The Toda and Painlev\'e systems associated with semiclassical matrix-valued orthogonal polynomials of Laguerre type

Abstract : Consider the Laguerre polynomials and deform them by the introduction in the measure of an exponential singularity at zero. In "Painlev\'e III and a singular linear statistics in Hermitian random matrix ensembles, I", the authors proved that this deformation can be described by systems of differential/difference equations for the corresponding recursion coefficients and that these equations, ultimately, are equivalent to the Painlev\'e III equation and its B\"acklund/Schlesinger transformations. Here we prove that an analogue result holds for some kind of matrix-valued orthogonal polynomials of Laguerre type.
Type de document :
Pré-publication, Document de travail
18 pages. 2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01695474
Contributeur : Mattia Cafasso <>
Soumis le : lundi 29 janvier 2018 - 13:48:07
Dernière modification le : lundi 5 février 2018 - 15:00:03

Lien texte intégral

Identifiants

  • HAL Id : hal-01695474, version 1
  • ARXIV : 1801.08740

Collections

Citation

Mattia Cafasso, Manuel D. De La Iglesia. The Toda and Painlev\'e systems associated with semiclassical matrix-valued orthogonal polynomials of Laguerre type. 18 pages. 2018. 〈hal-01695474〉

Partager

Métriques

Consultations de la notice

57