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A LOCAL DISCONTINUOUS GALERKIN METHOD FOR KDV-TYPE EQUATIONS�

JUE YANy AND CHI-WANG SHUz

Abstract. In this paper we develop a local discontinuous Galerkin method for solving KdV type equa-

tions containing third derivative terms in one and two space dimensions. The method is based on the

framework of the discontinuous Galerkin method for conservation laws and the local discontinuous Galerkin

method for viscous equations containing second derivatives, however the guiding principle for inter-cell 
uxes

and nonlinear stability is new. We prove L2 stability and a cell entropy inequality for the square entropy

for a class of nonlinear PDEs of this type both in one and multiple spatial dimensions, and give an error

estimate for the linear cases in the one dimensional case. The stability result holds in the limit case when the

coeÆcients to the third derivative terms vanish, hence the method is especially suitable for problems which

are \convection dominate", i.e. those with small second and third derivative terms. Numerical examples are

shown to illustrate the capability of this method. The method has the usual advantage of local discontinuous

Galerkin methods, namely it is extremely local and hence eÆcient for parallel implementations and easy for

h-p adaptivity.

Key words. discontinuous Galerkin method, KdV equation, stability, error estimate

Subject classi�cation. Applied and Numerical Mathematics

1. Introduction. In this paper we develop a local discontinuous Galerkin method for solving KdV

type equations containing third derivative terms in one and multiple spatial dimensions. An example of such

PDEs is the original KdV equation [18]

ut + (�u+ �u2)x + �uxxx = 0; (1.1)

where �, � and � are constants. Our scheme can be designed and proven stable for more general nonlinear-

ities, namely

ut + f(u)x + (r0(u)g(r(u)x)x)x = 0 (1.2)

in one space dimension for arbitrary (smooth) functions f , g and r, where r0(u) = dr(u)
du , and

ut +
dX

i=1

fi(u)xi +
dX

i=1

0@r0i(u) dX
j=1

gij(ri(u)xi)xj

1A
xi

= 0 (1.3)

in multiple spatial dimensions for arbitrary (smooth) functions fi, gij and ri.

KdV type equations describe the propagation of waves in a variety of nonlinear, dispersive media and

appear often in applications. See, e.g. [1]. Various numerical methods have been proposed and used

in practice to solve this type of equations, see, e.g. [4, 5, 17]. However, in many situations, such as in

the quantum hydrodynamic models of semiconductor device simulations [15] and in the dispersive limit of
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conservation laws [19], the third derivative terms might have small or even zero coeÆcients in some parts

of the domain. We will call such cases as \convection dominated". The design of stable, eÆcient and high

order methods, especially those for the \convection dominated" cases, i.e. when the third derivative terms

are small (j�j � 1 in (1.1)), remains a challenge.

The discontinuous Galerkin method is a class of �nite element methods using completely discontinuous

piecewise polynomial space for the numerical solution and the test functions. One certainly needs to use

more degrees of freedom because of the discontinuities at the element boundaries, however this also gives one

a room to design suitable inter-element boundary treatments (the so-called 
uxes) to obtain highly accurate

and stable methods in many diÆcult situations.

The �rst discontinuous Galerkin method was introduced in 1973 by Reed and Hill [20], in the framework

of neutron transport (steady state linear hyperbolic equations). A major development of the discontinuous

Galerkin method was carried out by Cockburn et al. in a series of papers [10, 9, 7, 11], in which they

established a framework to easily solve nonlinear time dependent hyperbolic conservation laws (i.e. (1.2)

and (1.3) without the third derivative terms) using explicit, nonlinearly stable high order Runge-Kutta time

discretizations [22] and discontinuous Galerkin discretization in space with exact or approximate Riemann

solvers as interface 
uxes and TVB (total variation bounded) nonlinear limiters [21] to achieve non-oscillatory

properties for strong shocks.

