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Abstract The influence of a nonlinear foundation on
the dynamics of a periodically supported beam has been

investigated by a novel model. By using Fourier trans-

forms and Dirac comb properties, a relation between

the displacement of the beam and the reaction forces

of its supports in steady-state has been established from
the Euler-Bernoulli beam’s equation. This relation holds

for any foundation behaviours. Therefore, the dynamic

equation of a support has been built by combining this

relation and the constitutive law of the foundation and
the supports. This equation describes a forced nonlinear

oscillator provided that the moving loads are a periodi-

cal series. Then, an iteration procedure has been devel-

oped to compute the periodic solution. This procedure

has been demonstrated converging to the analytic solu-
tion for linear foundations. The applications to bilinear

and cubic nonlinear foundations have been performed

as examples. Moreover, the influences of non-linearity

on the dynamic responses have been investigated by
parametric studies.
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1 Introduction

The dynamics of a railway track on a nonlinear foun-

dation is the subject of numerous investigations. The

model of beams subjected to moving loads has been of-

ten used for this analysis. For elastic foundations, the
researches on this analytic model have been summa-

rized by Fryba [1]. Analytic and numerical methods

have been developed for the visco-elastic foundations

[2–5]. For nonlinear foundations, the perturbation tech-
niques have been used in analytic models [6–8] provided

that the nonlinear force of the foundation follows a cu-

bic law. The cubic nonlinear foundation has been also

studied by using the Galerkin method [9], while the

effects of tensionless foundations have been also inves-
tigated with numerical methods [10,11].

In order to take into account the discrete distri-
bution of supports, Mead [12,13] developed the model

of a periodically supported beam subjected to moving

loads. This model has been also developed for visco-

elastic foundations by Metrikine et al. [14,15] and Be-

lotserkovskiy [16]. Although these analytical methods
are well developed for linear foundations, they may not

be easily applied to nonlinear foundations. Moreover,

the models for a continuously supported beam may be

difficult to extend to discrete supports.

This article presents a novel model for a periodically

supported beam on a nonlinear foundation subjected to

moving loads. Based on an analytic model [17], a dy-
namic equation of a support is developed which holds

for any foundation behavior. This equation leads to a

forced nonlinear oscillation provided that the moving

loads are a periodic series. Then, a numerical method
is developed by using the harmonic balance techniques

and the iteration procedures for nonlinear oscillators

[18,19]. This method is proven to converges to the ana-
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Fig. 1 Periodically supported beam on a nonlinear foundation subjected to moving forces

lytic solution when the foundation behaviour is linear.

Thereafter, the bilinear and cubic laws are considered

as examples of nonlinear foundations. These applica-
tions show that this method is a fast and simple way

to compute the responses. Moreover, the influences of

the nonlinear parameters of the foundations are inves-

tigated by parametric studies.

2 Formulations

2.1 Periodically supported beam in steady-state

Let’s consider a periodically supported beam on a non-

linear viscoelastic foundation as shown in Figure 1. The

beam is subjected to moving forces Qj characterized by

the distance to the first moving force Dj (1 ≤ j ≤ K
where K is the number of moving forces). It is remark-

able that the mutual distance Dj of the moving loads

is not restricted to be constant.

In steady-state, we suppose that all supports are
equivalent and their reaction forces are described by a

same function, but with a delay equal to the time for a

load moving from a support to another. The total force

applied on the beam can be written with the help of

the Dirac function as follows

F (x, t) =

∞
∑

n=−∞

R
(

t−
x

v

)

δ(x−nl)−

K
∑

j=1

Qjδ(x+Dj−vt)

(1)

where l is the distance between two successive supports
and R(t) is the reaction force of the support at the

reference origin (x = 0).

The response of the beam is governed by the dy-

namical equation of the Euler-Bernoulli beam

EI
∂4wr(x, t)

∂x4
+ ρS

∂2wr(x, t)

∂t2
− F (x, t) = 0 (2)

where ρ,E are the density, the Young’s modulus and

S, I are the cross-section area of the beam and the area
moment of inertia.

