R. Anderson, E. Hawkins, and P. D. , Jones CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models Endeavour, pp.40-178, 2016.

C. Morelli, J. Rieux, B. Cyrys, and R. Forsberg, Air pollution, health and social deprivation: A fine-scale risk assessment, Environmental Research, vol.147, pp.59-70, 2016.
DOI : 10.1016/j.envres.2016.01.030

B. Field, M. J. Behrenfeld, J. T. Randerson, and P. , Falkowski Primary production of the biosphere: integrating terrestrial and oceanic components Science, pp.281-237, 1998.

V. Finkel, M. J. Follows, J. D. Liefer, C. M. Brown, I. Benner et al., Irwin Phylogenetic diversity in the macromolecular composition of microalgae PLoS One Article e0155977 6 E.V. Armbrust The life of diatoms in the world's oceans Nature, pp.459-185, 2009.

J. Levitan, G. Dinamarca, and P. G. Hochman, Diatoms: a fossil fuel of the future, Trends in Biotechnology, vol.32, issue.3, pp.117-124, 2014.
DOI : 10.1016/j.tibtech.2014.01.004

S. Mekhalfi, S. Amara, F. Robert, and B. Carriere, Effect of environmental conditions on various enzyme activities and triacylglycerol contents in cultures of the freshwater diatom, Asterionella formosa (Bacillariophyceae), Biochimie, vol.101, pp.21-30, 2014.
DOI : 10.1016/j.biochi.2013.12.004

URL : https://hal.archives-ouvertes.fr/hal-01494506

A. Michaut, A. Amato, A. Falciatore, M. Juillerat, D. F. Beurdeley et al., Duchateau Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology, Nat. Commun, vol.5, p.3831, 2014.

R. De-riso, F. Raniello, A. Maumus, C. Rogato, and A. Bowler, Falciatore Gene silencing in the marine diatom Phaeodactylum tricornutum Article e96, Nucleic Acids Res, p.37, 2009.

A. Zaslavskaia, J. C. Lippmeier, P. G. Kroth, A. R. Grossman, and K. E. , Apt Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes, J. Phycol, pp.36-379, 2000.

M. Hu, E. Sommerfeld, M. Jarvis, M. Ghirardi, M. Posewitz et al., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, The Plant Journal, vol.61, issue.4, pp.621-639, 2008.
DOI : 10.1046/j.1529-8817.2002.01107.x

C. Caldana, Y. Li, A. Leisse, Y. Zhang, L. Bartholomaeus et al., Giavalisco Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana, Plant J, pp.73-897, 2013.

Y. Imamura, I. Kawase, M. Kobayashi, H. Shimojima, K. Ohta et al., of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae Article e1149285, Plant Signal. Behav, p.11, 2016.

S. Imamura, Y. Kawase, I. Kobayashi, T. Sone, A. Era et al., Tanaka Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae, Plant Mol. Biol, pp.89-309, 2015.

M. Laplante and D. M. , mTOR Signaling in Growth Control and Disease, Cell, vol.149, issue.2, pp.274-293, 2012.
DOI : 10.1016/j.cell.2012.03.017

C. Dobrenel, J. Caldana, C. Hanson, M. Robaglia, B. Vincentz et al., TOR Signaling and Nutrient Sensing, Annual Review of Plant Biology, vol.67, issue.1, pp.261-285, 2016.
DOI : 10.1146/annurev-arplant-043014-114648

R. Loewith, E. Jacinto, S. Wullschleger, A. Lorberg, J. L. Crespo et al., Hall Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control, Mol. Cell, pp.10-457, 2002.

J. L. Crespo and M. N. , Elucidating TOR Signaling and Rapamycin Action: Lessons from Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, vol.66, issue.4, pp.579-591, 2002.
DOI : 10.1128/MMBR.66.4.579-591.2002

URL : http://mmbr.asm.org/content/66/4/579.full.pdf

M. H. Montane and B. , ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change, Journal of Experimental Botany, vol.16, issue.14, pp.4361-4374, 2013.
DOI : 10.1016/j.drudis.2011.02.008

J. L. Crespo, S. Diaz-troya, and F. J. , Inhibition of Target of Rapamycin Signaling by Rapamycin in the Unicellular Green Alga Chlamydomonas reinhardtii, PLANT PHYSIOLOGY, vol.139, issue.4, pp.1736-1749, 2005.
DOI : 10.1104/pp.105.070847

B. Menand, T. Desnos, L. Nussaume, F. Berger, D. Bouchez et al., Robaglia Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene Proc, Natl. Acad. Sci. U. S. A, pp.99-6422, 2002.

C. M. Chresta, B. R. Davies, I. Hickson, T. Harding, S. Cosulich et al., Pass AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity Cancer Res, pp.70-288, 2010.

R. R. Guillard and J. H. , Ryther Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea(cleve) Gran Can, J. Microbiol, vol.8, pp.229-239, 1962.

J. Rumin, H. Bonnefond, B. Saintjean, C. Rouxel, A. Sciandra et al., The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae, Biotechnology for Biofuels, vol.9, issue.2, p.42, 2015.
DOI : 10.1371/journal.pone.0086889

URL : https://hal.archives-ouvertes.fr/hal-01247087

W. Chen, C. Zhang, L. Song, M. Sommerfeld, Q. Rego et al., Hu A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae Nebe-von Caron Current and future applications of flow cytometry in aquatic microbiology, J. Microbiol. Methods FEMS Microbiol. Rev, vol.77, pp.24-429, 2000.