The discontinuous Galerkin method has found rapid applications in such diverse areas as aeroacoustics,

electro-magnetism, gas dynamics, granular 
ows, magneto-hydrodynamics, meteorology, modeling of shallow

water, oceanography, oil recovery simulation, semiconductor device simulation, transport of contaminant in

porous media, turbomachinery, turbulent 
ows, viscoelastic 
ows and weather forecasting, among many

others. Good references for the discontinuous Galerkin method and its recent development include the

survey paper [8], other papers in that Springer volume, and the review paper [13].

The original discontinuous Galerkin method was designed to solve �rst order hyperbolic problems. A

simple example to illustrate the essential ideas is the linear transport equation

ut + ux = 0: (1.4)

Let's denote the mesh by Ij =[xj� 1
2
; xj+ 1

2
], for j = 1; :::; N , with the center of the cell denoted by xj =

1
2

�
xj� 1

2
+ xj+ 1

2

�
and the size of each cell by �xj = xj+ 1

2
� xj� 1

2
. We will denote �x = maxj �xj . If we

multiply (1.4) by an arbitrary test function v(x), integrate over the interval Ij , and integrate by parts, we

get Z
Ij

utvdx�
Z
Ij

uvxdx+ u(xj+ 1
2
; t)v(xj+ 1

2
)� u(xj� 1

2
; t)v(xj� 1

2
) = 0: (1.5)

This is the starting point for designing the discontinuous Galerkin method. We replace both the solution u

and the test function v by piecewise polynomials of degree at most k. That is, u; v 2 V�x where

V�x = fv : v is a polynomial of degree at most k for x 2 Ij ; j = 1; :::; Ng : (1.6)

With this choice, there is an ambiguity in (1.5) in the last two terms involving the boundary values at xj� 1
2
,

as both the solution u and the test function v are discontinuous exactly at these boundary points. The

idea is to treat these terms by an upwinding mechanism (information from characteristics), borrowed from

successful high resolution �nite volume schemes. Thus u at the interfaces xj� 1
2
is given by a single valued

numerical 
ux ûj� 1
2
= u�

j� 1
2

, determined from upwinding, and v at the interfaces xj� 1
2
are given by the
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values taken from inside the cell Ij , namely v
�

j+ 1
2

and v+
j� 1

2

. Notice that we use v� and v+ to denote the left

and right limits of v, respectively, at the interface where v is discontinuous. For more general nonlinear 
uxes

f(u), the only di�erence is that the single valued 
ux f̂j+ 1
2
would be taken as a monotone 
ux depending on

both u�
j+ 1

2

and on u+
j+ 1

2

(exact or approximate Riemann solvers in the system case). The resulting method

of the lines ODE is then discretized by the nonlinearly stable high order Runge-Kutta time discretizations

[22]. Nonlinear TVB limiters [21] may be used if the solution contains strong discontinuities. The schemes

thus obtained, for solving hyperbolic conservation laws ((1.2) and (1.3) without the third derivative terms),

have the following attractive properties:

1. It can be easily designed for any order of accuracy. In fact, the order of accuracy can be locally

determined in each cell, thus allowing for eÆcient p adaptivity.

2. It can be used on arbitrary triangulations, even those with hanging nodes, thus allowing for eÆcient

h adaptivity.

3. It is extremely local in data communications. The evolution of the solution in each cell needs to

communicate only with the immediate neighbors, regardless of the order of accuracy, thus allowing

for eÆcient parallel implementations. See, e.g. [3].

4. It has excellent provable nonlinear stability. One can prove a strong L2 stability and a cell entropy

inequality for the square entropy, for the general nonlinear cases, for any orders of accuracy on

arbitrary triangulations in any space dimension, without the need for nonlinear limiters [16].