From equations (1) and (2), by performing a double

Fourier transform, one temporal and one spatial, and

by using the Dirac comb properties, we can deduce a

relation between the Fourier transforms of the beam

displacement ŵr(0, ω) and of the reaction force R̂(ω)
as follows (see Appendix)

R̂(ω) = Keŵr(0, ω) +Qe (3)

where Ke and Qe are calculated by

Ke = 4λ3
bEI

[

sin lλe

cos lλe − cos ωl
v

−
sinh lλe

cosh lλe − cos ωl
v

]

−1

(4)

Qe =

K
∑

j=1

KeQje
−iω

Dj

v

vEI
[

(

ω
v

)4
− λ4

e

] (5)

with λe =
4

√

ρSω2

EI .

Equation (3) does not depend on the behaviour of

the support nor on the foundations. Next, this equa-

tion will be combined with the constitutive law of the
supports to get a dynamical equation of the system.

2.2 Dynamical equation of supports

Consider a system of support on a nonlinear foundation

as shown in Figure 1. This system contains a viscoelas-
tic pad under the beam with stiffness k1 and damping

coefficient η1. The foundation under the block has a lin-

ear behaviour with stiffness k2, damping coefficient η2
and a nonlinear behaviour characterized by a function
f(ws, w

′

s), where ws, w
′

s are the displacement and the

velocity of the block. The reaction force of the block to

the beam is

R(t) = −η1
d

dt
[wr(0, t)− ws(t)]− k1(wr(0, t)− ws(t))

(6)

By performing the Fourier transform of the last equa-
tion with regard to time t, we obtain

R̂(ω) = −κp [ŵr(0, ω)− ŵs(ω)] (7)
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where κp = iωη1+k1. Combining the last equation and

equation (3) leads to the following result














ŵr(0, ω) =
κpŵs(ω)−Qe

κp +Ke

R̂(ω) =
κp

κp +Ke
(Keŵs(ω) +Qe)

(8)

The dynamical equation of the block on the foun-

dation is

M
d2ws(t)

dt2
+ η2

dws

dt
+ k2ws + f(ws, w

′

s) = −R(t) (9)

where M is the mass of the block, f(ws, w
′

s) is the non-

linear part of the reaction force of the foundation. By

substituting equation (6) into the last equation, we have

Mw′′

s + ηsw
′

s + ksws + f = η1w
′

r(0, t) + k1wr(0, t) (10)

where ηs = η1+η2, ks = k1+k2 and the prime stands for

the derivation in time t. Performing the Fourier trans-
form and then the inverse Fourier transform of the right

term of equation (10) leads to the following result

η1w
′

r(0, t)+k1wr(0, t) =
1

2π

∫

∞

−∞

κpŵr(0, ω)e
iωtdω (11)

By substituting equation (11) into equation (10), we

can write

Mw′′

s + ηsw
′

s+ksws + f(ws, w
′

s) =

1

2π

∫

∞

−∞

κ2
pŵs(ω)− κpQe

κp +Ke
eiωtdω

(12)

Equation (12) is the dynamical equation of the block.

This equation is similar to that of nonlinear oscillators,

but it contains terms corresponding to the interaction
between the beam and the block. In order to simplify

these terms, we consider only the periodical solution

which exists when the moving forces are a periodic se-

ries (see [17]).

2.3 Periodic series of moving loads

When a train contains many identical wagons, the loads

of wheels are equal (Qj = Q) and the distances Dj are

given by

Dj =

{

jH for front wheels

jH +D for back wheels
(13)

where D is the distance between the front and the back

wheels of a boogie, H is the distance between two front
wheels of two boogies (see Figure 2). This series of mov-

ing loads may be used to represent the limit charges for

a railway track. By considering the moving loads as an

infinite periodic series (j ∈ Z), we will use the period-

icity of this series to reduce the terms on the right side

of equation (12).