C. Cagnon, B. Mirabella, H. M. Nguyen, A. Beyly-adriano, S. Bouvet et al., Li-Beisson Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii, Biotechnol. Biofuels, pp.6-7, 2013.

J. Cavalier, D. Lafont, P. Boullanger, D. Houisse, J. Giallo et al., Carrière Validation of lipolysis product extraction from aqueous/biological samples, separation and quantification by thin-layer chromatography with flame ionization detection analysis using O-cholesteryl ethylene glycol as a new internal standard, J. Chromatogr. A, pp.1216-6543, 2009.

Y. B. Ali, F. Carriere, R. Verger, S. Petry, G. Muller et al., Abousalham Continuous monitoring of cholesterol oleate hydrolysis by hormone-sensitive lipase and other cholesterol esterases, J. Lipid Res, pp.46-994, 2005.

N. Hempel, I. Petrick, and F. , Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production, Journal of Applied Phycology, vol.101, issue.6, pp.1407-1418, 2012.
DOI : 10.1016/j.biortech.2009.03.030

M. Haissaguerre, N. Saucisse, and D. , Influence of mTOR in energy and metabolic homeostasis, Molecular and Cellular Endocrinology, vol.397, issue.1-2, pp.67-77, 2014.
DOI : 10.1016/j.mce.2014.07.015

M. Laplante and D. M. , An Emerging Role of mTOR in Lipid Biosynthesis, Current Biology, vol.19, issue.22, pp.1046-1052, 2009.
DOI : 10.1016/j.cub.2009.09.058

L. F. Wentzinger, T. J. Bach, and M. A. , Inhibition of Squalene Synthase and Squalene Epoxidase in Tobacco Cells Triggers an Up-Regulation of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase, PLANT PHYSIOLOGY, vol.130, issue.1, pp.334-346, 2002.
DOI : 10.1104/pp.004655

M. Fabris, M. Matthijs, S. Carbonelle, T. Moses, J. Pollier et al., Goossens Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum, New Phytol, pp.204-521, 2014.

M. T. Ta, T. S. Kapterian, W. Fei, X. Du, A. J. Brown et al., YangAccumulatio n of squalene is associated with the clustering of lipid droplets, FEBS J, pp.279-4231, 2012.

W. Lu, L. Zhou, J. Wei, J. Li, F. Jia et al., Xu Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga, Nannochloropsis oceanica Biotechnol. Biofuels, pp.7-81, 2014.

S. W. Rampen, B. A. Abbas, S. Schouten, and J. S. , Sinninghe Damste A comprehensive study of sterols in marine diatoms (Bacillariophyta): implications for their use as tracers for diatom productivity, Limnol. Oceanogr, pp.55-91, 2010.

F. Dong, Y. Xiong, K. Que, L. Wang, Z. Yu et al., Ren Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis Front, Plant Sci, vol.6, p.677, 2015.

J. B. Madeira, C. A. Masuda, C. M. Maya-monteiro, G. S. Matos, M. Montero-lomeli et al., Bozaquel-Morais TORC1 inhibition induces lipid droplet replenishment in yeast, Mol. Cell. Biol, pp.35-737, 2015.

S. Imamura, A. Ishiwata, S. Watanabe, H. Yoshikawa, and K. , Tanaka Expression of budding yeast FKBP12 confers rapamycin susceptibility to the unicellular red alga Cyanidioschyzon merolae, Biochem. Biophys. Res. Commun, pp.439-264, 2013.

S. Singh, A. Kumari, R. Guldhe, I. Misra, and F. Rawat, Trends and novel strategies for enhancing lipid accumulation and quality in microalgae, Renewable and Sustainable Energy Reviews, vol.55, pp.1-16, 2016.
DOI : 10.1016/j.rser.2015.11.001

A. Wu, B. Huang, L. Zhang, P. Huan, A. Zhao et al., Enzyme activity highlights the importance of the oxidative pentose phosphate pathway in lipid accumulation and growth of Phaeodactylum tricornutum under CO2 concentration, Biotechnology for Biofuels, vol.72, issue.1, p.78, 2015.
DOI : 10.1016/0003-2697(76)90527-3

M. Matthijs, M. Fabris, S. Broos, W. Vyverman, and A. , Reveals a Novel Family of RING-Domain Transcription Factors, Plant Physiology, vol.170, issue.1, pp.489-498, 2016.
DOI : 10.1104/pp.15.01300

A. Mühlroth, K. Li, G. Røkke, P. Winge, Y. Olsen et al., Bones Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced Production of EPA and DHA in species of chromista Mar, Drugs, pp.11-4662, 2013.

L. Edinger, C. M. Linardic, G. G. Chiang, C. B. Thompson, and R. T. , Abraham Differential effects of rapamycin on mammalian target of rapamycin signaling functions in mammalian cells Cancer Res, pp.63-8451, 2003.

S. Hardwick, F. G. Kuruvilla, J. K. Tong, A. F. Shamji, and S. L. , Schreiber Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins Proc, Natl. Acad. Sci. U. S. A, pp.96-14866, 1999.

L. Chen, Y. Chang, J. Zhang, H. Goto, T. Onda et al., Zhang Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth Proc, Natl. Acad. Sci. U. S. A, vol.108, pp.4129-4134, 2011.

R. Loewith and M. N. , Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control, Genetics, vol.189, issue.4, pp.1177-1201, 2011.
DOI : 10.1534/genetics.111.133363

A. Shemi, S. Ben-dor, and A. , Vardi Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes Autophagy, pp.701-715, 2015.