In [12] these discontinuous Galerkin methods were generalized to solve convection di�usion problems

containing second derivative terms. This was motivated by the successful numerical experiments of Bassi

and Rebay [2] for the compressible Navier-Stokes equations. The idea can be illustrated with the simple

heat equation

ut � uxx = 0 (1.7)

which we rewrite into a �rst order system

ut � qx = 0; q � ux = 0; (1.8)

we can then formally use the same discontinuous Galerkin method for the convection equation to solve (1.8),

resulting in the following scheme: �nd u; q 2 V�x such that, for all test functions v; w 2 V�x,Z
Ij

utvdx+

Z
Ij

qvxdx� q̂j+ 1
2
v�
j+ 1

2

+ q̂j� 1
2
v+
j� 1

2

= 0Z
Ij

qwdx +

Z
Ij

uwxdx� ûj+ 1
2
w�
j+ 1

2

+ ûj� 1
2
w+
j� 1

2

= 0: (1.9)

However, there is no longer a upwinding mechanism or characteristics to guide the design of the 
uxes ûj+ 1
2

and q̂j+ 1
2
. The crucial part in designing a stable and accurate algorithm (1.9) is a correct design of these


uxes. In [12], criteria are given for these 
uxes to guarantee stability, convergence and a sub-optimal error

estimate of order k for piecewise polynomials of degree k. The (most natural) central 
uxes

ûj+ 1
2
=

1

2

�
u�
j+ 1

2

+ u+
j+ 1

2

�
; q̂j+ 1

2
=

1

2

�
q�
j+ 1

2

+ q+
j+ 1

2

�
(1.10)

would satisfy these criteria and give a scheme which is indeed sub-optimal in the order of accuracy for odd

k (i.e. the accuracy is order k rather than the expected order k + 1 for odd k). This de�ciency however is

easily removed by going to a clever choice of 
uxes, proposed in [12]:

ûj+ 1
2
= u�

j+ 1
2

; q̂j+ 1
2
= q+

j+ 1
2

: (1.11)
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i.e. we alternatively take the left and right limits for the 
uxes in u and q (we could of course also take

the pair u+
j+ 1

2

and q�
j+ 1

2

as the 
uxes). Notice that the evaluation of (1.11) is simpler than that of the

central 
uxes in (1.10), and this easily generalizes to multi space dimensions on arbitrary triangulations.

The accuracy now becomes the optimal order k + 1 for both even and odd k.

The schemes thus designed for the heat equation (1.7), or in fact for the most general multi dimensional

nonlinear convection di�usion equations (nonlinear both in the �rst derivative convection part and the second

derivation di�usion part), retain all the four nice properties listed above for the method used on convection

equations. Moreover, the appearance of the auxiliary variable q is super�cial: when a local basis is chosen

in cell Ij then q is eliminated and the actual scheme for u takes a form similar to that for convection alone.

This is a big advantage of the scheme over the traditional \mixed methods", and it is the reason that the

scheme is termed local discontinuous Galerkin method in [12]. Even though the auxiliary variable q can be

locally eliminated, it does approximate the derivative of the solution u to the same order of accuracy, thus

matching the advantage of traditional \mixed methods" on this.

The purpose of this paper is to develop a similar local discontinuous Galerkin (LDG) method for the

KdV like equations (1.1), (1.2) and (1.3) containing third derivative terms. Our objective is to design the

method to retain again all the four nice properties listed above for the method used on convection and

convection-di�usion equations, plus the feature that the method is local, namely the auxiliary variables

introduced to approximate the �rst and second derivatives of the solution could be locally eliminated.

We will give a \preview" of the method on the simple linear equation

ut + uxxx = 0 (1.12)

which we again rewrite into a �rst order system

ut + px = 0; p� qx = 0; q � ux = 0: (1.13)

We can then formally use the same discontinuous Galerkin method for the convection equation to solve

(1.13), resulting in the following scheme: �nd u; p; q 2 V�x such that, for all test functions v; w; z 2 V�x,Z
Ij

utvdx �
Z
Ij

pvxdx+ p̂j+ 1
2
v�
j+ 1

2

� p̂j� 1
2
v+
j� 1

2

= 0;Z
Ij

pwdx+

Z
Ij

qwxdx� q̂j+ 1
2
w�
j+ 1

2

+ q̂j� 1
2
w+
j� 1

2

= 0; (1.14)Z
Ij

qzdx+

Z
Ij

uzxdx� ûj+ 1
2
z�
j+ 1

2

+ ûj� 1
2
z+
j� 1

2

= 0:

