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Abstract

We propose LMSO, a proof system inspired from Linear Logic,
as a proof-theoretical framework to extract finite-state stream
transducers from linear-constructive proofs of omega-regular
specifications. We advocate LMSO as a stepping stone toward
semi-automatic approaches to Church’s synthesis combining
computer assisted proofs with automatic decisions procedures.
LMSO is correct in the sense that it comes with an automata-
based realizability model in which proofs are interpreted as
finite-state stream transducers. It is moreover complete, in
the sense that every solvable instance of Church’s synthesis
problem leads to a linear-constructive proof of the formula
specifying the synthesis problem.

Keywords Categorical Logic, Game Semantics, Realizabil-
ity, Linear Logic, MSO on Infinite Words.

1 Introduction

Church’s synthesis [5] consists in the automatic extraction of
stream transducers (or Mealy machines) from input-output
specifications. Ideally, these specifications would be written
in Monadic Second-Order Logic (MSO) on 𝜔-words [29, 30].
MSO on 𝜔-words is a decidable logic thanks to Büchi’s The-
orem [3], whose proof is originally based on an effective
translation of MSO formulae to non-deterministic Büchi au-
tomata (NBA’s). It subsumes non-trivial logics used in ver-
ification such as LTL (see e.g. [1, 28]). Church’s synthesis
for (subsystems of) LTL has also been substantially studied
(see e.g. [2, 7, 16]).

Traditional theoretical solutions to Church’s synthesis start
from an 𝜔-word automaton recognizing the specification (typ-
ically an NBA), and apply McNaughton’s Theorem [18] to
obtain an equivalent deterministic (say parity) automaton
on 𝜔-words. There are then essentially two methods (see
e.g. [29, 30]). The first one turns the deterministic automaton
into a game graph, in which the Opponent O (∀bélard) plays
input characters to which the Proponent P (∃löıse) replies
with output characters. Solutions to Church’s synthesis are
then given by the Büchi-Landweber Theorem [4], which says
that in such games, either P or O has finite-state winning
strategy. The second one goes via infinite trees [23], noting
that a causal function (say) from Σ to Γ can be represented
by an infinite Γ-labeled Σ-ary tree.
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However, the translation of MSO-formulae to NBA’s is
non-elementary [10], ruling out any tractable implementa-
tion. Moreover, even when restricting to LTL (which has an
exponential translation to NBA’s, see e.g. [1]), the use of
McNaughton’s Theorem has long been a major obstacle to
Church’s synthesis.1

In this paper, extending [22], we advocate an approach
to Church’s synthesis in the framework of program extrac-
tion from proofs (in the sense of e.g. [27]). We propose a
constructive deduction system for (an expressively equiva-
lent variant of) MSO, based on a complete axiomatization of
MSO on 𝜔-words as a subsystem of second-order Peano arith-
metic [26] (see also [24]). The formal proofs in this deduction
system are interpreted in an automata-based realizability
semantics, along the lines of the Curry-Howard proofs-as-
programs correspondence. Our system is correct, in the sense
that from a proof of a ∀∃-specification one can extract a
Mealy machine implementing the specification. It is moreover
complete, in the sense that it proves all ∀∃-specifications
which are realizable by Mealy machines.

The crux of our approach is that on the one hand the
correctness proof of our realizability interpretation relies
on McNaughton’s Theorem, while on the other hand the
extraction of realizers from formal proofs does not invoke it.

In the context of MSO, using a deduction system may avoid
the systematic translation of formulae to automata, and may
allow for human intervention and compositional reasoning.
In a typical usage scenario, the user interactively performs
some proofs steps and delegate the generated subgoals to
automatized synthesis procedures. The partial proof tree
built by the user is then translated to a combinator able to
compose the transducers synthesized by the algorithms.

The deduction system SMSO proposed in [22] was based
on intuitionistic logic. While SMSO is correct and complete
for Church’s synthesis, it suffers from a very limited set of
primitive connectives (∧, ¬, ∃) so that formal proofs may be
cumbersome without resorting to a negative translation from
the complete axiomatization of MSO in classical logic. In this
paper, we propose a deduction system LMSO inspired from
(intuitionistic) Linear Logic [9] (see also [19]). LMSO has a
rich set of connectives (with primitive ⊗,`,⊸, !, ?, ∃, ∀), with
a straightforward interpretation as usual automata construc-
tions.2 The system LMSO is moreover based on an extension

1Interesting workarounds are the Safraless approaches of [7, 16].
2The usual additive connectives ⊕,& of Linear Logic have also natural
interpretations in automata.
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MSO+ of MSO with primitive function symbols for Mealy
machines, allowing for a much more efficient extraction of
realizers from proofs.

Organization of the paper. We begin in §2 by present-
ing Church’s synthesis problem and our extension MSO+ of
MSO. We also briefly discuss there the intuitionistic system
SMSO. We then present §3 our linear system LMSO, and
show its completeness w.r.t. MSO+ and Church’s synthesis.
The realizability interpretation is then split into two parts:
§4 recapitulates known material on games and automata
from [25], and §5 presents the realizability interpretation of
LMSO and states its correctness.

2 Church’s Synthesis and MSO+

Notations. Alphabets (denoted Σ,Γ, etc) are sets of the
form 2𝑝 for some 𝑝 ∈ N. We see alphabets as being built by
following grammar:

Σ,Γ ::= 1 | 2 | Σ× Γ | Σ→ Γ

Concatenation of words 𝑢, 𝑣 is denoted either 𝑢.𝑣 or 𝑢 · 𝑣,
and 𝜀 is the empty word. We use the vectorial notation both
for words and finite sequences, so that e.g. 𝐵 denotes a finite
sequence 𝐵1, . . . , 𝐵𝑛 and a denotes a word a1. · · · .a𝑛 ∈ Σ*.
Given an 𝜔-word (or stream) 𝐵 ∈ Σ𝜔 and 𝑛 ∈ N we write
𝐵↾𝑛 for the finite word 𝐵(0). · · · .𝐵(𝑛− 1) ∈ Σ*.

Specifications. Specifications for stream functions Σ𝜔 → Γ𝜔

will be given by formulae 𝜙(𝑌 ;𝑍) where, assuming Σ = 2𝑝

and Γ = 2𝑞, 𝑌 = 𝑌1, . . . , 𝑌𝑝 and 𝑍 = 𝑍1, . . . , 𝑍𝑞 are tuples
of (monadic) set variables3. For instance, the formula

(∃∞𝑘.𝑌 (𝑘)) =⇒ (∃∞𝑘.𝑍(𝑘)) (1)

specifies functions 𝑓 : 2𝜔 → 2𝜔 such that 𝑓(𝐵) ∈ 2𝜔 ≃ 𝒫(N)
is infinite whenever 𝐵 ∈ 2𝜔 is infinite.

Causal Functions and Mealy Machines. We shall ac-
tually require our specifications to be realized by stream
functions implementable by finite state stream transducers,
a.k.a. Mealy machines.

Definition 2.1. A Mealy machine ℳ with input alphabet
Σ and output alphabet Γ (notation ℳ : Σ → Γ) is given
by an alphabet of states 𝑄 with a distinguished initial state
𝑞𝚤 ∈ 𝑄, and a transition function 𝜕 : 𝑄× Σ→ 𝑄× Γ.

We write 𝜕𝑜 for 𝜋2 ∘ 𝜕 : 𝑄 × Σ → Γ and 𝜕* for the
map Σ* → 𝑄 obtained by iterating 𝜕 from the initial state:
𝜕*(𝜀) := 𝑞𝚤 and 𝜕*(a.a) := 𝜋1(𝜕(𝜕

*(a), a)).

A Mealy machine ℳ : Σ → Γ induces a function 𝐹ℳ :
Σ𝜔 → Γ𝜔 defined as 𝐹ℳ(𝐵)(𝑛) = 𝜕𝑜(𝜕*(𝐵↾𝑛), 𝐵(𝑛)). Hence
𝐹ℳ can produce a length-𝑛 prefix of its output from a length-
𝑛 prefix of its input. These functions are called causal.

Definition 2.2. A function 𝐹 : Σ𝜔 → Γ𝜔 is causal if for
all 𝑛 ∈ N and all 𝐵,𝐶 ∈ Σ𝜔 we have 𝐹 (𝐵)↾𝑛 = 𝐹 (𝐶)↾𝑛
whenever 𝐵↾𝑛 = 𝐶↾𝑛. We say that a causal function 𝐹 is
finite-state (f.s.) if it is induced by a Mealy machine.

Example 2.3. (a) The identity function Σ𝜔 → Σ𝜔 is in-
duced by the Mealy machine with state set 1 = {∙} and
identity transition function 𝜕 : (∙, a) ↦−→ (∙, a).

3For notational simplicity we work modulo (2𝑝)𝜔 ≃ (2𝜔)𝑝.

(b) Causal functions are obviously continuous (taking the
product topology on Σ𝜔 and Γ𝜔, with Σ,Γ discrete), but
there are continuous functions which are not causal, e.g.
𝑃 : 2𝜔 → 2𝜔 such that 𝑃 (𝐴)(𝑛) = 1 iff 𝐴(𝑛+ 1) = 1.

In the context of this paper, it is useful to note that finite-
state causal functions form a category with finite products.

Definition 2.4. Let S be the category whose objects are
alphabets and whose maps from Σ to Γ are causal functions
𝐹 : Σ𝜔 → Γ𝜔. Let M be the wide subcategory of S whose
maps are finite-state causal functions.

Note that 𝜔-words 𝐵 ∈ Σ𝜔 correspond exactly to causal
functions from {∙}𝜔 to Σ𝜔. We thus identify Σ𝜔 and S[{∙},Σ].
Also, functions f : Σ→ Γ induce M-maps [f] : Σ→M Γ.

Proposition 2.5. The categories S,M have finite products.
The product of Σ1, . . . ,Σ𝑛 (for 𝑛 ≥ 0) is given by the product
of sets Σ1 × · · · × Σ𝑛 (so that {∙} is terminal).

The Logic MSO+. We now introduce our specification lan-
guage, the logic MSO+. It is an extension of (the one-sorted
version of) MSO with one function symbol 𝑡ℳ of arity 𝑝
for each Mealy machineℳ : 2𝑝 → 2. The terms of MSO+,
ranged over by 𝑡, 𝑢, etc, are built with these function symbols
from (monadic) predicate variables 𝑋,𝑌, 𝑍, etc of arity 0.
The formulae of MSO+ are given in Fig. 1.

MSO+-formulae are interpreted in the standard model N
of 𝜔-words. Variables range over sets of natural numbers
𝐵,𝐶, . . . ∈ 𝒫(N) ≃ 2𝜔. A term 𝑡 together with a valua-
tion 𝑋𝑖 ↦→ 𝐵𝑖 of its variables 𝑋1, . . . , 𝑋𝑛 is interpreted as
𝐹 (𝐵1, . . . , 𝐵𝑛) where 𝐹 : 2𝑛 → 2 is the f.s. causal function
induced by 𝑡.4 The atomic predicates are interpreted as fol-
lows:

.
= is equality, ⊆̇ is set inclusion, E holds on 𝐵 iff 𝐵

is empty, N (resp. 0) holds on 𝐵 iff 𝐵 is a singleton {𝑛}
(resp. the singleton {0}), and S(𝐵,𝐶) (resp. 𝐵 ≤̇ 𝐶) holds
iff 𝐵 = {𝑛} and 𝐶 = {𝑛+ 1} for some 𝑛 ∈ N (resp. 𝐵 = {𝑛}
and 𝐶 = {𝑚} for some 𝑛 ≤ 𝑚).

We use the following notational conventions. Lowercase
roman letters 𝑥, 𝑦, 𝑧, etc denote variables relativized to N. In
particular, ∃𝑥.𝜙 and ∀𝑥.𝜙 stand respectively for

∃𝑥(N(𝑥) ∧ 𝜙) and ∀𝑥(N(𝑥)→ 𝜙)

Moreover 𝑥 ∈̇ 𝑡 stands for 𝑥 ⊆̇ 𝑡, so that

N |= 𝑋 ⊆̇ 𝑌 ←→ ∀𝑥(𝑥 ∈̇ 𝑋 → 𝑥 ∈̇ 𝑌 )

We often write 𝑋(𝑥) or even 𝑋𝑥 for 𝑥 ∈̇ 𝑋. Finally ∃∞𝑛.𝜙
stands for ∀𝑚.∃𝑛 ≥̇ 𝑚.𝜙 and ∀∞𝑛.𝜙 for ∃𝑚.∀𝑛 ≥̇ 𝑚.𝜙.

The logic MSO is MSO+ with terms restricted to monadic
variables 𝑋,𝑌, 𝑍, etc. MSO+ is an extension by definition
of MSO (and thus conservative over MSO) thanks to the
following well-known fact:

Proposition 2.6. For each Mealy machine ℳ : 2𝑝 → 2,
one can build an MSO-formula 𝛿ℳ(𝑋,𝑥) such that for all

𝑛 ∈ N and all 𝐵 ∈ (2𝜔)𝑞, we have

𝐹ℳ(𝐵)(𝑛) = 1 iff N |= 𝛿ℳ({𝑛}, 𝐵)

4Recall that M is a category.
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Atoms: 𝛼 ∈ At ::= 𝑡
.
= 𝑢 | E(𝑡) | 𝑡 ⊆̇ 𝑡 | N(𝑡) | 0(𝑡) | S(𝑡, 𝑢) | 𝑡 ≤̇ 𝑢

MSO formulae: 𝜙,𝜓 ::= 𝛼 | ⊤ | ⊥ | 𝜙 ∨ 𝜓 | 𝜙 ∧ 𝜓 | 𝜙→ 𝜓 | ∃𝑋.𝜙 | ∀𝑋.𝜙

Figure 1. The formulae of MSO and MSO+ (where terms 𝑡, 𝑢 are restricted to variables 𝑋,𝑌 for MSO).

Example 2.7. MSO directly expresses the specification (1),
as well as other typical properties used in software verification,
such as the following safety and liveness properties:

∀𝑥
(︁
A[𝑌 (𝑥)] −→ G[𝑍(𝑥)]

)︁
(safety)

∀𝑥
(︁
A[𝑌 (𝑥)] −→ ∃𝑦 > 𝑥.G[𝑍(𝑦)]

)︁
(liveness)

Here, A (resp. G) is a propositional formula with say 𝑝 (resp.
𝑞) variables, representing a subset of 2𝑝 (resp. 2𝑞).

Büchi Automata. The logic MSO (and thus MSO+) over
N is decidable thanks to Büchi’s Theorem [3].

Theorem 2.8 (Büchi [3]). MSO over N is decidable.

In our context, it is pertinent to look at Thm. 2.8 through
its original proof method, which consists in translating formu-
lae to Büchi automata. A non-deterministic Büchi automaton
(NBA) is an NFA, but which accepts an 𝜔-word if there exists
an infinite run with infinitely many final states. It is known
that deterministic Büchi automata are strictly less expressive
than NBA’s.