By substituting equation (13) into equation (5), we
obtain

Qe =
QKe

vEI

(

1 + e−iωD
v

)

(

ω
v

)4
− λ4

e

∞
∑

j=−∞

e−iωH
v
j (14)

In addition, we have the propriety of Dirac comb [20]

∞
∑

j=−∞

e−iωH
v
j = 2π

v

H

∞
∑

j=−∞

δ

(

ω +
2πv

H
j

)

(15)

Thus, equation (14) becomes

Qe = 2π
QKe

EIH

1 + e−iωD
v

(

ω
v

)4
− λ4

e

∞
∑

j=−∞

δ

(

ω +
2πv

H
j

)

(16)

By substituting the last equation into the last term of
equation (12), we have

1

2π

∞
∫

−∞

κpQee
iωtdω

κp +Ke
=

∞
∑

j=−∞

ω=ωj

Qeiωjt

EIH

[

1 + e−iωD
v

(

ω
v

)4
− λ4

e

κpKe

κp +Ke

]

=

∞
∑

j=−∞

Fje
iωjt (17)

where ωj = 2πj v
H and Fj is calculated by

Fj =
Q

EIH

[

1 + e−iωD
v

(

ω
v

)4
− λ4

e

κpKe

κp +Ke

]

ω=ωj

(18)

Therefore, by substituting equation (17) into equation

(12), we can write

Mw′′

s+ηsw
′

s + ksws + f(ws, w
′

s) =

1

2π

∞
∫

−∞

κ2
pŵs(ω)e

iωt

κp +Ke
dω −

∞
∑

j=−∞

Fje
iωjt

(19)

Equation (19) describes a forced oscillation with the

exciting force
∑

Fje
iωjt. This force is periodical with

frequency f0 = H/v. Therefore, it exists a periodical

solution of ws(t) which can be represented by its Fourier

series

ws(t) =

∞
∑

j=−∞

cje
iωjt (20)

This expression can be also written as follows:

ŵs(ω) = 2π

∞
∑

j=−∞

cjδ(ω − ωj)
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Fig. 2 Periodical series of moving loads

By substituting the last equation into the right term of
equation (12), we have

1

2π

∫

∞

−∞

κ2
pŵs(ω)

κp +Ke
eiωtdω =

∞
∑

j=−∞

ω=ωj

cje
iωjt

[

κ2
p

κp +Ke

]

=
∞
∑

j=−∞

cjPje
iωjt (21)

where Pj is calculated by

Pj =

[

κ2
p

κp +Ke

]

ω=ωj

(22)

Thus, equation (12) becomes

Mw′′

s+ηsw
′

s+ksws+f =
∑

j

cjPje
iωjt−

∑

j

Fje
iωjt (23)

where Fj , Pj are computed by equations (18) and (22).

Particularly, we have P0 = k1 and F0 = 2Q L
H .

In equation (23), Fj corresponds to the moving loads

and Pj corresponds to the coupling of the support sys-

tem and the beam. These quantities depend on the pa-
rameters of the beam and the pad (κp) but they do not

depend on the parameters of the foundation. Therefore,

by using the periodicity of the moving loads, we have re-

duced the dynamic equation (12) to a forced oscillation

equation. Thus, we can use analytic or numerical tech-
niques for forced nonlinear oscillators to find out the

periodic solution of this equation. In the next sections,

we present a numerical method and its applications to

nonlinear foundations.

