Technique de compression de données pour la réduction de modèle par PGD

Résumé : Ce travail porte sur l’implémentation de la Proper Generalized Decomposition (PGD) dans le cadre de la méthode LATIN pour résoudre des problèmes d’évolution paramétrés, éventuellement non linéaires. La PGD est une méthode de réduction de modèle où la base réduite n’est pas donnée a priori. La représentation de la solution sur cette base réduite générée automatiquement permet de réduire considérablement les coûts de calcul. L’algorithme utilisé dans ce travail est la méthode LATIN. Il s’agit d’une méthode itérative non incrémentale qui génère, à chaque itération, une approximation de la solution sur tout le domaine espace-temps-paramètres par enrichissements successifs. Les opérations sur ces représentations en variables séparées peuvent s’avérer être la partie de la méthode la plus coûteuse en temps de calcul. Dans ce travail, nous proposons une technique de compression de données permettant de simplifier et de diminuer le coût des opérations algébriques élémentaires.
Type de document :
Communication dans un congrès
11ème Colloque National en Calcul des Structures, CSMA 2013, May 2013, Giens, France. 2013, Actes du 11ème Colloque National en Calcul des Structures
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01694539
Contributeur : Pierre-Alain Guidault <>
Soumis le : samedi 27 janvier 2018 - 18:33:33
Dernière modification le : mercredi 21 mars 2018 - 18:57:15

Identifiants

  • HAL Id : hal-01694539, version 1

Collections

Citation

Matteo Capaldo, David Néron, Pierre Ladevèze, Pierre-Alain Guidault. Technique de compression de données pour la réduction de modèle par PGD. 11ème Colloque National en Calcul des Structures, CSMA 2013, May 2013, Giens, France. 2013, Actes du 11ème Colloque National en Calcul des Structures. 〈hal-01694539〉

Partager

Métriques

Consultations de la notice

54