The crux of Büchi’s Theorem 2.8 is the effective closure of
Büchi automata under complement. Let us recall a few known
algorithmic facts (see e.g. [10, 28]). First, the translation of
MSO-formulae to automata is non-elementary. Second, it is
known that complementation of NBA’s is algorithmically
hard: there is a family of languages (ℒ𝑛)𝑛>0 such that each
ℒ𝑛 can be recognized by an NBA with 𝑂(𝑛) states, but
such that the complement of ℒ𝑛 can not be recognized by
an NBA with less than 𝑛! states. Known constructions for
complementation produce NBA’s with 𝑂(2𝑛 log(𝑛)) states
from NBA’s with 𝑛 states.

Church’s Synthesis. Church’s synthesis problem for MSO+

is the following. Given as input an MSO+ formula 𝜙(𝑌 ;𝑍)

(where 𝑌 = 𝑌1, . . . , 𝑌𝑝 and 𝑍 = 𝑍1, . . . , 𝑍𝑞), (1) decide

whether there exist f.s. causal 𝐹 = 𝐹1, . . . , 𝐹𝑞 : 2𝑝 →M 2
such that N |= 𝜙(𝐵;𝐹 (𝐵)) for all 𝐵 ∈ (2𝜔)𝑝, and (2), con-

struct 𝐹 whenever they exist.

Example 2.9. The following specification 𝜑(𝑌 ;𝑍) from [29]

∀𝑛 (¬𝑌 𝑛→ ¬𝑍𝑛) ∧ ∀𝑛,𝑚 (S(𝑛,𝑚) → 𝑍𝑛 → ¬𝑍𝑚)
∧ (∃∞𝑛. 𝑌 𝑛 → ∃∞𝑛.𝑍𝑛)

asks 𝑛 ∈ 𝑍 whenever 𝑛 ∈ 𝑌 , 𝑍 not to contain two consecutive
positions, and 𝑍 to be infinite whenever 𝑌 is infinite. It is
realized by the following Mealy machine, where a transition
a|b outputs b from input a:

1 0

1|0 , 0|0
0|0

1|1

We now briefly sketch general solutions to Church’s synthe-
sis. To this end, it is convenient to start from Büchi automata
rather than MSO+ formulae. Given an automaton 𝒜 : Σ× Γ,
we say that a Mealy machine ℳ : Σ → Γ realizes 𝒜 if 𝒜
accepts (𝐵,𝐹ℳ(𝐵)) for every 𝐵 ∈ Σ𝜔.

Starting from a Büchi automaton ℬ : Σ × Γ, traditional
solutions to Church’s synthesis (see e.g. [29, 30]) begin by
translating ℬ to an equivalent deterministic automaton 𝒟
(say equipped with a parity condition5). Determinization of
automata on 𝜔-words is originally due to McNaughton [18].

Theorem 2.10 (McNaughton [18]). Each NBA is equivalent
to a deterministic parity automaton.

There are two historical solutions to Church’s synthesis.
The first one, due to Büchi & Landweber [4], is to turn the
automaton 𝒟 : Σ× Γ into a two-player sequential game, in
which the Opponent O plays inputs characters in Σ while the
Proponent P replies with outputs characters in Γ. The game
is equipped with the parity condition of 𝒟. The solution
is then provided by Büchi-Landweber’s Theorem [4], which
states that 𝜔-regular games on finite graphs are effectively
determined, and that the winner has a f.s. winning strategy6.

A second possibility, due to Rabin [23] (see also [16]), uses
tree automata. The idea is that causal functions Σ𝜔 → Γ𝜔

can be represented as Γ-labeled Σ-ary trees. The solution is
then to build from 𝒟 a tree automaton accepting exactly the
Γ-labeled Σ-ary trees which represent realizers of 𝒟 : Σ×Γ.7

However, neither of these solutions directly lead to appli-
cable algorithms. The best known (and possible) construc-
tions for McNaughton’s Theorem (such as Safra’s trees, see

e.g. [10]) give deterministic Muller automata with 2𝑂(𝑛 log(𝑛))

states from NBA’s automata with 𝑛 states. This may seem
no worse than NBA’s complementation, but while the latter
is amenable to tractable implementations (see e.g. [8]), this is
not the case for McNaughton’s Theorem (see e.g. [2, 7, 16]).
Also, the states of automata obtained from Thm. 2.10 have
a complex structure, making difficult implementations of
subsequent algorithms (e.g. game solving).

Curry-Howard Approaches. In this paper, extending [22],
we advocate semi-automatic approaches in the framework of
program extraction from proofs (in the sense of e.g. [27]).

We start with a complete axiomatization of MSO+, based
on a known axiomatization of MSO on infinite words [26]
(see also [24]). The theory of MSO+ is given by deduction
for first-order classical logic (with the terms of MSO+ as

5There are different expressively equivalent conditions for deterministic
automata (parity, Muller, Rabin, Streett, see e.g. [10, 28]). All can
specify which states an infinite run must not see infinitely often.
6This implies that in the setting of this paper, causal realizers can
always be assumed to be finite-state.
7Actually, emptiness of tree automata is reduced to solving parity
games on finite graphs, so this solution also goes via [4].
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⊢ 𝑡 .= 𝑡 𝑡
.
= 𝑢, 𝜙[𝑡/𝑋] ⊢ 𝜙[𝑢/𝑋] E(𝑡) ⊢ 𝑡 ⊆̇ 𝑢

𝜙 ⊢ 𝑡 ⊆̇ 𝑍, 𝜙′

𝜙 ⊢ E(𝑡), 𝜙′
𝜙, 𝑍 ⊆̇ 𝑡 ⊢ E(𝑍), 𝑍

.
= 𝑡, 𝜙′

𝜙 ⊢ N(𝑡), E(𝑡), 𝜙′ N(𝑡), E(𝑡) ⊢ ⊥

⊢ 𝑡 ⊆̇ 𝑢 𝑡 ⊆̇ 𝑢, 𝑢 ⊆̇ 𝑣 ⊢ 𝑡 ⊆̇ 𝑣 𝑡 ⊆̇ 𝑢, 𝑢 ⊆̇ 𝑡 ⊢ 𝑡 .= 𝑢

𝜙, N(𝑍), 𝑍 ⊆̇ 𝑡 ⊢ 𝑍 ⊆̇ 𝑢, 𝜙′

𝜙 ⊢ 𝑡 ⊆̇ 𝑢, 𝜙′ N(𝑡), 𝑢 ⊆̇ 𝑡 ⊢ E(𝑢), 𝑢
.
= 𝑡

N(𝑡) ⊢ 𝑡 ≤̇ 𝑡 𝑡 ≤̇ 𝑢, 𝑢 ≤̇ 𝑣 ⊢ 𝑡 ≤̇ 𝑣 𝑡 ≤̇ 𝑢, 𝑢 ≤̇ 𝑡 ⊢ 𝑡 .= 𝑢 S(𝑡, 𝑢) ⊢ 𝑡 ≤̇ 𝑢 0(𝑡) ⊢ N(𝑡)

𝜙 ⊢ 𝜙′

𝜙, 0(𝑍) ⊢ 𝜙′
𝜙 ⊢ 𝜙′

𝜙, S(𝑡, 𝑍) ⊢ 𝜙′ S(𝑢, 𝑣), 𝑡 ≤̇ 𝑣 ⊢ 𝑡 .= 𝑣 , 𝑡 ≤̇ 𝑢 S(𝑢, 𝑣), 0(𝑣) ⊢ ⊥ 𝑡 ≤̇ 𝑢 ⊢ N(𝑡) 𝑡 ≤̇ 𝑢 ⊢ N(𝑢)

0(𝑡), 0(𝑢) ⊢ 𝑡 .= 𝑢 S(𝑡, 𝑢), S(𝑡, 𝑣) ⊢ 𝑢 .
= 𝑣 S(𝑢, 𝑡), S(𝑣, 𝑡) ⊢ 𝑢 .

= 𝑣 S(𝑡, 𝑢) ⊢ N(𝑡) S(𝑡, 𝑢) ⊢ N(𝑢)

Figure 2. The Arithmetic Rules of MSO+ and LMSO (where 𝑍 is fresh in each rule mentioning it).

individuals), together with the Arithmetic Rules of Fig. 2
and the following axiom schemes:8

∙ Induction. For each formula 𝜙, the following rule (where
𝑦, 𝑧 are fresh):

𝜙, 0(𝑧) ⊢ 𝜙[𝑧/𝑥], 𝜙′ 𝜙,S(𝑦, 𝑧), 𝜙[𝑦/𝑥] ⊢ 𝜙[𝑧/𝑥], 𝜙′

𝜙 ⊢ ∀𝑥.𝜙, 𝜙′

∙ Comprehension. For each formula 𝜙 with 𝑋 not free
in 𝜙, the axiom:

⊢ ∃𝑋.∀𝑥. (𝑋𝑥 ←→ 𝜙)

∙ Definition of Mealy Machines. For all function symbol
𝑡ℳ representing the machineℳ : 2𝑝 → 2, the follow-
ing axiom (where 𝛿ℳ is the formula of Prop. 2.6):

⊢ ∀𝑋.∀𝑥.
(︀
𝑥 ∈̇ 𝑡ℳ(𝑋) ←→ 𝛿ℳ(𝑥,𝑋)

)︀
Theorem 2.11. For each closed formula 𝜙 of MSO+,

N |= 𝜙 iff MSO+ ⊢ 𝜙

In [22] the authors devised a constructive system SMSO
which is sound and complete w.r.t. Church’s synthesis. The
language of SMSO has a restricted set of connectives (∨, ∃,¬)
and a specific set of atomic formulae. The main result of [22]
is the following:

Theorem 2.12. Given an SMSO-formula 𝜙(𝑋;𝑌 ),

(a) from a proof of ∃𝑍.𝜙(𝑌 ;𝑍) in SMSO, one can extract a

f.s. causal realizer of 𝜙(𝑌 ;𝑍),

(b) if 𝜙(𝑌 ;𝑍) admits a (f.s.) causal realizer, then SMSO
proves ∃𝑍.¬¬𝜙(𝑌 ;𝑍).

The idea behind Theorem 2.12 is that for MSO-synthesis,
rather than starting by translating a formula to an automa-
ton, one may use a deduction system in order to decompose
the problem into subgoals (possibly with semi-automated
techniques), on which one may either invoke algorithms, or
proceed with other proof steps. The realizability model un-
derlying [22] (based on [25]), then allows to compose realizers
obtained by synthesis algorithms with realizers extracted
from proofs in SMSO.

8The rules of Fig. 2 are given in a two-sided sequent calculus format
(see e.g. [27]) in order to ease the later presentation of LMSO.

One feature of SMSO is that extraction of realizers from
formal proofs does not involve McNaughton’s Theorem (nor
complementation of NBA’s) even if the correctness proof of
the realizability model does invoke it.

The system SMSO has however some limitations. First of
all, its set of connectives is very limited, so that proofs in the
system SMSO itself may be cumbersome without appealing
to a negative translation from the complete axiomatization
of MSO in classical logic. Second, the extraction process can
itself be quite costly: Mealy machines were represented as
usual MSO-formulae (according to Prop. 2.6) so that witness
extraction from proofs must pay the price of the translation
of these formulae back to automata.

Linear Variants of SMSO. In this paper, we introduce
LMSO of SMSO, inspired from Intuitionistic Linear Logic [9]
(see also [19]). First, linearity allows to have more primitive
connectives: implications and disjunction in addition to con-
junction, and primitive universal quantifications in addition
to existentials.

The logical system LMSO is built on the model of [25],
which relies on a variant of alternating automata [20, 21]
called uniform automata (UA’s). UA’s are equipped with
a monoidal closed structure and with primitive existential
and universal quantifications in the categorical sense [25].
Alternating automata allows in some cases better translations
of formulae since they are easier to complement. However, it
is well-known that existential (resp. universal) quantifications
are only correct on non-det. (resp. universal) automata, so
that the full translation of MSO to alternating automata
involves the simulation of alternating automata by non-det.
ones. This operation, known as the Simulation Theorem [21]
in the case of infinite trees, actually amounts on 𝜔-words to
McNaughton’s Theorem (see e.g. [21]).

Similarly as with SMSO, we devise for LMSO a realiz-
ability model which involves McNaughton’s Theorem in its
correctness proof, but not for the extraction of realizers from
formal proofs. Theorem 2.12 extends to LMSO (for a suitable

translation (−)𝐿), so that if 𝜙(𝑌 ;𝑍) is realized byℳ, then

LMSO ⊢ ∀𝑌 .𝜙𝐿(𝑌 ; 𝑡ℳ(𝑌 ))
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Moreover, the system LMSO is equipped with polarities
thanks to which the exponential connectives of Linear Logic
exactly indicate the applications McNaughton’s Thm. in
translations to UA’s. This reflects the fact that the following
positive (noted 𝜙+) and negative (noted 𝜙−) fragments of
MSO+ have exponential translations to automata:9

𝜙+, 𝜓+ ::= ⊤ | ⊥ | 𝛼 | ∃𝑋.𝜙+ | 𝜙− → 𝜙+

| 𝜙+ ∧ 𝜓+ | 𝜙+ ∨ 𝜓+

𝜙−, 𝜓− ::= ⊤ | ⊥ | 𝛼 | ∀𝑋.𝜙− | 𝜙+ → 𝜙−

| 𝜙− ∧ 𝜓− | 𝜙− ∨ 𝜓−

3 LMSO: A Linear Variant of MSO
We introduce here the formal system LMSO, inspired from
the multiplicative-exponential fragment of Linear Logic [9].
LMSO has two layers. The first layer, PLMSO, is a polarized
logic whose polarities respect the polarities of automata
alluded to in §2. The second layer LMSO allows unrestricted
polarities but for the exponential connectives !(−) and ?(−).

The logic LMSO is only inspired from Linear Logic, since
both its polarities and linearity are induced by our automata-
based realizability model (to be detailed in §4 and §5) rather
than by proof-theory (as in e.g. [17]).

3.1 The Language of LMSO

The formulae of PLMSO are divided into the positive formulae
(written 𝜙+), the negative formulae (written 𝜙−) and the
deterministic ones (written 𝜙±). They are defined on Fig. 3.

The formulae of LMSO are built from the PLMSO-formulae
by using with unrestricted polarities all the connectives of
PLMSO but for the exponentials !(−), ?(−). The formulae of
LMSO are formally defined as follows:

𝜙,𝜓 ::= 𝜙± | 𝜙⊸ 𝜓 | 𝜙⊗ 𝜓 | 𝜙` 𝜓
| ∃𝑋.𝜙 | ∀𝑋.𝜙

In contrast with MSO+, the formulae of LMSO are not
intended to be directly interpreted in the standard model N
of 𝜔-words. We will instead interpret them in an automaton-
based realizability model in the vein of [22, 25]. As such,
the connectives of LMSO directly reflect usual operations on
alternating 𝜔-word automata:

∙ LMSO-formulae are to be thought about as represent-
ing alternating automata. Positive, negative and de-
terministic formulae represent resp. non-deterministic,
universal and deterministic automata.
∙ ⊗ and ` are conjunctions and disjunctions based on a
direct product of automata10. The linear implication
⊸ has been introduced in [25].
∙ The quantifiers ∃ and ∀ correspond to the usual opera-
tions of projection and co-projection (see e.g. [25]).
∙ The exponentials ? and ! correspond to determinization
operations.