3 Iteration procedure

We will use the harmonic balance method [19] and the
iteration procedures [21,22] for nonlinear oscillators to

develop a numerical method for the dynamical equa-

tion of the block (23). by performing the Fourier series

development of equation (23), we have

1

T

T/2
∫

−T/2

(Mw′′

s + ηsw
′ + ksws + f)e−iωjtdt = cjPj − Fj

By substituting equation (20) into the last equation and
after rearrangement, we can write

(ks + iωjηs)cj +
1

T

T/2
∫

−T/2

f(ws, w
′

s)e
−iωjtdt

= (Mω2
j + Pj)cj − Fj

(24)

where ws, w
′

s in the integral of the last equation are
computed by equation (20)

ws(t) =

∞
∑

j=−∞

cje
iωjt, w′

s(t) =

∞
∑

j=−∞

iωjcje
iωjt (25)

Equation (24) is the harmonic balance of equation
(23). The set of this equation for all j ∈ Z establishes a

system of equations with regard to variables {cj} which

are to be determined. When the foundation behavior

is linear, i.e. f(ws, w
′

s) = 0, we can obtain easily the
analytic solution calculated by

cj =
Fj

Pj +Mω2
j − iωjηs − ks

(∀j ∈ Z) (26)

For a general nonlinear force f(ws, w
′

s), we can ap-

proximate the periodic solution by using techniques for
nonlinear oscillators. Here, we use iteration procedures

by considering the n first harmonics of the periodic so-

lution

wnm(t) =

n
∑

j=−n

cmj eiωjt ∀m ≥ 1 (27)

Here we take the initial value c1j = 0 ∀j. We built series

{cmj } such that cmj → cj when m,n → ∞ by inserting
an index m in equation (24). Such a series {cmj } is given

by

For |j| ≤ n0 :

(iηsωj + ks)c
m+1
j + Fm

j = (Mω2
j + Pj)c

m
j − Fj

For n0 < |j| ≤ n :

(iηsωj + ks)c
m
j + Fm

j = (Mω2
j + Pj)c

m+1
j − Fj

where 0 ≤ n0 ≤ n and n0 is chosen for the convergence
of the series {cmj } and Fm

j is calculated by

Fm
j =

1

T

T/2
∫

−T/2

f(wnm, w′

nm)e−iωjtdt (28)
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We can rewrite the series {cmj } as follows

cm+1
j =



















Mω2
j + Pj

ks + iηsωj
cmj −

Fm
j + Fj

ks + iηsωj
∀|j| ≤ n0

ks + iηsωj

Mω2
j + Pj

cmj +
Fm

j + Fj

Mω2
j + Pj

∀|j| > n0

(29)

The last equation defines recurrent sequences {cmj } with

regard to m. If these sequences {cmj } converge for all

j ∈ Z when n,m → ∞, by replacing cmj , cm+1
j by their

limit, we find once again equation (24). Hence, these

sequences converge to the solution of (24). By conse-
quence, we have the approximation of the periodic so-

lution from (27) by using the sequence {cmj } when m

is large enough. In the next section, we will use these

sequences to compute the response of the block on dif-
ferent foundations.

4 Examples

4.1 Linear foundation

Let’s consider a linear foundation, i.e. f(ws, w
′

s) = 0.

The analytic solution is given by equation (26). Now
we calculate the response by the numerical method. By

substituting f(ws, w
′

s) = 0 into equation (28), we have

Fm
j = 0 and equation (29) becomes

cm+1
j =



















(

Mω2
j + Pj

)

cmj − Fj

ks + iηsωj
if 0 ≤ |j| ≤ n0

(ks + iηsωj) c
m
j + Fj

Mω2
j + Pj

if n0 < |j| ≤ n

By combining the last equation and equation (26), we

obtain

cm+1
j − cj =



















Mω2
j + Pj

ks + iηsωj

(

cmj − cj
)

if 0 ≤ |j| ≤ n0

ks + iηsωj

Mω2
j + Pj

(

cmj − cj
)

if n0 < |j| ≤ n

The last equation describes geometric sequences which
converge to zeros if and only if























∣

∣

∣

∣

∣

Mω2
j + Pj

ks + iηsωj

∣

∣

∣

∣

∣

< 1 if 0 ≤ |j| ≤ n0

∣

∣

∣

∣

∣

ks + iηsωj

Mω2
j + Pj

∣

∣

∣

∣

∣

< 1 if n0 < |j| ≤ n

Therefore, if n0 is chosen so that the last inequalities
are satisfied, the iteration procedure converges to the

analytic solution. Otherwise, this procedure is not con-

vergent.

