T. Nakano, M. Moore, F. Wei, A. Vasilaks, and J. Shuai, Molecular Communication and Networking: Opportunities and Challenges, IEEE Transactions on NanoBioscience, vol.11, issue.2, pp.135-148, 2012.
DOI : 10.1109/TNB.2012.2191570

I. Akyildiz, F. Brunetti, and C. Blázquez, Nanonetworks: A new communication paradigm, Computer Networks, vol.52, issue.12, pp.2260-2279, 2008.
DOI : 10.1016/j.comnet.2008.04.001

N. Farsad, H. B. Yilmaz, A. Eckford, C. B. Chae, and W. Guo, A Comprehensive Survey of Recent Advancements in Molecular Communication, IEEE Communications Surveys & Tutorials, vol.18, issue.3, pp.1887-1919, 2016.
DOI : 10.1109/COMST.2016.2527741

M. Pierobon and I. Akyildiz, A physical end-to-end model for molecular communication in nanonetworks, IEEE Journal on Selected Areas in Communications, vol.28, issue.4, pp.602-611, 2010.
DOI : 10.1109/JSAC.2010.100509

H. Fogler, Elements of Chemical Reaction Engineering, 2006.

T. Nakano and T. Suda, Molecular Communication Using Dynamic Properties of Oscillating and Propagating Patterns in Concentration of Information Molecules, IEEE Transactions on Communications, vol.65, pp.3386-3398, 2017.
DOI : 10.1109/TCOMM.2017.2700856

M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors???I. The deficiency zero and deficiency one theorems, Chemical Engineering Science, vol.42, issue.10, pp.2229-2268, 1987.
DOI : 10.1016/0009-2509(87)80099-4

P. Melke, P. Sahlin, A. Levchenko, and H. Jönsson, A cell-based model for quorum sensing in heterogeneous bacteria colonies, PLoS Computational Biology, vol.6, 2010.

A. Chapman and M. Mesbahi, Advection on graphs, IEEE Conference on Decision and Control and European Control Conference (CDC- ECC), 2011.
DOI : 10.1109/cdc.2011.6161471

A. Van-der-schaft, S. Rao, and B. Jayawardhana, A network dynamics approach to chemical reaction networks, International Journal of Control, vol.49, issue.4, 2016.
DOI : 10.1371/journal.pcbi.1003186

N. Kim and C. Chae, Novel Modulation Techniques using Isomers as Messenger Molecules for Nano Communication Networks via Diffusion, IEEE Journal on Selected Areas in Communications, vol.31, issue.12, pp.847-856, 2013.
DOI : 10.1109/JSAC.2013.SUP2.12130017

URL : http://arxiv.org/pdf/1207.7179

R. Brodkey and H. Hershey, Transport Phenomena: A Unified Approach, 1988.

K. Fellner, W. Prager, and B. Tang, The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks, Kinetic and Related Models, vol.10, issue.4, pp.1055-1087, 2017.
DOI : 10.3934/krm.2017042

L. Moreau, Stability of continuous-time distributed consensus algorithms, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004.
DOI : 10.1109/CDC.2004.1429377

H. Trees, Detection, Estimation and Modulation Theory, Part I, 2004.

H. Chiu, L. S. Meng, P. C. Yeh, and C. H. Lee, Near-optimal low complexity receiver design for diffusion-based molecular communication, IEEE Global Communications Conference (GLOBECOM), 2013.

B. Li, Local Convexity Inspired Low-Complexity Noncoherent Signal Detector for Nanoscale Molecular Communications, IEEE Transactions on Communications, vol.64, issue.5, pp.2079-2091, 2016.
DOI : 10.1109/TCOMM.2016.2543734

URL : http://wrap.warwick.ac.uk/77513/1/WRAP_Weisi_Local_convexity_TCOM_R4.pdf

Y. Fang, A. Noel, N. Yang, A. Eckford, and R. Kennedy, Maximum likelihood detection for collaborative molecular communication, 2017.

T. Mai, M. Egan, T. Duong, and M. D. Renzo, Event Detection in Molecular Communication Networks With Anomalous Diffusion, IEEE Communications Letters, vol.21, issue.6, pp.1249-1252, 2017.
DOI : 10.1109/LCOMM.2017.2669315

URL : https://hal.archives-ouvertes.fr/hal-01671181