As usual with alternating automata, projections only cor-
rectly implement existential quantifications on non-det. au-
tomata. Dually, co-projections completely implement univer-
sal quantifications on universal automata. However, both

9An interesting consequence of [7] is that the negative fragment of

MSO+ is expressively complete.
10As such, ` does not exist on tree automata.

operations can always be defined on alternating automata,
and moreover with their intended categorical semantics [25].
This implies that they can be used in a deduction system.

In PLMSO, since existential (resp. universal) quantifica-
tions can only be used on positive (resp. negative) formu-
lae, all connectives will indeed have their usual (standard)
meaning. This in particular permits the following simple
translation from MSO+-formulae to PLMSO-formulae.

Definition 3.1 (Simple Translation). The translation (−)𝐿
is defined by induction on MSO+-formulae as follows:

⊤𝐿 := ⊤ (𝜙 ∧ 𝜓)𝐿 := 𝜙𝐿 ⊗ 𝜓𝐿

⊥𝐿 := ⊥ (𝜙 ∨ 𝜓)𝐿 := 𝜙𝐿 ` 𝜓𝐿

𝛼𝐿 := 𝛼 (𝜙→ 𝜓)𝐿 := 𝜙𝐿 ⊸ 𝜓𝐿

(∃𝑋.𝜙)𝐿 := ?∃𝑋.𝜙𝐿 (∀𝑋.𝜙)𝐿 := !∀𝑋.𝜙𝐿

Note that 𝜙𝐿 is always a deterministic formula of PLMSO.
Let us stress a couple of important points.

(a) It would have been natural to also allow the usual (ad-
ditive) non-deterministic disjunction ⊕ and its corre-
sponding conjunction &. But this would have required
additional structure in our realizability model, while have
chosen to keep it as simple as possible in this paper.

(b) Thanks to the Simulation Theorem [21]11, it would have
been possible to have exponentials ?𝜙 and !𝜙 for all
LMSO-formulae. In this case, !𝜙 would represent an ND
automaton simulating the alternating automaton repre-
senting 𝜙. The general exponential ! has been investigated
in a Curry-Howard setting [25]. We forbid these opera-
tions here because they impose realizers to concretely
depend on applications of McNaughton’s Thm. 2.10.

3.2 The Deduction System of LMSO

Deduction in LMSO is performed using the rules of Fig. 4,
the Arithmetic Rules of Fig. 2 and following axiom schemes:

∙ Induction. For each negative 𝜙−, the following rule

(where 𝑦, 𝑧 are fresh, 𝜙+ are positive and 𝜓
−

negative):

𝜙+, 0(𝑧) ⊢ 𝜙−[𝑧/𝑥], 𝜓
−

𝜙+, S(𝑦, 𝑧), !(𝜙−[𝑦/𝑥]) ⊢ 𝜙−[𝑧/𝑥], 𝜓
−

𝜙+ ⊢ ∀𝑥.𝜙−, 𝜓
−

∙ Deterministic Comprehension. For each deterministic
𝜙± with 𝑋 not free in 𝜙±, the axiom

⊢ ?∃𝑋!∀𝑥 (𝑋𝑥 ˛ 𝜙±)

∙ Definition of Mealy machines. For each function symbol
𝑡ℳ representing the machineℳ : 2𝑝 → 2, the axiom

⊢ ∀𝑋∀𝑥
(︀
𝑥 ∈̇ 𝑡ℳ(𝑋) ˛ 𝛿ℳ(𝑥,𝑋)𝐿

)︀
where 𝛿ℳ is the formula of Prop. 2.6.
∙ Polarized Double Negation Elimination. For each PLMSO-
formula 𝜙, the axiom

𝜙⊥⊥ ⊢ 𝜙
where 𝜓⊥ := 𝜓 ⊸ ⊥ (note that 𝜙⊥⊥ is a PLMSO-
formula of the same polarity as 𝜙).

11Which is not required to deal with 𝜔-regular properties.
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𝜙±, 𝜓± ::= ⊤ | ⊥ | 𝛼 | !(𝜙−) | ?(𝜙+) | 𝜙± ⊗ 𝜓± | 𝜙± ` 𝜓± | 𝜙± ⊸ 𝜓±

𝜙+, 𝜓+ ::= 𝜙± | ∃𝑋.𝜙+ | 𝜙+ ⊗ 𝜓+ | 𝜙+ ` 𝜓+ | 𝜙− ⊸ 𝜓+

𝜙−, 𝜓− ::= 𝜙± | ∀𝑋.𝜙− | 𝜙− ⊗ 𝜓− | 𝜙− ` 𝜓− | 𝜙+ ⊸ 𝜓−

Figure 3. The Formulae of PLMSO (where 𝑋 is a monadic variable and 𝛼 ∈ At is an atomic formula as in Fig. 1).

∙ Deterministic Exponentials. For each deterministic for-
mula 𝜙±, the axioms

𝜙± ⊢ !(𝜙±)
and

?(𝜙±) ⊢ 𝜙±

Even if LMSO has a multiplicative disjunction `, which
naturally leads to sequents with multiple formulae on the
right of ⊢, the proof-system is actually constructive, as wit-
nessed by the right rules for ∀ and →, and by the polarity
condition in the right contraction rule. Similarly, double nega-
tion elimination is only assumed for polarized formulae, so
that 𝜙 ⊸ 𝜓 is not isomorphic to 𝜙⊥ ` 𝜓. In Ex. 5.11 we
will see that double negation elimination is realizable for all
formulae, but is not an isomorphism.

Our first (expected) result on LMSO is that the translation
(−)𝐿 correctly interprets MSO+ in LMSO.

Theorem 3.2. Given an MSO+ formula 𝜙, if MSO+ ⊢ 𝜙
then LMSO ⊢ 𝜙𝐿.

Thanks to the completeness ofMSO+ (Thm. 2.11), Thm. 3.2
implies that LMSO is complete w.r.t. Church’s synthesis.

Corollary 3.3. If an MSO+-formula 𝜙(𝑌 ;𝑍) admits a (f.s.)

causal realizer, then LMSO ⊢ ∀𝑌 .∃𝑍.𝜙𝐿(𝑌 ;𝑍).

4 Games and Automata

We present here our games and automata model. It is a
simplification to 𝜔-words of the model presented in [25] for
infinite trees. All statements of this Section (excepted those
relative to the ` connective) are proved in [25].

This model targets two indexed categories: The categories
AutΣ of automata over alphabet Σ are indexed over M, while
the categories DAΣ of (substituted) acceptance games over
Σ are indexed over S. Moreover, the categories Aut(−) are
equipped with the required categorical structure to interpret
the linear part of LMSO.

All the structure we use on DA(−) and Aut(−) is ultimately
induced by the symmetric monoidal closed structure of a
category DZ of zig-zag games, that we detail first.

4.1 Simple Zig-Zag Games

We present here the category DZ of zig-zag games, and
discuss some structure relevant to us: symmetric monoidal
closure and a construction of indexed categories inspired
from [13] and generalizing simple fibrations (see e.g. [14]).

Definition 4.1. A game 𝐴 has the form 𝐴 = (𝐴P, 𝐴O) where
𝐴P and 𝐴O are alphabets of resp. P and O-moves.

We are interested in a very specific form of strategies.

Definition 4.2. Given games 𝐴 and 𝐵, a (total zig-zag)
strategy 𝜎 : 𝐴→DZ 𝐵 is a pair of functions 𝜎 = (𝑓, 𝐹 ) where

𝑓 :
⋃︀

𝑛∈N
(︀
𝐴𝑛+1

P ×𝐵𝑛
O

)︀
−→ 𝐵P

𝐹 :
⋃︀

𝑛∈N
(︀
𝐴𝑛+1

P ×𝐵𝑛+1
O

)︀
−→ 𝐴O

Intuitively, a total zig-zag strategy 𝜎 : 𝐴 →DZ 𝐵 amounts
to a strategy for P in an infinite game which consists in
N-indexed sequences of rounds. In a single round 𝑛 ∈ N, four
moves occur in succession:

(1) O plays a move 𝑎P𝑛 ∈ 𝐴P,
(2) P plays a move 𝑏P𝑛 ∈ 𝐵P,
(3) O answers with a move 𝑏O𝑛 ∈ 𝐵O,
(4) P concludes with a move 𝑎O𝑛 ∈ 𝐴O.

12

Proposition 4.3. Games and (total zig-zag) strategies form
a category DZ.

Proposition 4.4 (Symmetric Monoidal-Closed Structure).
The category DZ is symmetric monoidal-closed. The monoidal
unit is I = ({∙}, {∙}). Given games 𝐴 and 𝐵, the monoidal
product 𝐴�𝐵 and the internal hom 𝐴� 𝐵 are given by

𝐴�𝐵 := (𝐴P ×𝐵P, 𝐴O ×𝐵O)

and 𝐴� 𝐵 := (𝐵
𝐴P
P ×𝐴𝐴P×𝐵O

O , 𝐴P ×𝐵O)

Monoids and Comonoids. A commutative monoid in a
symmetric monoidal category (SMC) (C,⊗, I) is an object
𝑀 equipped with structure maps 𝑚 : 𝑀 ⊗𝑀 → 𝑀 and
𝑢 : I→𝑀 subject to coherence conditions (see e.g. [19]). A
(commutative) comonoid in C is a (commutative) monoid in
Cop. In this paper, by (co)monoid we always mean commuta-
tive (co)monoid. The category of (co)monoids in (C,⊗, I) has
(co)monoids as objects and maps are C-maps which commute
with the (co)monoid structure. We write Comon(C) for the
category of comonoids of (C,⊗, I).

Games 𝐴 with 𝐴P ≃ {∙} (𝐴O ≃ {∙}) induce (co)monoids
in (DZ,�, I). The following is well-known (see [19, §6.5]).

Proposition 4.5. The category of comonoids (resp. monoids)
of an SMC (C,⊗, I) has finite products (resp. coproducts) in-
duced by (⊗, I).

Given an alphabet Σ, we write Σ for the DZ-object (Σ, {∙}).

Proposition 4.6. S is equivalent to the full subcategory of
Comon(DZ) whose objects are induced by alphabets.

Comonoid Indexing. Given a comonoid 𝐾 in an SMC
(C,⊗, I), the functor 𝐴 ↦→ 𝐾 ⊗ 𝐴 of comonoid indexing
with 𝐾 is equipped with a comonad structure whose co-
Kleisli category Kl(𝐾) is an SMC for IKl(𝐾) = I and (on

objects) 𝐴⊗Kl(𝐾)𝐵 = 𝐴⊗𝐵 [13, Prop. 5].13 Note that each
Comon(C)-map 𝑓 : 𝐾 → 𝐿 induces a functor 𝑓⋆ : Kl(𝐿)→
Kl(𝐾). This extends to a functor (−)⋆ : Comon(C)op →
Cat taking 𝐾 to Kl(𝐾).

We let DZ(Σ) be the co-Kleisli category of comonoid
indexing with Σ. It has the same objects as DZ, and its

12DZ-maps are actually total zig-zag strategies in the simple game
𝐴 ⊸ 𝐵 with ⊸ negative and 𝐴,𝐵 positive ([11], see also [19]).
13See also [25, Prop. 4.4] and [19, §6.5 & 6.6].
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𝜙 ⊢ 𝜙
𝜙 ⊢ 𝛾, 𝜙′ 𝜓, 𝛾 ⊢ 𝜓′

𝜙,𝜓 ⊢ 𝜙′, 𝜓
′

𝜙,𝜙, 𝜓, 𝜓 ⊢ 𝜙′

𝜙,𝜓, 𝜙, 𝜓 ⊢ 𝜙′
𝜙 ⊢ 𝜙′, 𝜙, 𝜓, 𝜓

′

𝜙 ⊢ 𝜙′, 𝜓, 𝜙, 𝜓
′

𝜙 ⊢ ⊤, 𝜙′
𝜓 ⊢ 𝜓′

𝜓,𝜙 ⊢ 𝜓′
𝜓,𝜙+, 𝜙+ ⊢ 𝜓′

𝜓,𝜙+ ⊢ 𝜓′
𝜙,𝜙− ⊢ 𝜙′

𝜙, !(𝜙−) ⊢ 𝜙′
𝜙+ ⊢ 𝜙−, 𝜓

−

𝜙+ ⊢ !(𝜙−), 𝜓
−

𝜙,⊥ ⊢ 𝜙′
𝜓 ⊢ 𝜓′

𝜓 ⊢ 𝜙,𝜓′
𝜓 ⊢ 𝜙−, 𝜙−, 𝜓

′

𝜓 ⊢ 𝜙−, 𝜓
′

𝜙 ⊢ 𝜙+, 𝜙

𝜙 ⊢ ?(𝜙+), 𝜙

𝜙+, 𝜙+ ⊢ 𝜓−

𝜙+, ?(𝜙+) ⊢ 𝜓−

𝜙,𝜙0, 𝜙1 ⊢ 𝜙′

𝜙,𝜙0 ⊗ 𝜙1 ⊢ 𝜙′
𝜙 ⊢ 𝜙,𝜙′ 𝜓 ⊢ 𝜓,𝜓′

𝜙,𝜓 ⊢ 𝜙⊗ 𝜓,𝜙′, 𝜓
′

𝜙,𝜙 ⊢ 𝜙′

𝜙,∃𝑍.𝜙 ⊢ 𝜙′
𝜙 ⊢ 𝜙[𝑡/𝑋], 𝜙′

𝜙 ⊢ ∃𝑋.𝜙, 𝜙′
𝜙,𝜙 ⊢ 𝜓
𝜙 ⊢ 𝜙⊸ 𝜓

𝜙,𝜙 ⊢ 𝜙′ 𝜓,𝜓 ⊢ 𝜓′

𝜙,𝜓, 𝜙` 𝜓 ⊢ 𝜙′, 𝜓
′

𝜙 ⊢ 𝜙0, 𝜙1, 𝜙
′

𝜙 ⊢ 𝜙0 ` 𝜙1, 𝜙′
𝜙,𝜙[𝑡/𝑋] ⊢ 𝜙′

𝜙, ∀𝑋.𝜙 ⊢ 𝜙′
𝜙 ⊢ 𝜙

𝜙 ⊢ ∀𝑍.𝜙
𝜙 ⊢ 𝜙,𝜙′ 𝜓,𝜓 ⊢ 𝜓′

𝜙,𝜓, 𝜙⊸ 𝜓 ⊢ 𝜙′, 𝜓
′

Figure 4. The Deduction Rules of LMSO (where 𝑍 is fresh for 𝜙,𝜙′ in each rule mentioning it).

maps from 𝐴 to 𝐵 are the DZ-maps from Σ �𝐴 to 𝐵. The
following is [25, Prop. 5.2 & 5.3] (see also [19, §6.10]).

Proposition 4.7. DZ(Σ) is symmetric monoidal-closed for
𝐴 �DZ(Σ) 𝐵 := 𝐴 � 𝐵 (with unit I) and internal hom
𝐴�DZ(Σ) 𝐵 := (𝐴� 𝐵).

We write (−)↑ for the canonical functor DZ(Σ) → DZ
taking 𝜎 : 𝐴→DZ(Σ) 𝐵 to 𝜎↑ : Σ �𝐴→DZ Σ �𝐵.

4.2 Games with Winning

As usual, acceptance will be defined using games equipped
with winning conditions.

Definition 4.8. A game with winning is a game 𝐴 equipped
with a winning condition 𝒲𝐴 ⊆ (𝐴P ×𝐴O)

𝜔.