Figure 3 shows an example for a linear foundation

by using the numerical method with different numbers

of iterations. The parameters of the railway track are

given in Table 1. Here we plot the vertical displacement

of a block in one period of the moving loads which cor-
responds to the time for the train move a distance of a

wagon H . The reference time t = 0 corresponds to the

moment when the front wheel moves over the support.

The real-time response of the sleeper is the periodical
series with a period as shown in the figure.
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Fig. 3 Analytic solution and numerical results with different
numbers of iterations for the linear foundation

The calculations have been performed with the num-

ber of harmonics n = 15 and the parameter n0 = 0. We
see that the numerical results agree well with the an-

alytic results when the number of iterations is bigger

than 15.

4.2 Cubic-nonlinear foundation

Consider a nonlinear foundation with the nonlinear part

following a cubic law

f(ws, w
′

s) = ek3w
3
s (30)

where e = 0.8 and k3 = 20 kNmm-3. Other parame-

ters are given in Table 1. As the previous example, the

displacement of a block is calculated with a number

of harmonics n = 15 and represented in a time inter-
val corresponding to one period of the moving loads.

Figure 4 shows the results for different numbers of iter-

ations m. When m ≥ 15, the response becomes almost

unchanged and the iteration procedure converges.

The influence of the nonlinear parameter e on the

response of the block has been investigated as shown

in Figure 5. When e = 0, the foundation is linear. The
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Table 1 Parameters of railway track

Content Notation Unit Value

Rail mass ρS kgm-1 60
Rail stiffness EI MNm2 6.3
Train speed v km/h 160
Charge per wheel Q kN 100
Block mass M kg 90
Sleeper distance l m 0.6
Length of boogie D m 3
Length of wagon H m 18
Stiffness of rail pad k1 MNm-1 200
Damping coefficient of rail pad η1 MNsm-1 1.0
Linear stiffness of foundation k2 MNm-1 20
Linear damping coefficient of foundation η2 MNsm-1 0.2

Time (s)
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Fig. 4 Numerical results with different numbers of iterations
for the cubic-nonlinear foundation
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Fig. 5 Effect of the nonlinear parameter of the cubic-
nonlinear foundation on the block displacement

amplitude of the displacement decreases when the non-

linear parameter increases. Indeed, the bigger e is, the

harder the foundation is.

4.3 Bilinear foundation

Consider a foundation with different linear behaviours

in compression and tension. Such a constitutive law can
be described by a damping coefficient (η2), stiffness in

compression (k+) and in traction (k−). Because the lin-

ear and nonlinear parts of the behaviour are separated

in the model, the nonlinear part of this foundation is

given by

f(ws, w
′

s) =

{

(k+ − k2)ws if w < 0

(k− − k2)ws if w ≥ 0
(31)

We will calculate the displacement of a block in one

period with different numbers of harmonics and itera-

tions in order to study the convergence of the numer-

ical method for a railway track in Table 1 and k+ =

20MKm-1, k− = 10MKm-1. Figure 6 shows the numeri-
cal results with different numbers of iterations while the

number of harmonics is n = 15. When the number of

iterations is bigger than 50, the numerical method con-

verges well. We find out again the convergence with dif-
ferent numbers of harmonics for m = 100 when n ≥ 10

as shown in Figure 7. By consequence, the result shows

that the lower harmonics are more important and the

high order harmonics (n > 10) can be negligible in this

case.

