bead assemblies.

Fig. 30 plots the distribution of connectivity Z (the

fractions of grains having exactly Z contacting neigh-

bours). A significant difference with spheres can be noted,

while different shape models yield very similar results:

increasing the precision on shape modelling changes the

type of contacts without affecting contact numbers.

Fig. 30 Connectivity distribution (µ=0.3).

The main outcome of this preliminary mechanical

study is thus the observed influence of the accuracy

with which the grain shape is modeled on the collective

properties of static granular systems assembled by a

compression process and equilibrated under prescribed

confining stresses. This influence is stronger for low fric-

tion coefficients, and tend to fade out for large µ values.

5 Conclusions.

We propose an innovative method to characterize par-

ticle shape, with ballast grains as an application. This

method enables shape description with a controlled ac-

curacy, and the generation of new sets of grains, that

are morphologically equivalent to real ones, as regards

simple geometric characteristics (volume, surface, elon-

gation and aspect ratio) as well as suitably introduced

more sophisticated descriptors, such as the number of

large faces and the proportion of grain surface area they

contain.

Some preliminary numerical simulations, carried out

to quantify the impact of particle shape on the me-

chanical behaviour, reveal that a very significantly re-

duced number of parameters (11 shape functions) may

be sufficient for our model, and also a dominance of

friction over particle shape for high friction coefficients.

Beyond the simulated assembling stage for a solid gran-

ular packing, we expect the shear response to exhibit a

higher sensitivity to shape, as observed in [12] for poly-

hedra with varying numbers of faces inscribed within

the same sphere.
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