Definition 4.9. Consider games with winning (𝐴,𝒲𝐴) and
(𝐵,𝒲𝐵), and a strategy 𝜎 = (𝑓, 𝐹 ) : 𝐴→DZ 𝐵.

Given sequences (𝑎P𝑛)𝑛 ∈ 𝐴𝜔
P and (𝑏O𝑛)𝑛 ∈ 𝐵𝜔

O , the strategy
𝜎 induces sequences (𝑏P𝑛)𝑛 ∈ 𝐵𝜔

P and (𝑎O𝑛)𝑛 ∈ 𝐴𝜔
O defined as

𝑏P𝑛 := 𝑓(𝑎P0 · · · 𝑎P𝑛 , 𝑏O0 · · · 𝑏P𝑛−1) ∈ 𝐵P

and 𝑎O𝑛 := 𝐹 (𝑎P0 · · · 𝑎P𝑛 , 𝑏O0 · · · 𝑏P𝑛) ∈ 𝐴O

Then 𝜎 is winning if for all (𝑎P𝑛)𝑛 ∈ 𝐴𝜔
P and all (𝑏O𝑛)𝑛 ∈ 𝐵𝜔

O ,
we have (𝑏P𝑛 , 𝑏

O
𝑛)𝑛 ∈ 𝒲𝐵 whenever (𝑎P𝑛 , 𝑎

O
𝑛)𝑛 ∈ 𝒲𝐴.

Proposition 4.10. Games and winning strategies form a
category DZW.

The SMC structure (�, I,�) of DZ lifts to DZW, inducing
a model of IMLL.

Proposition 4.11 (Symmetric Monoidal-Closed Structure).
The category DZW is symmetric monoidal-closed. The unit
is ⊤ := (I, {∙}𝜔). Given (𝐴,𝒲𝐴) and (𝐵,𝒲𝐵), the tensor
product (𝐴,𝒲𝐴)⊗(𝐵,𝒲𝐵) and the linear arrow (𝐴,𝒲𝐴) ⊸

(𝐵,𝒲𝐵) are given by

(𝐴,𝒲𝐴)⊗ (𝐵,𝒲𝐵) := (𝐴�𝐵,𝒲𝐴⊗𝐵)
and (𝐴,𝒲𝐴) ⊸ (𝐵,𝒲𝐵) := (𝐴� 𝐵,𝒲𝐴⊸𝐵)

where (𝑎P𝑛, 𝑏
P
𝑛, 𝑎

O
𝑛, 𝑏

O
𝑛)𝑛 ∈ 𝒲𝐴⊗𝐵 iff(︀

(𝑎P𝑛, 𝑎
O
𝑛)𝑛 ∈ 𝒲𝐴 and (𝑏P𝑛, 𝑏

O
𝑛)𝑛 ∈ 𝒲𝐵

)︀
and (𝑓𝑛, 𝐹𝑛, 𝑎

P
𝑛, 𝑏

O
𝑛)𝑛 ∈ 𝒲𝐴⊸𝐵 iff

(𝑎P𝑛 , 𝐹 (𝑎P𝑛, 𝑏
O
𝑛))𝑛 ∈ 𝒲𝐴 =⇒ (𝑓𝑛(𝑎

P
𝑛) , 𝑏

O
𝑛)𝑛 ∈ 𝒲𝐵

Winning also induces a disjunctive symmetric monoidal
structure on DZW.

Proposition 4.12 (Multiplicative Disjunction). The cate-
gory DZW is symmetric monoidal with unit ⊥ := (I, ∅) and

(𝐴,𝒲𝐴)` (𝐵,𝒲𝐵) := (𝐴�𝐵,𝒲𝐴`𝐵)

where (𝑎P𝑛, 𝑏
P
𝑛, 𝑎

O
𝑛, 𝑏

O
𝑛)𝑛 ∈ 𝒲𝐴`𝐵 iff either (𝑎P𝑛, 𝑎

O
𝑛)𝑛 ∈ 𝒲𝐴 or

(𝑏P𝑛, 𝑏
O
𝑛)𝑛 ∈ 𝒲𝐵.

We write 𝐴 for (𝐴,𝒲𝐴) when no confusion arises. Note
that since sets of moves are assumed to be non-empty,DZW is
equipped with (non-canonical) weakening maps 𝐴→DZW ⊤
and ⊥ →DZW 𝐴.

4.3 Uniform Automata

The adequacy of realizability will be proved using the notion
of uniform automata (UA’s), adapted from [25]. UA’s are es-
sentially usual alternating automata, but in which alternation
is expressed via an explicitly given set of moves.

Definition 4.13. A uniform automaton (UA) 𝒜 over Σ
(notation 𝒜 : Σ) has the form

𝒜 = (𝒜P , 𝑄𝒜 , 𝑞
𝚤
𝒜 , 𝜕𝒜 , Ω𝒜)

where 𝒜P (resp. 𝒜O) is the alphabet of P (resp. O) moves, 𝑄𝒜
is the alphabet states (with 𝑞𝚤𝒜 ∈ 𝑄𝒜 initial), the transition
function 𝜕𝒜 has the form

𝜕𝒜 : 𝑄𝒜 × Σ −→ 𝒜P ×𝒜O −→ 𝑄𝒜

and the acceptance condition Ω𝒜 is an 𝜔-regular subset of 𝑄𝜔
𝒜.

𝒜 is called positive (or, in accordance with automata-theoretic
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terminology, non-deterministic) if 𝒜O ≃ 1, negative (or, in
accordance with automata-theoretic terminology, universal)
if 𝒜P ≃ 1 and deterministic if it is both positive and negative.

The interpretation of PLMSO formulae will respect polarities.
An automaton 𝒜 : Γ together with a causal function

𝐹 ∈ S[Σ,Γ] induce a substituted acceptance game 𝒜(𝐹 ) : Σ
with P-moves Σ × 𝒜P and O-moves 𝒜O. We equip 𝒜(𝐹 )
with the winning condition consisting of the 𝜔-sequences
((b𝑛, 𝑎

P
𝑛), 𝑎

O
𝑛)𝑛 ∈ ((Σ × 𝒜P) × 𝒜O)

𝜔 such that (𝑞𝑛)𝑛 ∈ Ω𝒜
where 𝑞0 := 𝑞𝚤𝒜 and 𝑞𝑛+1 := 𝜕𝒜(𝑞𝑛, 𝐹 (b0, . . . , b𝑛), 𝑎

P
𝑛, 𝑎

O
𝑛).

The substituted acceptance game 𝒜(𝐹 ) : Σ is an object of
DZW. Acceptance of 𝐵 ∈ Σ𝜔 ≃ S[1,Σ] by 𝒜 : Σ is defined
via the game 𝒜(𝐵) : 1.

Definition 4.14. An automaton 𝒜 : Σ accepts the 𝜔-word
𝐵 ∈ Σ𝜔 if there is a winning strategy 𝜎 ∈ DZW[⊤,𝒜(𝐵)].
We let ℒ(𝒜) be the set of 𝜔-words accepted by 𝒜.

4.4 Some Structure on Automata

Our goal here is to display some structure on automata that
will produce a realizability model of LMSO.

Definition 4.15. The category DAΣ has games of the form
𝒜(𝐹 ) : Σ as objects. Maps from 𝒜(𝐹 ) to ℬ(𝐺) are DZ(Σ)-
maps 𝜎 from (𝒜P,𝒜O) to (ℬP,ℬO), whose lift are winning
strategies 𝜎↑ : 𝒜(𝐹 )→DZW ℬ(𝐺).

AutΣ is the full subcategory of DAΣ whose objects are
of the form 𝒜(IdΣ) : Σ (denoted 𝒜 : Σ) where IdΣ is the
S-identity on Σ. We let Aut+Σ (resp. Aut−Σ , Aut±Σ) be the
restriction of AutΣ to positive (resp. negative, deterministic)
automata.

We write 𝜎 : 𝒜(𝐹 ) ⊸ ℬ(𝐺) when 𝜎 is a DAΣ-map from
𝒜(𝐹 ) to ℬ(𝐺). Note that substituted acceptance games
𝒜(𝐹 ) : Σ are DZW-objects with P-moves Σ × 𝒜P and O-
moves 𝒜O, while a DAΣ-map from 𝒜(𝐹 ) ⊸ ℬ(𝐺) is in fact a
DZ-map Σ � (𝒜P,𝒜O)→DZ (ℬP,ℬO).

Substitution. The categories DAΣ are indexed over S, while
the categories AutΣ are indexed over M. An immediate con-
sequence is that the realizability arrow ⊸ is correct w.r.t.
language inclusion.

Proposition 4.16. Given 𝒜,ℬ : Σ, if there is an AutΣ-map
𝒜⊸ ℬ, then ℒ(𝒜) ⊆ ℒ(ℬ).

Notice that a crucial point in the game 𝒜⊸ ℬ is that the
word 𝑤 is progressively given by the plays of O; if it were a
data given before the first round, the previous proposition
would be an equivalence.

Monoidal-Closed Structure. The symmetric monoidal-closed
structures of DZ(Σ) and DZW lift to each category AutΣ.

The unit automaton ⊤ has P-moves, O-moves and states
{∙} (with thus ∙ initial) and acceptance condition {∙}𝜔.
Given 𝒜,ℬ : Σ, the monoidal product (𝒜⊗ ℬ) : Σ and the
linear arrow (𝒜 ⊸ ℬ) : Σ both have states sets 𝑄𝒜 × 𝑄ℬ
with (𝑞𝚤𝒜, 𝑞

𝚤
ℬ) initial. Their moves are given (via Prop. 4.7)

by Prop. 4.4:

(𝒜⊗ ℬ)P := 𝒜P × ℬP (𝒜⊗ ℬ)O := 𝒜O × ℬO

(𝒜⊸ ℬ)P := ℬ𝒜P
P ×𝒜𝒜P×ℬO

O (𝒜⊸ ℬ)O := 𝒜P × ℬO

For the transition functions, we let

𝜕𝒜⊗ℬ((𝑞𝒜, 𝑞ℬ), a, (𝑎
P, 𝑏P), (𝑎O, 𝑏O)) := (𝑞0, 𝑞1)

𝜕𝒜⊸ℬ((𝑞𝒜, 𝑞ℬ), a, (𝑓, 𝐹 ), (𝑎P, 𝑏O)) := (𝑞′0, 𝑞
′
1)

where

𝑞0 := 𝜕𝒜(𝑞𝒜, a, 𝑎
P, 𝑎O) 𝑞1 := 𝜕ℬ(𝑞ℬ, a, 𝑏

P, 𝑏O)

𝑞′0 := 𝜕𝒜(𝑞𝒜, a, 𝑎
P, 𝐹 (𝑎P, 𝑏O)) 𝑞′1 := 𝜕ℬ(𝑞ℬ, a, 𝑓(𝑎

P), 𝑏O)

Finally, we let (𝑞𝑛, 𝑞
′
𝑛)𝑛 ∈ Ω𝒜⊗ℬ iff ((𝑞𝑛)𝑛 ∈ Ω𝒜 and (𝑞′𝑛)𝑛 ∈

Ωℬ), and we let (𝑞𝑛, 𝑞
′
𝑛)𝑛 ∈ Ω𝒜⊸ℬ iff ((𝑞𝑛)𝑛 ∈ Ω𝒜 implies

(𝑞′𝑛)𝑛 ∈ Ωℬ).

Proposition 4.17.

(a) (AutΣ,⊗,⊤,⊸) is symmetric monoidal closed.
(b) We have ℒ(⊤ : Σ) = Σ𝜔 and ℒ(𝒜⊗ ℬ) = ℒ(𝒜) ∩ ℒ(ℬ).
(c) By determinacy of 𝜔-regular games, 𝐵 ∈ ℒ(𝒜⊸ ⊥) iff

𝐵 /∈ ℒ(𝒜).

Multiplicative Disjunction. The multiplicative disjunction
(`,⊥) of DZW induces a symmetric monoidal structure in
each AutΣ. The falsity automaton ⊥, is defined as ⊤ above,
with acceptance condition ∅ ⊆ {∙}𝜔. Given 𝒜,ℬ : Σ, the UA
𝒜 ` ℬ is defined as 𝒜 ⊗ ℬ, but with (𝑞𝑛, 𝑞

′
𝑛)𝑛 ∈ Ω𝒜`ℬ iff

either (𝑞𝑛)𝑛 ∈ Ω𝒜 or (𝑞′𝑛)𝑛 ∈ Ωℬ.

Proposition 4.18. ℒ(⊥) = ∅ and ℒ(𝒜`ℬ) = ℒ(𝒜)∪ℒ(ℬ).
It follows from §4.1 that (⊗,⊤) induces finite products in

Aut+Σ and that (`,⊥) induces finite co-products in Aut−Σ

Quantifications. Quantifications in UA’s can be seen as sim-
ple adaptations of quantifications in usual alternating au-
tomata. They are actually induced, via the generalization
of simple fibrations to comonoid indexing (§4.1), by the cat-
egorical quantifiers in simple fibrations (see e.g. [14, Prop.
1.9.3]).14 In this paper, we only need the following.

Definition 4.19. Given 𝒜 : Σ× Γ, let

(∃Γ𝒜 : Σ) := (Γ×𝒜P , 𝒜O , 𝑄𝒜 , 𝑞
𝚤
𝒜 , 𝜕∃Γ𝒜 , Ω𝒜)

(∀Γ𝒜 : Σ) := (𝒜P
Γ , Γ×𝒜O , 𝑄𝒜 , 𝑞

𝚤
𝒜 , 𝜕∀Γ𝒜 , Ω𝒜)

where

𝜕∃Γ𝒜(𝑞, a, (b, 𝑎P), 𝑎O) := 𝜕𝒜(𝑞, (a, b), 𝑎P, 𝑎O)

𝜕∀Γ𝒜(𝑞, a, 𝑓, (b, 𝑎O)) := 𝜕𝒜(𝑞, (a, b), 𝑓(b), 𝑎O)

Proposition 4.20. Given 𝒜 : Σ× Γ and ℬ(𝐶) : Σ, we have

DAΣ[(∃Γ𝒜)(𝐵) , ℬ(𝐶)] ≃
DAΣ×Γ[𝒜(𝐵 × IdΓ) , ℬ(𝐶 ∘ [𝜋Σ])]

DAΣ[ℬ(𝐶) , (∀Γ𝒜)(𝐵)] ≃
DAΣ×Γ[ℬ(𝐵 ∘ [𝜋Σ]) , 𝒜(𝐶 × IdΓ)]

Moreover, there are canonical maps (∀Γ𝒜)([𝜋Σ]) ⊸ 𝒜 and
𝒜 ⊸ (∃Γ𝒜)([𝜋Σ]).

Proposition 4.21. If 𝒜 : Σ×Γ is positive then 𝐵 ∈ ℒ(∃Γ𝒜)
iff there exists 𝐶 ∈ Γ𝜔 such that ⟨𝐵,𝐶⟩ ∈ ℒ(𝒜).

If 𝒜 : Σ×Γ is negative then 𝐵 ∈ ℒ(∀Γ𝒜) iff for all 𝐶 ∈ Γ𝜔

we have ⟨𝐵,𝐶⟩ ∈ ℒ(𝒜).