The influence of the nonlinear parameter r = k−/k+

is studied by using the numerical method with n = 15

and k = 100. Figure 8 shows the displacement of the

block for different parameters r. When r = 1, the foun-
dation is linear and for r = 0, the foundation is tension-

less. We see that a small traction stiffness of the founda-

tion can make a great influence on the response of the

dynamical system. It is remarkable that the computa-
tional time is almost instantaneous for these three ex-

amples, and this is an advantage of this semi-analytical

method.
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Fig. 6 Numerical results with different numbers of iterations
for the bilinear foundation
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Fig. 7 Numerical results with different numbers of harmon-
ics for the bilinear foundation
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Fig. 8 Effect of the nonlinear parameter of the bilinear foun-
dation on the block displacement

5 Conclusion

A semi-analytic model for periodically supported beams
on nonlinear foundations has been developed. When the

moving loads is a periodic series, the dynamic equation

of the support system has been reduced to a forced non-

linear oscillation. Then, the harmonic balance method

and the iteration procedure have been used to compute

the periodic response. In linear cases, this method is

proven to converge to the analytic solution. For other

cases, this method is demonstrated to converges well
with a small number of iterations of harmonics. This

model is simple, fast and it is applicable for different

nonlinear foundations.

Appendix

By performing the Fourier transform of equations (1)
and (2) with regard to time t, we have

F̂ (x, ω) = R̂(ω)

∞
∑

n=−∞

e−iω
v
xδ(x− nl)−

K
∑

j=1

Qj

v
e−iω

v
(x+Dj)

EI
∂4ŵr(x, ω)

∂x4
− ρSω2ŵr(x, ω)− F̂ (x, ω) = 0

where ŵr(x, ω) and R̂(ω) are the Fourier transforms

of wr(x, t) and R(t) respectively. Then, performing the

spatial Fourier transform of the last results with regard

to x leads to the following result

(EIλ4− ρSω2)Π(λ, ω) + 2πδ
(

λ+ ω
v

)

K
∑

j=1

Qj

v
e−iω

v
Dj

−R̂(ω)
∞
∑

n=−∞

e−i(λ+ω
v
)nl = 0 (A.1)

where Π(λ, ω) is the Fourier transform of ŵr(x, ω) with

regard to x. The last term in equation (A.1) is a Dirac
comb [20] which has a following propriety

∞
∑

n=−∞

e−i(λ+ω
v )nl =

2π

l

∞
∑

n=−∞

δ

(

λ+
ω

v
+

2π

l
n

)

(A.2)

Then, Π(λ, ω) can be obtained from equation (A.1):

Π(λ, ω) = 2π
EI(λ4

−λ4
e)

[

R̂(ω)
l

∑

n
δ
(

λ+ ω
v + 2π

l n
)

−δ
(

λ+ ω
v

)
∑

j

Qj

v e−iω
v
Dj

]

(A.3)

where λe = 4

√

ρSω2

EI . Thereafter, the expression of ŵr(x, ω)

is deduced by performing the inverse Fourier transform

of Π(λ, ω)

ŵr(x, ω) =
R̂(ω)

lEI

∞
∑

n=−∞

e−i(ω
v
+ 2πn

l )x
(

ω
v + 2πn

l

)4
− λ4

e

−
K
∑

j=1

Qje
−iω

v
(x+Dj)

vEI
[

(

ω
v

)4
− λ4

e

] (A.4)

By substituting x = 0 into the last equation, we obtain

the vertical displacement of the beam at the support
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position

ŵr(0, ω) = R̂(ω)ηe(ω)−

K
∑

j=1

Qje
−iω

Dj

v

vEI
[

(

ω
v

)4
− λ4

e

] (A.5)

where ηe(ω) is calculated by

ηe(ω) =
1

lEI

∞
∑

n=−∞

1
(

ω
v + 2πn

l

)4
− λ4

e

(A.6)

The last expression is a sum of an infinite series which

can be deduced to the function in equation (4) by a
symbolic computation (see [17]) . Finally, we get equa-

tion (3) from equation (A.5).
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