14Which correspond to quantifications in Dialectica categories [6, 12].
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4.5 Polarities and Duality

Say that 𝒜 is polarized if 𝒜 is positive or negative. Polar-
ized automata are particularly well-behaved. First, they are
equipped with a direct complementation operation (−)⊥,
which is defined as

𝒜⊥ := (𝒜O , 𝒜P , 𝑄𝒜 , 𝑞
𝚤
𝒜 , 𝜕𝒜⊥ , 𝑄

𝜔
𝒜 ∖ Ω𝒜)

where 𝜕𝒜⊥(𝑞, a, 𝑎O, 𝑎P) := 𝜕𝒜(𝑞, a, 𝑎
P, 𝑎O). For 𝒜,ℬ : Σ of

opposite polarities, we have the following iso in AutΣ:

𝒜⊸ ℬ ≃ 𝒜⊥ ` ℬ (2)

This in particular implies 𝒜 ⊸ ⊥ ≃ 𝒜⊥, which has the
following interesting consequence.

Corollary 4.22. If 𝒜 is polarized, then for all 𝐵, we have
𝐵 ∈ ℒ(𝒜⊥) iff 𝐵 /∈ ℒ(𝒜).

Second, det. automata are closed under ⊗,`, (−)⊥, and
positive and negative automata are closed under the following
productions (where 𝒜+ is positive, 𝒜− is negative and 𝒟 is
deterministic):

𝒜+,ℬ+ ::= 𝒟 | (𝒜−)
⊥ | ∃𝑋.𝒜+

| 𝒜+ ⊗ ℬ+ | 𝒜+ ` ℬ+

𝒜−,ℬ− ::= 𝒟 | (𝒜+)
⊥ | ∀𝑋.𝒜−

| 𝒜− ⊗ ℬ− | 𝒜− ` ℬ−

This, together with the fact that exponentials ? and ! always
give det. automata (see Prop. 5.2 below), will imply that the
interpretation of PLMSO-formulae preserves polarities.

Third, we have the following isos in AutΣ (where 𝒜 and ℬ
have opposite polarities):

(𝒜⊥)
⊥ ≃ 𝒜 (∃Σ𝒜)⊥ ≃ ∀Σ𝒜⊥ (∀Σ𝒜)⊥ ≃ ∃Σ𝒜⊥

(𝒜⊗ ℬ)⊥ ≃ 𝒜⊥ ` ℬ⊥ (𝒜` ℬ)⊥ ≃ 𝒜⊥ ⊗ ℬ⊥

5 The Realizability Model of LMSO
This last Section connects the two previous ones: we show
that the categories Aut(−) provide a realizability model of
LMSO. This in particular implies the correctness of LMSO
w.r.t. Church’s synthesis.

5.1 The Realizability Interpretation of LMSO

We have seen in §4.4 that uniform automata are equipped
with categorical structure for the interpretation of the con-
nectives ⊤,⊗,⊥,`,⊸, ∀, ∃ of LMSO. In order to devise an
interpretation of all LMSO-formulae, it remains to deal with
the atoms 𝛼 ∈ At, and with the exponential modalities !(−)
and ?(−). Atoms are dealt-with as usual (see e.g. [28]), and
we rely on McNaughton’s Thm. 2.10 for !(−) and ?(−).

Proposition 5.1. For each atom 𝛼 ∈ At with free variables
among 𝑋 = 𝑋1, . . . , 𝑋𝑛, there is a deterministic automaton
𝒜𝛼 such that 𝐵 ∈ ℒ(𝒜𝛼) iff N |= 𝛼(𝐵).

Proposition 5.2. Given a positive (resp. negative) automa-
ton 𝒜 : Σ, there is a deterministic automaton ?𝒜 : Σ (resp.
!𝒜 : Σ) which recognizes the same language as 𝒜.

Note that Prop. 5.2 produces deterministic automata,
which therefore only have trivial realizers. Hence, no con-
struction for McNaughton’s Thm. 2.10 is actually required
for the extraction of realizers from proofs.

Interpretation of PLMSO-Formulae. We are now ready
to define the interpretation of LMSO-formulae as automata.

Definition 5.3. The automaton J𝜙K : 2𝑛, for 𝜙 an LMSO-
formula with free variables among𝑋 = 𝑋1, . . . , 𝑋𝑛, is defined
by induction on 𝜙 as follows:

J⊤K := ⊤ J𝜙⊗ 𝜓K := J𝜙K⊗ J𝜓K
J⊥K := ⊥ J𝜙` 𝜓K := J𝜙K ` J𝜓K
J𝛼K := 𝒜𝛼 J𝜙⊸ 𝜓K := J𝜙K ⊸ J𝜓K

J∃𝑋.𝜙K := ∃2J𝜙K J∀𝑋.𝜙K := ∀2J𝜙K
J?𝜙+K := ?J𝜙+K J!𝜙−K := !J𝜙−K

This definition requires some comments. First, it follows
from §4.5 that J−K respects polarities of PLMSO-formulae,
so that J?𝜙+K and J!𝜙−K are well-defined. Also, in the cases
of ⊗,`,⊸ we assume that both compound formulae have
free variables among 𝑋1, . . . , 𝑋𝑛. For ∀𝑋.𝜙 and ∃𝑋.𝜙, we
assume that 𝜙 has free variables among 𝑋,𝑋1, . . . , 𝑋𝑛.

5.2 Correctness of PLMSO w.r.t. N

Since J−K respects polarities of PLMSO-formulae, it follows
from the properties of §4.4 that for PLMSO-formulae, the
quantifiers ∃ and ∀ are correctly implemented by the cor-
responding operations on automata. As a consequence, the
interpretation J−K of PLMSO-formulae is correct w.r.t. the
following erasure map.

Definition 5.4. The erasure map ⌊·⌋ is defined by induction
on LMSO-formulae as follows:

⌊⊤⌋ := ⊤ ⌊𝜙⊗ 𝜓⌋ := ⌊𝜙⌋ ∧ ⌊𝜓⌋
⌊⊥⌋ := ⊥ ⌊𝜙` 𝜓⌋ := ⌊𝜙⌋ ∨ ⌊𝜓⌋
⌊𝛼⌋ := 𝛼 ⌊𝜙⊸ 𝜓⌋ := ⌊𝜙⌋ → ⌊𝜓⌋

⌊∃𝑋.𝜙⌋ := ∃𝑋.⌊𝜙⌋ ⌊∀𝑋.𝜙⌋ := ∀𝑋.⌊𝜙⌋
⌊!𝜙⌋ := ⌊𝜙⌋ ⌊?𝜙⌋ := ⌊𝜙⌋

Proposition 5.5. For a PLMSO-formula 𝜙, 𝐵 ∈ ℒ(J𝜙K) if

and only if N |= ⌊𝜙⌋(𝐵).

Proposition 5.6. J𝜙+K ⊸ J𝜓−K is realized if and only if
N |= ⌊𝜙+⌋ → ⌊𝜓−⌋.

5.3 Adequacy and Realized Axioms

The central result on J−K is its adequacy :

Theorem 5.7. Given LMSO-formulae 𝜙 = 𝜙1, . . . , 𝜙𝑛 and
𝜓 = 𝜓1, . . . , 𝜓𝑚, from a derivation of 𝜙 ⊢LMSO 𝜓, one can
extract a f.s. realizer of J𝜙1K⊗. . .⊗J𝜙𝑛K −⊸ J𝜓1K`· · ·`J𝜓𝑛K.

In the statement of Thm. 5.7, the interpretation J−K is

taken for 𝑋 containing all the free variables of 𝜙 and 𝜓.
An immediate consequence of Thm. 5.7 is that from a proof

of LMSO ⊢ ∀𝑌 .∃𝑍.𝜙(𝑌 ;𝑍) one can extract Mealy machines

ℳ together with f.s. realizer of ⊤ −⊸ J𝜙(𝑌 ; 𝑡ℳ(𝑌 ))K. When
𝜙 is a PLMSO formula, by Prop. 5.5 this gives a f.s. causal
realizer of 𝜙𝐿(𝑌 ;𝑍).

Corollary 5.8. Given a PLMSO-formula 𝜙(𝑌 ;𝑍), from a

proof of LMSO ⊢ ∀𝑌 .∃𝑍.𝜙(𝑌 ;𝑍) one can extract a f.s. causal

realizer of 𝜙𝐿(𝑌 ;𝑍).

A general feature of realizability models is that they may
realize more statements than those provable in the theory they
interpret (see e.g. [15]). Here are some examples. Examples 5.9
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and 5.10 are counterparts of usual additional axioms for
intuitionistic arithmetic (see e.g. [15]).

Example 5.9. The following versions of “independence of
premises” and Markov’s principle are realizable (where 𝜙 is
negative, 𝛿, 𝛿′ are deterministic and 𝑋 is not free in 𝜙, 𝛿′):

(𝜙⊸ ∃𝑋.𝜓) −⊸ ∃𝑋(𝜙⊸ 𝜓)
[(∀𝑋.𝛿) ⊸ 𝛿′] −⊸ ∃𝑋(𝛿 ⊸ 𝛿′)

Example 5.10. The following form of causal (functional)
choice is realizable, for each negative formula 𝜙:

∀𝑋.∃𝑌.𝜙(𝑋,𝑌 ) −⊸ ∃𝑍.∀𝑋.𝜙(𝑋, app2𝑛,2(𝑍,𝑋))

where 𝑋 = 𝑋1, . . . , 𝑋𝑛 (representing 2𝑛), 𝑍 = 𝑍1, . . . , 𝑍2𝑛

(representing (2→ 2𝑛)) and appΣ,Γ is a term for the Mealy

machine ΓΣ × Σ→ Γ computing pointwise application.

Example 5.11. LMSO has an axiom for the elimination
of double negation for PLMSO-formulae. One can actually
realize [(𝒜 ⊸ ⊥) ⊸ ⊥] −⊸ 𝒜 for any 𝒜 by a non-trivial
combinatorial argument.15

6 Conclusion

We introduced LMSO, a constructive linear proof system for
MSO on 𝜔-words. LMSO is complete w.r.t. the translation
(−)𝐿 for both MSO and Church’s synthesis. We devised an
automata-based realizability semantics for LMSO. This model
implies that LMSO is correct for Church’s synthesis. It also
validates some extra axioms, counterparts of usual additional
axioms to intuitionistic arithmetic.

Further Works. LMSO has a polarized subsystem PLMSO
which reflects the usual polarities of alternating 𝜔-word au-
tomata and the corresponding polarized fragments of MSO.

We plan in future work to build on this feature, in partic-
ular because it corresponds to the polarities underlying the
Safraless approaches of [7, 16]. Actually, universal automata
are reminiscent from Gödel’s Functional (Dialectica) interpre-
tation (see e.g. [15]).16 The Dialectica interpretation maps
formulae to ∃∀-formulae, in such a way that proofs induce
witnesses for the prenex existential. This format is very close
to the one obtained by reformulating the approach of [7] in
MSO+. We plan to investigate this in further works.
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Order Successor Arithmetic. LNM, Vol. 120. Springer.

[27] M. H. Sørensen and P. Urzyczyn. 2006. Lectures on the Curry-
Howard Isomorphism. Studies in Logic and the Foundations of
Mathematics, Vol. 149. Elsevier Science Inc.

[28] W. Thomas. 1997. Languages, Automata, and Logic. In Hand-
book of Formal Languages, G. Rozenberg and A. Salomaa (Eds.).
Vol. III. Springer, 389–455.

[29] W. Thomas. 2008. Solution of Church’s Problem: A tutorial. New
Perspectives on Games and Interaction 5 (2008), 23.

[30] W. Thomas. 2009. Facets of Synthesis: Revisiting Church’s Prob-
lem. In Proceedings of FOSSACS’09, L. de Alfaro (Ed.). Springer,
1–14.

10

https://hal.archives-ouvertes.fr/hal-01261183
https://hal.archives-ouvertes.fr/hal-01261183


LMSO: A Curry-Howard Approach to Church’s Synthesis via Linear Logic Conference’17, July 2017, Washington, DC, USA

𝜙 ⊢ 𝜙
𝜙 ⊢ 𝛾, 𝜙′ 𝜓, 𝛾 ⊢ 𝜓′

𝜙,𝜓 ⊢ 𝜙′, 𝜓
′

𝜙,𝜙, 𝜓, 𝜓 ⊢ 𝜙′

𝜙,𝜓, 𝜙, 𝜓 ⊢ 𝜙′
𝜙 ⊢ 𝜙′, 𝜙, 𝜓, 𝜓

′

𝜙 ⊢ 𝜙′, 𝜓, 𝜙, 𝜓
′

𝜙 ⊢ ⊤, 𝜙′ 𝜙,⊥ ⊢ 𝜙′
𝜙 ⊢ 𝜙′

𝜙,𝜙 ⊢ 𝜙′
𝜙,𝜙, 𝜙 ⊢ 𝜙′

𝜙,𝜙 ⊢ 𝜙′
𝜙,𝜙 ⊢ 𝜓
𝜙 ⊢ 𝜙→ 𝜓

(𝜙→ ⊥)→ ⊥ ⊢ 𝜙
𝜙 ⊢ 𝜙′

𝜙 ⊢ 𝜙,𝜙′
𝜙 ⊢ 𝜙,𝜙, 𝜙′

𝜙 ⊢ 𝜙,𝜙′
𝜙 ⊢ 𝜙,𝜙′ 𝜓,𝜓 ⊢ 𝜓′

𝜙,𝜓, 𝜙→ 𝜓 ⊢ 𝜙′, 𝜓
′

𝜙,𝜙0, 𝜙1 ⊢ 𝜙′

𝜙,𝜙0 ∧ 𝜙1 ⊢ 𝜙′
𝜙 ⊢ 𝜙,𝜙′ 𝜓 ⊢ 𝜓,𝜓′

𝜙,𝜓 ⊢ 𝜙 ∧ 𝜓,𝜙′, 𝜓
′

𝜙,𝜙 ⊢ 𝜙′

𝜙, ∃𝑍.𝜙 ⊢ 𝜙′
𝜙 ⊢ 𝜙[𝑡/𝑋], 𝜙′

𝜙 ⊢ ∃𝑋.𝜙, 𝜙′

𝜙,𝜙 ⊢ 𝜙′ 𝜓,𝜓 ⊢ 𝜓′

𝜙,𝜓, 𝜙 ∨ 𝜓 ⊢ 𝜙′, 𝜓
′

𝜙 ⊢ 𝜙0, 𝜙1, 𝜙
′

𝜙 ⊢ 𝜙0 ∨ 𝜙1, 𝜙′
𝜙,𝜙[𝑡/𝑋] ⊢ 𝜙′

𝜙,∀𝑋.𝜙 ⊢ 𝜙′
𝜙 ⊢ 𝜙

𝜙 ⊢ ∀𝑍.𝜙

Figure 5. A Sequent Calculus for MSO+ (where 𝑍 is fresh for 𝜙,𝜙′ in each rule mentioning it).

A Proofs of §2 (Church’s Synthesis and MSO+)

Theorem A.1 (Thm. 2.11). For each closed formula 𝜙 of MSO+,

N |= 𝜙 iff MSO+ ⊢ 𝜙

MSO+ is defined in §2 as deduction for first-order classical logic augmented with the Arithmetic Rules and Fig. 5, and the
axiom schemes of Induction, Comprehension and Definition of Mealy Machines given in §2.

In order to prove Thm. A.1 we first eliminate the term symbols of MSO+ and to reduce to MSO.

Lemma A.2.

(a) For each term 𝑡 of MSO+, MSO+ proves that

∃𝑋∀𝑥 (𝑥 ∈̇ 𝑋 ←→ 𝑥 ∈̇ 𝑡)
(b) MSO+ proves that

∀𝑥(𝑥 ∈̇ 𝑡↔ 𝑥 ∈̇ 𝑢) ⊢ 𝜙[𝑡/𝑋]↔ 𝜙[𝑢/𝑋]

(c) Each MSO+-formula is MSO+-equivalent to an MSO-formula.

Proof.

(a) By induction on the terms of MSO+, using comprehension.
(b) The assumption ∀𝑥(𝑥 ∈̇ 𝑡↔ 𝑥 ∈̇ 𝑢) unfolds to

∀𝑋
(︀
N(𝑋)→

[︀
𝑋 ⊆̇ 𝑡↔ 𝑋 ⊆̇ 𝑢

]︀)︀
But this implies 𝑡 ⊆̇ 𝑢 and 𝑢 ⊆̇ 𝑡, and thus 𝑡

.
= 𝑢. The result then follows from the axiom:

𝑡
.
= 𝑢 , 𝜙[𝑡/𝑋] ⊢ 𝜙[𝑢/𝑋]

(c) The property is an easy consequence of the two above points.

□

We shall therefore prove the following version of Thm. A.1, where MSO refers to the axiomatization presented in §2, with
deduction made in the system of Fig. 5 restricted to the language of MSO (this amounts to restrict the term 𝑡 in the left ∀-rule
and the right ∃-rule to monadic variables).

Theorem A.3. For each closed formula 𝜙 of MSO,

N |= 𝜙 iff MSO ⊢ 𝜙

In order to prove Thm. A.3 we reduce to the axiomatization of MSO used in [22], that we call here MSO𝜄. First, since we are
in a classical setting, we can restrict to MSO-formulae build on the grammar:

𝜙,𝜓 ::= 𝛼 | ⊤ | ⊥ | ¬𝜙 | 𝜙 ∧ 𝜓 | ∃𝑋.𝜙
In the system of Fig. 5, this amounts to discard all rules concerning the connectives ∨, → and ∀, and to add the following rules:

¬¬𝜙 ⊢ 𝜙
𝜙,𝜙 ⊢ ⊥
𝜙 ⊢ ¬𝜙

𝜙 ⊢ 𝜙
𝜙,¬𝜙 ⊢ 𝜓
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On the other hand, the MSO𝜄-formulae of [22] are based on the following two-sorted language:17

Φ,Ψ ::= 𝑥
.
= 𝑦 | 𝑥 ≤̇ 𝑦 | S(𝑥, 𝑦) | 0(𝑥) | 𝑥 ∈̇ 𝑋 | ⊤ | ⊥

| ¬Φ | Φ ∧Ψ | ∃𝑥.Φ | ∃𝑋.Φ

As deduction system for MSO𝜄, we take the same system as MSO, augmented with the quantifier rules for individuals:

Φ,Φ ⊢ Φ
′

Φ, ∃𝑥.Φ ⊢ Φ
′ (𝑥 not free in Φ,Φ

′
)

Φ ⊢ Φ[𝑥/𝑦],Φ
′

Φ ⊢ ∃𝑥.Φ,Φ′

We will define two translations:

∙ A translation taking an MSO-formula 𝜙 in the sense of §2 to an MSO𝜄-formula 𝜙↑ in the sense of [22].
∙ A translation taking an MSO𝜄-formula Φ in the sense of [22] to an MSO-formula Φ∘ in the sense of §2.

The translations satisfy the following properties:

(a) For each closed formula 𝜙 in the sense of §2, we have

N |= 𝜙 ⇐⇒ N |= 𝜙↑

(b) For each formula 𝜙 in the sense of §2, MSO proves that

𝜙 ←→ 𝜙↑
∘

(c) For each closed formula Φ in the sense of [22],

MSO𝜄 ⊢ Φ =⇒ MSO𝜄 ⊢ Φ∘

The above properties then imply Thm. A.3 from [22, Thm. 2.10].

Definition A.4. The translation (−)↑ is defined by induction on MSO-formulae in the sense of §2 as follows:

(𝑋
.
= 𝑌 )↑ := ∀𝑥 (𝑥 ∈̇ 𝑋 ←→ 𝑥 ∈̇ 𝑌 )

E(𝑋)↑ := ¬∃𝑥 (𝑥 ∈̇ 𝑋)

(𝑋 ⊆̇ 𝑌 )↑ := ∀𝑥 (𝑥 ∈̇ 𝑋 −→ 𝑥 ∈̇ 𝑌 )

N(𝑋)↑ := ∃!𝑥 (𝑥 ∈̇ 𝑋)

0(𝑋)↑ := N(𝑋)↑ ∧ ∀𝑥 (𝑥 ∈̇ 𝑋 −→ 0(𝑥))
S(𝑋,𝑌 )↑ := N(𝑋)↑ ∧ N(𝑌 )↑ ∧ ∀𝑥, 𝑦 (S(𝑥, 𝑦)→ 𝑥 ∈̇ 𝑋 → 𝑦 ∈̇ 𝑌 )

(𝑋 ≤̇ 𝑌 )↑ := N(𝑋)↑ ∧ N(𝑌 )↑ ∧ ∀𝑥, 𝑦
(︀
𝑥 ∈̇ 𝑋 → 𝑦 ∈̇ 𝑌 → 𝑥 ≤̇ 𝑦

)︀
(¬𝜙)↑ := ¬(𝜙↑)

(𝜙 ∧ 𝜓)↑ := 𝜙↑ ∧ 𝜓↑

(∃𝑋.𝜙)↑ := ∃𝑋.𝜙↑

Property (a) is obvious from the definition of (−)↑.

Definition A.5. The translation (−)∘ is defined by induction on MSO𝜄-formulae in the sense of [22] as follows:

(𝑥
.
= 𝑦)∘ := 𝑥

.
= 𝑦

(0(𝑥))∘ := 0(𝑥)
(S(𝑥, 𝑦))∘ := S(𝑥, 𝑦)
(𝑥 ≤̇ 𝑦)∘ := 𝑥 ≤̇ 𝑦
(𝑥 ∈̇ 𝑋)∘ := 𝑥 ⊆̇ 𝑋

(¬𝜙)∘ := ¬(𝜙∘)

(𝜙 ∧ 𝜓)∘ := 𝜙∘ ∧ 𝜓↑

(∃𝑋.𝜙)∘ := ∃𝑋.𝜙∘
(∃𝑥.𝜙)∘ := ∃𝑥.𝜙∘

(where we have used the conventions of §2).

Lemma A.6. For each MSO-formula 𝜙 in the sense of §2, we have

MSO ⊢ 𝜙←→ 𝜙↑
∘

Proof. The proof is by induction on formulae. Since the composite translation (−)↑∘ commutes over all connectives, we just
have to show the property for the atomic formulae of MSO (in the sense of §2).

17The formula 0(𝑥) was noted Z(𝑡) in [22].
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∙ Case of (𝑋
.
= 𝑌 ). We have

(𝑋
.
= 𝑌 )↑∘ = ∀𝑥

(︀
N(𝑥)→

[︀
𝑥 ⊆̇ 𝑋 ←→ 𝑥 ⊆̇ 𝑌

]︀)︀
We have 𝜙 ⊢MSO 𝜙

↑
∘ thanks to the axiom scheme:

𝑡
.
= 𝑢 , 𝜓[𝑡/𝑋] ⊢ 𝜓[𝑢/𝑋]

The converse implication follows from the axioms

𝑡 ⊆̇ 𝑢 , 𝑢 ⊆̇ 𝑡 ⊢ 𝑡 .= 𝑢
and

N(𝑋) , 𝑋 ⊆̇ 𝑡 ⊢ 𝑋 ⊆̇ 𝑢
⊢ 𝑡 ⊆̇ 𝑢

(𝑋 fresh)

∙ Case of E(𝑋). We have

(E(𝑋))↑∘ = ¬∃𝑥
(︀
N(𝑥) ∧ 𝑥 ⊆̇ 𝑋

)︀
We first show that 𝜙 ⊢MSO 𝜙

↑
∘. Assume E(𝑋) and N(𝑥) ∧ 𝑥 ⊆̇ 𝑋. Since E(𝑋) we have 𝑋 ⊆̇ 𝑥, so we get 𝑥

.
= 𝑋. But this

implies E(𝑋) ∧ N(𝑋), a contradiction.

Conversely, assume ¬∃𝑥 (N(𝑥) ∧ 𝑥 ⊆ 𝑋). In order to show E(𝑋) we show ∀𝑌.𝑋 ⊆̇ 𝑌 . We apply the axiom

N(𝑍) , 𝑍 ⊆̇ 𝑋 ⊢ 𝑍 ⊆̇ 𝑌
⊢ 𝑋 ⊆̇ 𝑌

(𝑍 fresh)

and we are done thanks to our assumption ¬∃𝑍 (N(𝑍) ∧ 𝑍 ⊆ 𝑋).

∙ Case of (𝑋 ⊆̇ 𝑌 ). We have

(𝑋 ⊆̇ 𝑌 )↑∘ = ∀𝑥
(︀
N(𝑥)→ 𝑥 ⊆̇ 𝑋 → 𝑥 ⊆̇ 𝑌

)︀
If (𝑋 ⊆̇ 𝑌 ) then by transitivity of ⊆̇ we have 𝑍 ⊆̇ 𝑌 for all 𝑍 ⊆̇ 𝑋, so that we get (𝑋 ⊆̇ 𝑌 )↑∘.
The converse direction is given by the axiom

N(𝑍) , 𝑍 ⊆̇ 𝑋 ⊢ 𝑍 ⊆̇ 𝑌
⊢ 𝑋 ⊆̇ 𝑌

(𝑍 fresh)

∙ Case of N(𝑋). We have

N(𝑋)↑∘ = ∃𝑥
(︀
N(𝑥) ∧ 𝑥 ⊆̇ 𝑋 ∧ ∀𝑦

[︀
N(𝑦)→ 𝑦 ⊆̇ 𝑋 → 𝑦

.
= 𝑥

]︀)︀
Assume N(𝑋). We obviously have N(𝑋) ∧𝑋 ⊆̇ 𝑋. Moreover, given N(𝑌 ) such that 𝑌 ⊆̇ 𝑋, we apply the axiom

N(𝑋) , 𝑌 ⊆̇ 𝑋 ⊢ E(𝑌 ) , 𝑌
.
= 𝑋

and we get 𝑌
.
= 𝑋 thanks to the axiom

E(𝑌 ) , N(𝑌 ) ⊢ ⊥
Conversely, assume N(𝑋)↑∘, and let 𝑥 such that N(𝑥), 𝑥 ⊆̇ 𝑋 and

∀𝑦
[︀
N(𝑦)→ 𝑦 ⊆̇ 𝑋 → 𝑦

.
= 𝑥

]︀
In order to show N(𝑋), we apply the axioms

𝑍 ⊆̇ 𝑋 ⊢ E(𝑍) , 𝑍
.
= 𝑋

⊢ N(𝑋) , E(𝑋)
and

N(𝑋) , E(𝑋) ⊢ ⊥

First, note that 𝑋 ⊆̇ 𝑌 and E(𝑌 ) imply E(𝑋), so we have ¬E(𝑋) since 𝑥 ⊆ 𝑋 with N(𝑥). Hence we are done if we show

∀𝑍
(︀
𝑍 ⊆̇ 𝑋 −→ E(𝑍) ∨ 𝑍 .

= 𝑋
)︀

So let 𝑍 ⊆̇ 𝑋 such that ¬E(𝑍). For all 𝑌 ⊆̇ 𝑍 such that N(𝑌 ), we have 𝑌 ⊆̇ 𝑋 so that 𝑌
.
= 𝑥 and thus 𝑌 ⊆̇ 𝑥. It follows

that 𝑍 ⊆̇ 𝑥. But this implies N(𝑍) since ¬E(𝑍) and N(𝑥), and we obtain 𝑍
.
= 𝑥 from 𝑍 ⊆̇ 𝑥.

Now, given N(𝑌 ) such that 𝑌 ⊆̇ 𝑋, we have 𝑌
.
= 𝑍 and thus 𝑌 ⊆̇ 𝑍. Hence 𝑋 ⊆̇ 𝑍, and are done since we assumed

𝑍 ⊆̇ 𝑋.
∙ Case of 0(𝑋). We have

0(𝑋)↑∘ = N(𝑋)↑∘ ∧ ∀𝑥
(︀
N(𝑥)→

[︀
𝑥 ⊆̇ 𝑋 −→ 0(𝑥)

]︀)︀
Assume first 0(𝑋). We have N(𝑋) and thus N(𝑋)↑∘. Let now N(𝑥) such that 𝑥 ⊆̇ 𝑋. Since N(𝑋) and N(𝑥) we get 𝑥

.
= 𝑋,

so 0(𝑥).

Conversely, assume 0(𝑋)↑∘. We thus get N(𝑋)↑∘ and thus N(𝑋). So there is some 𝑥 ⊆̇ 𝑋 with N(𝑥). But we must have
𝑥
.
= 𝑋 and this implies 0(𝑋) since 0(𝑥).
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∙ Case of S(𝑋,𝑌 ). We have

S(𝑋,𝑌 )↑∘ = N(𝑋)↑∘ ∧ N(𝑌 )↑∘ ∧ ∀𝑥, 𝑦
(︀
N(𝑥)→ N(𝑦)→ S(𝑥, 𝑦)→ 𝑥 ⊆̇ 𝑋 → 𝑦 ⊆̇ 𝑌

)︀
Assume S(𝑋,𝑌 ). We have N(𝑋) and N(𝑌 ), so that N(𝑋)↑∘ and N(𝑌 )↑∘. Moreover, given S(𝑥, 𝑦) with N(𝑥), N(𝑦) and

𝑥 ⊆̇ 𝑋, we must have 𝑥
.
= 𝑋 so that 𝑦

.
= 𝑌 since S(𝑋,𝑌 ).

Conversely, assuming S(𝑋,𝑌 )↑∘ we obtain N(𝑋) and N(𝑌 ). It follows that given N(𝑥) with 𝑥 ⊆̇ 𝑋 we have 𝑥
.
= 𝑋 (and

such an 𝑥 exists by N(𝑋)↑∘). But then, there is some 𝑦 such that S(𝑋, 𝑦), and thus N(𝑦). This implies 𝑦 ⊆̇ 𝑌 and thus
𝑦
.
= 𝑌 and we are done.

∙ Case of (𝑋 ≤̇ 𝑌 ). We have

(𝑋 ≤̇ 𝑌 )↑∘ = N(𝑋)↑∘ ∧ N(𝑌 )↑∘ ∧ ∀𝑥, 𝑦
(︀
N(𝑥)→ N(𝑦)→ 𝑥 ⊆̇ 𝑋 → 𝑦 ⊆̇ 𝑌 → 𝑥 ≤̇ 𝑦

)︀
Assume (𝑋 ≤̇ 𝑌 ). We have N(𝑋) and N(𝑌 ), so that N(𝑋)↑∘ and N(𝑌 )↑∘. Moreover, given N(𝑥) and N(𝑦) with 𝑥 ⊆̇ 𝑋 and

𝑦 ⊆̇ 𝑌 , we must have 𝑥
.
= 𝑋 and 𝑦

.
= 𝑌 , so that 𝑥 ≤̇ 𝑦.

Conversely, assuming 𝑋 ≤̇ 𝑌 ↑
∘ , since N(𝑋)↑∘ and N(𝑌 )↑∘ there are N(𝑥) and N(𝑦) such that 𝑥 ⊆̇ 𝑋 and 𝑦 ⊆̇ 𝑌 . It follows

that 𝑥
.
= 𝑋, 𝑦

.
= 𝑌 and 𝑥 ≤̇ 𝑦, so that 𝑋 ≤̇ 𝑌 .

□

Lemma A.7. Given a closed MSO𝜄-formula Φ in the sense of [22], we have

MSO𝜄 ⊢ Φ =⇒ MSO ⊢ Φ∘

Proof. The proof is by induction on derivations. Given formulae Φ1, . . . ,Φ𝑛,Φ with free individual variables among 𝑥 = 𝑥1, . . . , 𝑥𝑝,
we show that if

Φ1, . . . ,Φ𝑛 ⊢MSO𝜄 Φ

is derivable in the system of [22], then

N(𝑥) , Φ1∘, . . . ,Φ𝑛∘ ⊢MSO Φ∘ (3)

We distinguish the different cases of Φ1, . . . ,Φ𝑛 ⊢MSO𝜄 Φ.

∙ We first discuss the Arithmetic Rules of MSO𝜄, given in [22, Fig 3]. They all directly follow from the corresponding rules
of Fig. 2, but for the rules

Φ ⊢ ∃𝑦.0(𝑦)
and

Φ ⊢ ∃𝑦.S(𝑥, 𝑦)
For these rules, one uses the axioms

0(𝑥) ⊢ N(𝑥)
and

S(𝑥, 𝑦) ⊢ N(𝑦)

in addition to the derivable rules

⊢ ∃𝑌.0(𝑌 )
and ⊢ ∃𝑌.S(𝑥, 𝑌 )

∙ The induction rule of [22] directly follows from the induction rule of MSO given in §2.
∙ As for comprehension, the comprehension rule of [22] is expressed as a right ∃ rule:

Φ1, . . . ,Φ𝑛 ⊢ Φ[Ψ[𝑥]/𝑋]

Φ1, . . . ,Φ𝑛 ⊢ ∃𝑋.Φ
which is translated to

Φ1∘, . . . ,Φ𝑛∘ ⊢ (Φ[Ψ[𝑥]/𝑋])∘
Φ1∘, . . . ,Φ𝑛∘ ⊢ (∃𝑋.Φ)∘

The translation (−)∘ is compatible with second-order substitution in the sense that

MSO ⊢ Φ∘[Ψ∘[𝑦]/𝑋]↔ (Φ[Ψ[𝑦]/𝑋)]∘

where the substitution Φ∘[Ψ∘[𝑦]/𝑋] is defined by induction as usual but with

(𝑥 ∈̇ 𝑋)∘[Ψ∘[𝑦]/𝑋] := Ψ[𝑥/𝑦]

The result then follows as usual (using the substitution lemma) from the comprehension scheme of MSO given in §2.
∙ Finally, the logical rules are straightforward, but for the right ∃ rules on individuals, which uses the supplementary

assumptions N(𝑥) in (3).

□
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B Proofs of §3 (LMSO: A Linear Variant of MSO)
B.1 Proofs of §3.2 (The Deduction System of LMSO)

Theorem B.1 (Thm. 3.2). Given an MSO+ formula 𝜙, if MSO+ ⊢ 𝜙 then LMSO ⊢ 𝜙𝐿.

Proof. We show by induction on derivations that

𝜙 ⊢MSO+ 𝜙′ =⇒ 𝜙𝐿 ⊢LMSO 𝜙
′𝐿

In most cases, for each MSO+-rule of the shape
(𝜙𝑖 ⊢ 𝜙′

𝑖)𝑖∈𝐼

𝜙 ⊢ 𝜙′

there is an LMSO-rule of the shape

(𝜙𝐿
𝑖 ⊢ 𝜙′𝐿

𝑖 )𝑖∈𝐼

𝜙𝐿 ⊢ 𝜙′𝐿

which enables to conclude swiftly. We distinguish the different cases of 𝜙 ⊢MSO+ 𝜙′.

∙ Arithmetic Rules of Fig. 2. Since 𝛼𝐿 = 𝛼 for each 𝛼 ∈ At, these rules fall in the scheme described above.
∙ Among the non-logical rules of Fig. 5, the cases of

𝜙 ⊢ 𝜙
𝜙 ⊢ 𝛾, 𝜙′ 𝜓, 𝛾 ⊢ 𝜓′

𝜙,𝜓 ⊢ 𝜙′, 𝜓
′

𝜙,𝜙, 𝜓, 𝜓 ⊢ 𝜙′

𝜙,𝜓, 𝜙, 𝜓 ⊢ 𝜙′
𝜙 ⊢ 𝜙′, 𝜙, 𝜓, 𝜓

′

𝜙 ⊢ 𝜙′, 𝜓, 𝜙, 𝜓
′

𝜓 ⊢ 𝜓′

𝜓,𝜙 ⊢ 𝜓′
𝜓 ⊢ 𝜓′

𝜓 ⊢ 𝜙,𝜓′

follow from the corresponding rule in LMSO.
The cases of the rules

𝜙,𝜙, 𝜙 ⊢ 𝜙′

𝜙,𝜙 ⊢ 𝜙′ and
𝜙 ⊢ 𝜙,𝜙, 𝜙′

𝜙 ⊢ 𝜙,𝜙′

follow, since 𝜙𝐿 is deterministic, using the LMSO-rules

𝜙,𝜙+, 𝜙+ ⊢ 𝜙′

𝜙,𝜙+ ⊢ 𝜙′ and
𝜙 ⊢ 𝜙−, 𝜙−, 𝜙′

𝜙 ⊢ 𝜙−, 𝜙′

∙ Consider now the logical rules of MSO+. First, since 𝜙𝐿 is a formula of LMSO, the case of double negation elimination

(𝜙→ ⊥)→ ⊥ ⊢ 𝜙
follows from the Polarized Double Negation Elimination axioms of LMSO.
All the other logical rules for propositional logic follow from the corresponding rules of LMSO, replacing ∧ by ⊗, ∨ by `
and → by ⊸.
It remains to deal with the quantifier rules in which exponential intervene. We use the fact that all formulae 𝜙𝐿 are
deterministic, hence, we may introduce and suppress exponentials as needed.
– Suppose that the last rule was a ∃-left (resp. ∀-right) rule:

𝜙,𝜙 ⊢ 𝜙′

𝜙, ∃𝑍.𝜙 ⊢ 𝜙′
resp.

𝜙 ⊢ 𝜙
𝜙 ⊢ ∀𝑍.𝜙

By the induction hypothesis and the ∃-left (resp. ∀-right) rule of LMSO, we can also derive

𝜙𝐿, ∃𝑍.𝜙𝐿 ⊢ 𝜙′𝐿 resp. 𝜙𝐿 ⊢ ∀𝑍.𝜙𝐿

But 𝜙𝐿 and 𝜙′𝐿 are all deterministic, so we deduce

𝜙𝐿, ?∃𝑍.𝜙𝐿 ⊢ 𝜙′𝐿 resp. 𝜙𝐿 ⊢ !∀𝑍.𝜙𝐿

and we are done since (∃𝑍.𝜙)𝐿 = ?∃𝑍.𝜙𝐿 (resp. (∀𝑍.𝜙)𝐿 = !∀𝑍.𝜙𝐿).
– Suppose that the last rule was an ∃-right (resp. ∀-left) rule

𝜙 ⊢ 𝜙[𝑡/𝑍], 𝜙′

𝜙 ⊢ ∃𝑍.𝜙, 𝜙′
resp.

𝜙,𝜙[𝑡/𝑍] ⊢ 𝜙′

𝜙, ∀𝑍.𝜙 ⊢ 𝜙′

By induction hypothesis (and since (−)𝐿 commutes with substitution) we get

𝜙𝐿 ⊢ 𝜙𝐿[𝑡/𝑍], 𝜙′𝐿 resp. 𝜙𝐿, 𝜙𝐿[𝑡/𝑍] ⊢ 𝜙′𝐿

We can now use the ∃-right (resp. ∀-left) rule of LMSO, followed with the ?-right (resp. !-left) rule to derive

𝜙𝐿 ⊢ ?∃𝑍.𝜙𝐿, 𝜙′𝐿 resp. 𝜙𝐿, !∀𝑋.𝜙𝐿 ⊢ 𝜙′𝐿

But then we are done since ?∃𝑍.𝜙𝐿 = (∃𝑍.𝜙)𝐿 (resp. !∀𝑍.𝜙𝐿 = (∀𝑍.𝜙)𝐿).
∙ We finally discuss the remaining axioms schemes of MSO+.
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– Induction. The induction scheme of LMSO requires one hypothesis to be under an exponential modality !(−) to
accomodate arbitrary negative formulae; the situation is resolved by cutting with the LMSO axiom enabling to remove
exponentials over deterministic formulae.
By the induction hypothesis (and since (−)𝐿 commutes over substitution), we have proofs

𝜋

𝜙𝐿, 0(𝑧) ⊢ 𝜙𝐿[𝑧/𝑥], 𝜓
𝐿

and
𝜋′

𝜙𝐿,S(𝑦, 𝑧), 𝜙𝐿[𝑦/𝑥] ⊢ 𝜙𝐿[𝑧/𝑥], 𝜓
𝐿

Noticing that all involved formulae above are deterministic, we may give the following derivation in LMSO:

𝜋

𝜙𝐿, 0(𝑧) ⊢ 𝜙𝐿[𝑧/𝑥], 𝜓
𝐿

𝜋′

𝜙𝐿, S(𝑦, 𝑧), 𝜙𝐿[𝑦/𝑥] ⊢ 𝜙𝐿[𝑧/𝑥], 𝜓
𝐿 !𝜙𝐿[𝑦/𝑥] ⊢ 𝜙𝐿[𝑦/𝑥]

𝜙𝐿,S(𝑦, 𝑧), !𝜙𝐿[𝑦/𝑥] ⊢ 𝜙𝐿[𝑧/𝑥], 𝜓
𝐿

𝜙𝐿 ⊢ 𝜙𝐿, 𝜓
𝐿

– Comprehension. The translation of an instance of the Comprehension scheme of MSO+ is an instance of the Deterministic
Comprehension scheme of LMSO.

– Definition of Mealy Machines. The axiom scheme defining terms in MSO+ is as follows

⊢ ∀𝑋∀𝑥
(︀
𝑥 ∈̇ 𝑡ℳ(𝑋) ←→ 𝛿ℳ(𝑥,𝑋)

)︀
Clearly, it is equivalent to the following scheme where we make the universal quantification implicit by using formulae
with free variables

⊢ N(𝑥)→
(︀
𝑥 ∈̇ 𝑡ℳ(𝑋) ←→ 𝛿ℳ(𝑥,𝑋)

)︀
which translate to the following, which is then clearly derivable from the corresonding scheme in LMSO by instantiating
the universal quantifiers by the free variables

⊢ N(𝑥) ⊸
(︀
𝑥 ∈̇ 𝑡ℳ(𝑋) ˛ 𝛿ℳ(𝑥,𝑋)𝐿

)︀
□

Corollary B.2 (Cor. 3.3). If an MSO+-formula 𝜙(𝑌 ;𝑍) admits a (f.s.) causal realizer, then LMSO ⊢ ∀𝑌 .∃𝑍.𝜙𝐿(𝑌 ;𝑍).

Proof. Assume that 𝜙(𝑌 ;𝑍) is realized by f.s. causal functions 𝐹 of Mealy machinesℳ. Then

N |= ∀𝑌 .𝜙(𝑌 ; 𝑡ℳ(𝑌 ))

It follows from the completeness of MSO+ (Thm. A.1) that we have

MSO+ ⊢ ∀𝑌 .𝜙(𝑌 ; 𝑡ℳ(𝑌 ))

from which we deduce by correctness of (−)𝐿 (Thm. B.1) that

LMSO ⊢ !∀𝑌 .𝜙𝐿(𝑌 ; 𝑡ℳ(𝑌 ))

But this implies

LMSO ⊢ 𝜙𝐿(𝑌 ; 𝑡ℳ(𝑌 ))

and we easily deduce the result. □

C Proofs of §5 (The Realizability Model of LMSO)
C.1 Proofs of §5.1 (The Realizability Interpretation of LMSO)

Proposition C.1 (Prop. 5.2). Given a postive (resp. negative) automaton 𝒜 : Σ, there is a deterministic automaton ?𝒜 : Σ
(resp. !𝒜 : Σ) which recognises the same language as 𝒜.

Proof. We first discuss the case of a positive 𝒜 : Σ. Consider the (usual) deterministic automaton 𝒮 over Σ ×𝒜P with the
same states as 𝒜 and with transition function 𝜕𝒮 defined as 𝜕𝒮(𝑞, (a, 𝑎

P)) := 𝜕𝒜(𝑞, a, 𝑎
P, ) (where is the unique element of

𝒜O ≃ {∙}). Then 𝐵 ∈ ℒ(𝒜) iff there is some 𝑅 ∈ 𝒜𝜔
P s.t. ⟨𝐵,𝑅⟩ ∈ ℒ(𝒜). Since Ω𝒜 is 𝜔-regular, it is recognized by a non-det.

Büchi automaton 𝒞 over 𝑄𝒜. We then obtain a non-det. Büchi automaton ℬ over Σ × 𝑈 with state set 𝑄𝒜 × 𝑄𝒞 and s.t.
ℒ(ℬ) = ℒ(𝒮). It follows that 𝐵 ∈ ℒ(𝒜) iff 𝐵 ∈ ℒ(∃̃𝑈ℬ), where ∃̃𝑈ℬ is the usual projection of ℬ on Σ. By McNaughton’s

Thm. 2.10, ∃̃𝑈ℬ is equivalent to a deterministic (say Muller) automaton 𝒟 over Σ. We let ?𝒜 be 𝒟 seen as a uniform automaton.

For a negative 𝒜, we let !𝒜 := (?𝒜⊥)
⊥

(where (−)⊥ is defined in §4.5). □
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C.2 Proofs of §5.2 (Correctness of PLMSO w.r.t.N)

Proposition C.2 (Prop. 5.6). Given PLMSO-formulae 𝜙+ and 𝜓−, then J𝜙+K ⊸ J𝜓−K is realized iff N |= ⌊𝜙+⌋ → ⌊𝜓−⌋.

Proof. The left-to-right direction directly follows from Prop. 4.16.
The proof of the right-to-left direction combines [25, Prop. 7.7] with Corollary 4.22. We give here a detailed argument, since

it is representative of how the structures of the categories Aut(−) can be used in realizability. So assume N |= ⌊𝜙+⌋ → ⌊𝜓−⌋,
and assume the the free variables of 𝜙+, 𝜓− are among 𝑋 = 𝑋1, . . . , 𝑋𝑛. By Proposition 5.5 we have ℒ(J𝜙+K) ⊆ ℒ(J𝜙−K), and
by Corollary 4.22 we get ℒ(J𝜙K+) ∩ ℒ(J𝜙−K⊥) = ∅. It then follows from Proposition 4.17 that the language of J𝜙+K⊗ J𝜙−K⊥ is

empty. Since J𝜙+K⊗ J𝜙−K⊥ is a positive automaton, by Proposition 4.21 it follows that the automaton ∃2𝑛(J𝜙+K⊗ J𝜙−K⊥) : 1
has also an empty language. But by Proposition 4.17 this implies that ∃2𝑛(J𝜙+K⊗ J𝜙−K⊥) ⊸ ⊥ (where ⊥ lives in Aut1) accepts
the only 𝜔-word (say ∙𝜔) on 1. This means that there is DA1-map

⊤ −⊸
(︁
∃2𝑛(J𝜙+K⊗ J𝜙−K

⊥
) ⊸ ⊥

)︁
(∙𝜔)

Since
(︁
∃2𝑛(J𝜙+K⊗ J𝜙−K⊥) ⊸ ⊥

)︁
(∙𝜔) and

(︁
∃2𝑛(J𝜙+K⊗ J𝜙−K⊥) ⊸ ⊥

)︁
are isomoprhic as DA1-objects, Proposition 4.17 gives

a DA1-map

∃2𝑛(J𝜙+K⊗ J𝜙−K
⊥
) −⊸ ⊥

Now apply Proposition 4.20 to obtain a DA2𝑛 -map

J𝜙+K⊗ J𝜙−K
⊥ −⊸ ⊥(12𝑛)

where 12𝑛 is the unique S-map 2𝑛 → 1. Note that the ⊥ of Aut2𝑛 is isomorphic in DA2𝑛 to ⊥(12𝑛) : 2𝑛, so that we actually
have a DA2𝑛 -map

J𝜙+K⊗ J𝜙−K
⊥ −⊸ ⊥

where ⊥ lives in Aut2𝑛 . By applying again Proposition 4.17 we get a realizer of

J𝜙+K −⊸
(︁
J𝜙−K

⊥
⊸ ⊥

)︁
and we can conclude using the isos (𝒜⊸ ⊥) ≃ 𝒜⊥ and (𝒜⊥)

⊥ ≃ 𝒜 of §4.5. □

C.3 Proofs of §5.3 (Adequacy and Realized Axioms)

Theorem C.3 (Thm. 5.7). Given LMSO-formulae 𝜙 = 𝜙1, . . . , 𝜙𝑛 and 𝜓 = 𝜓1, . . . , 𝜓𝑚, from a derivation of 𝜙 ⊢LMSO 𝜓, one
can extract a f.s. realizer of J𝜙1K⊗ . . .⊗ J𝜙𝑛K −⊸ J𝜓1K ` · · ·` J𝜓𝑛K.

Proof. The proof of Thm. 5.7 is as usual by induction on derivations. It is convenient to decompose it as follows.

∙ The rules of the first line of Fig. 4, follow from the symmetric monoidal structures of (AutΣ,`,⊥) and (AutΣ,⊗,⊤).
∙ The weakening rules as well as a the ⊥-left and ⊤-right rules follow from the weakening maps of DZW.
∙ The contraction rules follow from the fact that (⊗,⊤) (resp. (`,⊥)) gives products (resp. co-products) of positive (resp.
negative) automata.
∙ The ⊗-left rule and the `-right rule are trivial. The two other rules for ⊗ and ` are based on the monoidal structure
(�, I) of DZ, together with some tautological reasonning on winning.
∙ The ⊸-right rule follows from the monoidal closed structure of (⊗,⊤,⊸) in Aut(−). The ⊸-left rule in addition uses
realizers of

(𝒜⊗ ℬ) −⊸ (𝒜` ℬ)
and (𝒜` ℬ)⊗ 𝒞 −⊸ (𝒜⊗ 𝒞)` ℬ

which are themselves provided by adequacy for the ⊗ and ` rules.
∙ The quantifier rules rely on Prop. 4.20, together with the monoidal closure of of (⊗,⊤,⊸) in Aut(−).
∙ The !-left and ?-right rules follow from the existence of trivial realizers for

!(𝒜−) −⊸ 𝒜− and 𝒜+ −⊸ ?(𝒜+)

given by combining Prop. C.1 with Prop. C.2. The other rules for !(−) and ?(−) directly follow from Prop. C.1 and
Prop. C.2.
∙ For the most part, the arithmetic rules of Fig. 2 only comprise deterministic formulae. Since those are sound for MSO+,
by Prop. C.2, they are realized. As those making general formulae intervene, notice that they have a single premise,
whose set of P and O moves are isomorphic to the conclusion. It is fairly straightforward to check that realizers of the
premise are also realizers of the conclusion.
∙ The adequacy for the axioms schemes of Deterministic Comprehension, Definitions of Mealy Machines and Induction
directly follows from Prop. C.2.
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∙ We consider the case of Polarized Double-Negation Elimination. Assume that 𝒜 is positive (resp. negative) so that
𝒜O ≃ {∙} (resp. 𝒜P ≃ {∙}). In this case, we have(︀

(𝒜⊸ ⊥)P ≃ {∙} and (𝒜⊸ ⊥)O ≃ 𝒜P

)︀
resp.

(︀
(𝒜⊸ ⊥)P ≃ 𝒜O and (𝒜⊸ ⊥)O ≃ {∙}

)︀
so that

((𝒜⊸ ⊥) ⊸ ⊥)P ≃ 𝒜P and ((𝒜⊸ ⊥) ⊸ ⊥)O ≃ {∙} ≃ 𝒜O

resp. ((𝒜⊸ ⊥) ⊸ ⊥)P ≃ {∙} ≃ 𝒜P and ((𝒜⊸ ⊥) ⊸ ⊥)O ≃ 𝒜O

The result then follows from the definitions of transition functions and acceptance conditions for ⊥ and ⊸.

□

At this juncture, we show the adequacy of the additional principles realized in the model exhibited in §5. For clarity’s sake,
we reframe the examples using arbitrary alphabets and working directly with automata corresponding to the formulae in play.
When 𝒜 : Σ is an automaton and f : Γ→ Σ is an ordinary function on alphabets, we use the notation 𝒜[f] for the automaton
over Γ with all components equal to those of 𝒜, except for its transition function 𝜕𝒜[f], which is defined as

𝜕𝒜[f](𝑞, b, 𝑎
P, 𝑎O) := 𝜕𝒜(𝑞, f(b), 𝑎P, 𝑎O)

In most case, the map f is a projection 𝜋Σ𝑖 : Σ1 × · · · × Σ𝑛 → Σ𝑖 corresponding to restriction or renaming variables in the
various principles.

Proposition C.4 (Ex. 5.9). For negative 𝒜 : Σ and ℬ : Σ× Γ, there is an AutΣ-isomorphism between

𝒜⊸ ∃Γℬ and ∃Γ(𝒜[𝜋Σ] ⊸ ℬ)

Similarly, if 𝒜 : Σ× Γ and ℬ : Σ are deterministic, there is an AutΣ-isomorphism between

(∀Γ𝒜) ⊸ ℬ and ∃Γ(𝒜⊸ ℬ[𝜋Σ])

Proof. Let 𝒜 : Σ and ℬ : Σ× Γ be negative, i.e. such that 𝒜P ≃ ℬP ≃ {∙}. Up to isomorphisms of the moves, both 𝒜⊸ ∃Γℬ
and ∃Γ𝒜[𝜋Σ] ⊸ ℬ have structure

(Γ×𝒜ℬO
O , ℬO , 𝑄𝒜 ×𝑄ℬ , (𝑞

𝚤
𝒜, 𝑞

𝚤
ℬ) , 𝜕 , Ω𝒜⊸ℬ)

where

𝜕((𝑞𝒜, 𝑞ℬ), a, (b, 𝑓), 𝑥) = (𝜕𝒜(𝑞𝒜, a, ∙, 𝑓(𝑥)) , 𝜕ℬ(𝑞ℬ, (a, b), ∙, 𝑥))
Consider now deterministic 𝒜 : Σ× Γ and ℬ : Σ. Computing (∀Γ𝒜) ⊸ ℬ and ∃Γ(𝒜⊸ ℬ[𝜋Σ]) yields, up to isomorphisms of
moves

(Γ , {∙} , 𝑄𝒜 ×𝑄ℬ , (𝑞
𝚤
𝒜, 𝑞

𝚤
ℬ) , 𝜕

′ , Ω𝒜⊸ℬ)

where

𝜕′((𝑞𝒜, 𝑞ℬ), a, ∙, b) = (𝜕𝒜(𝑞𝒜, (a, b), ∙, ∙) , 𝜕ℬ(𝑞ℬ, a, ∙, ∙))
□

Proposition C.5 (Ex. 5.10). For any negative 𝒜 : Θ× Γ× Σ, there is an AutΘ-isomorphism between

(∀Σ∃Γ𝒜) and ∃ΓΣ∀Σ𝒜[⟨𝜋Θ , app ∘ 𝜋ΓΣ×Σ , 𝜋Σ⟩]

Proof. Let 𝒜 : Θ×Γ×Σ be the negative automaton under consideration. Notice that, up to isomorphsms of moves, (∀Σ∃Γ𝒜) : Θ
is the structure

(ΓΣ , 𝒜O × Σ , 𝑄𝒜 , 𝑞
𝚤
𝒜 , 𝜕 , Ω𝒜)

where 𝜕(𝑞, d, f, (𝑎O, a)) = 𝜕𝒜(𝑞, (d, f(d), a), , 𝑎O).
On the other hand (still up to ismorphisms of moves), 𝒜[⟨𝜋Θ , app ∘ 𝜋ΓΣ×Σ , 𝜋Σ⟩] : Θ× ΓΣ × Σ is the structure

({∙} , 𝒜O , 𝑄𝒜 , 𝑞
𝚤
𝒜 , 𝜕

′ , Ω𝒜)

where 𝜕′(𝑞, (d, f, a), ∙, 𝑎O) = 𝜕𝒜(𝑞, (d, f(a), a), , 𝑎O).
It follows that up to isomorphisms of moves, ∃ΓΣ∀Σ𝒜[⟨𝜋Θ , app ∘ 𝜋ΓΣ×Σ , 𝜋Σ⟩] : Θ is the structure

(ΓΣ , 𝒜O × Σ , 𝑄𝒜 , 𝑞
𝚤
𝒜 , 𝜕

′′ , Ω𝒜)

where

𝜕′′(𝑞, d, f, (𝑎O, a)) = 𝜕′(𝑞, (d, f, a), ∙, 𝑎O) = 𝜕𝒜(𝑞, (d, f(a), a), , 𝑎O) = 𝜕(𝑞, d, f, (𝑎O, a))

□

Proposition C.6 (Ex. 5.11). For arbitrary 𝒜 in AutΣ, there exists a map

[(𝒜⊸ ⊥) ⊸ ⊥] −⊸ 𝒜

which is a retract of the canonical map 𝒜 −⊸ [(𝒜⊸ ⊥) ⊸ ⊥].
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Note that in general, there can not be an isomorphism between 𝒜 and (𝒜⊸ ⊥) ⊸ ⊥, simply because of the cardinality
mismatch between the Proponent moves in the respective components whenever 𝒜 is not polarized.

Proof. Let 𝒜 = (P , O , 𝑄𝒜 , 𝑞
𝚤
𝒜 , Ω𝒜) be a uniform automaton over Σ.

We have, up to isomorphisms of moves and states,

[(𝒜⊸ ⊥) ⊸ ⊥] = (POP

, OP , 𝑄𝒜 , 𝑞
𝚤
𝒜 , 𝜕 , Ω𝒜)

In the zigzag game [(𝒜⊸ ⊥) ⊸ ⊥]→DZ(Σ) 𝒜, a round plays out as follows:

∙ Opponent first plays some letter 𝑎 ∈ Σ and a move 𝐹 ∈ POP

,
∙ Proponent then plays a move 𝑝 ∈ P,
∙ Opponent answers with 𝑜 ∈ O,
∙ Proponent closes the round with 𝑓 ∈ OP.

Recall that Proponent wins if and only if, whenever the sequence of states generated by (𝑎𝑛, 𝐹𝑛(𝑓𝑛), 𝑓𝑛(𝐹𝑛(𝑓𝑛)))𝑛∈𝜔 is in Ω𝒜,
so is the sequence generated by (𝑎𝑛, 𝑝𝑛, 𝑜𝑛)𝑛∈𝜔. For Proponent to have a winning strategy, it is sufficient that it may be able to
enforce the following correpondance between the runs of (𝒜⊸ ⊥) ⊸ ⊥ and 𝒜

𝐹𝑛(𝑓𝑛) = 𝑝𝑛 and 𝑓𝑛(𝐹𝑛(𝑓𝑛)) = 𝑜𝑛

for every 𝑛 ∈ N.
Proponent may force this behaviour thanks to the following.

Lemma C.7. Let P and O be sets such that O may be well-ordered. Then the following is true

∀𝐹 ∈ POP

.∃𝑝 ∈ P.∀𝑜 ∈ O.∃𝑓 ∈ OP. [𝐹 (𝑓) = 𝑝 and 𝑓(𝑝) = 𝑜]

Proof of the Lemma. Fix 𝐹 ∈ POP

. The negation of our statement is equivalent to

∀𝑝 ∈ P.∃𝑜 ∈ O.¬
(︁
∃𝑓 ∈ OP. [𝐹 (𝑓) = 𝑝 ∧ 𝑓(𝑝) = 𝑜]

)︁
Using an instance of choice available thanks to the fact that O may be well-ordered, this is in turn equivalent to

∃𝑜 ∈ OP.∀𝑝 ∈ P.¬
(︁
∃𝑓 ∈ OP. [𝐹 (𝑓) = 𝑝 ∧ 𝑓(𝑝) = 𝑜(𝑝)]

)︁
It follows that we only need to prove

∀𝐹 ∈ POP

.∀𝑜 ∈ OP.∃𝑝 ∈ P.∃𝑓 ∈ OP. [𝐹 (𝑓) = 𝑝 and 𝑓(𝑝) = 𝑜(𝑝)]

But this is now easy: given 𝐹 ∈ POP

and 𝑜 ∈ OP, we can take 𝑓 := 𝑜 and 𝑝 := 𝐹 (𝑜) to conclude. □

We now return to the proof of Prop. C.6. Since O is always finite in our case, we can use the Lemma to show that Proponent
has some memoryless winning strategy in [(𝒜⊸ ⊥) ⊸ ⊥] −⊸ 𝒜.

Furthermore, as the canonical Proponent strategy in the game 𝒜⊸ (𝒜⊸ ⊥) ⊸ ⊥ takes a Proponent move 𝑝 ∈ P to the

constant proponent move 𝑝 ∈ POP

(i.e. ∀𝐹 ∈ OP 𝑝(𝐹 ) = 𝑝), and, as the strategy we exhibited enforce the aforementionned
correspondance between runs of (𝒜⊸ ⊥) ⊸ ⊥ and 𝒜, we do have the announced retraction. □
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