However, the 
uxes p̂j+ 1
2
, q̂j+ 1

2
and ûj+ 1

2
must be designed based on di�erent guiding principles than the

�rst order convection or second order di�usion cases. The crucial part in designing a stable and accurate

algorithm (1.14) is again a correct design of these 
uxes. It turns out that the simple choices

p̂j+ 1
2
= p+

j+ 1
2

; q̂j+ 1
2
= q+

j+ 1
2

; ûj+ 1
2
= u�

j+ 1
2

; (1.15)

would guarantee stability and convergence, as can be proven later in this paper and also clearly seen in Table

1.1, which contains numerical L2 and L1 errors and orders of accuracy for the computed solution u for the

method (1.14) with the 
uxes (1.15) solving the equation (1.12) with an initial condition u(x; 0) = sin(x)

over the interval [0; 2�] and periodic boundary conditions, at t = 1, using uniform meshes.
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Table 1.1

ut + uxxx = 0. u(x; 0) = sin(x). Periodic boundary conditions. L2 and L1 errors. Uniform meshes with N cells. LDG

methods with k = 0; 1; 2; 3. t = 1.

k N=10 N=20 N=40 N=80

error error order error order error order

0 L2 2.2534E-01 1.2042E-01 0.91 6.2185E-02 0.95 3.1582E-02 0.98

L1 4.3137E-01 2.1977E-01 0.97 1.1082E-01 0.98 5.5376E-02 1.00

1 L2 1.7150E-02 4.2865E-03 2.00 1.0716E-03 2.00 2.6792E-04 1.99

L1 5.8467E-02 1.5757E-02 1.89 4.0487E-03 1.96 1.0210E-03 1.99

2 L2 8.5803E-04 1.0823E-04 2.98 1.3559E-05 2.99 1.6958E-06 3.00

L1 4.0673E-03 5.1029E-04 2.99 6.4490E-05 2.98 8.0722E-06 3.00

3 L2 3.3463E-05 2.1035E-06 3.99 1.3166E-07 3.99 8.2365E-09 3.99

L1 1.8185E-04 1.1157E-05 3.97 7.2362E-07 3.99 4.5593E-08 3.99

We remark that the choice for the 
uxes (1.15) is not unique. In fact, the crucial part is to take p̂ and

û from opposite sides and to take q̂ from the right. Thus

p̂j+ 1
2
= p�

j+ 1
2

; q̂j+ 1
2
= q+

j+ 1
2

; ûj+ 1
2
= u+

j+ 1
2

;

would also work.

The organization of the paper is as follows. In section 2 we describe the method for the one dimensional

case, and prove its nonlinear L2 stability and a cell entropy inequality, as well as an error estimate for the

linear case. In section 3 multiple spatial dimensional case is considered, where the nonlinear stability is given

for the general triangulations. In section 4 we provide several numerical examples to illustrate the capability

of the method. Concluding remarks and remarks about future work are given in section 5.

2. The LDG method for the one dimensional case. In this section, we present and analyze the

LDG method for the following one dimensional nonlinear problem:

ut + f(u)x + (r0(u)g(r(u)x)x)x = 0; 0 � x � 1 (2.1)

with an initial condition

u(x; 0) = u0(x); 0 � x � 1 (2.2)

and periodic boundary conditions. Here f(u), r(u) and g(q) are arbitrary (smooth) nonlinear functions.

Notice that the assumption of periodic boundary conditions is for simplicity only and is not essential: the

method can be easily designed for non-periodic boundary conditions. Also notice that the linear equation

(1.12) and the KdV equation (1.1) are both special cases of (2.1).

To de�ne the LDG method, we �rst introduce the new variables

q = r(u)x; p = g(q)x (2.3)

and rewrite the equation (2.1) as a �rst order system:

ut + (f(u) + r0(u)p)x = 0; p� g(q)x = 0; q � r(u)x = 0: (2.4)
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The LDG method is obtained by discretizing the above system with the discontinuous Galerkin method. This

is achieved by multiplying the three equations in (2.4) by three test functions v; w; z respectively, integrate

over the interval Ij , and integrate by parts. We also need to pay special attention to the boundary terms

resulting from the procedure of integration by parts, as mentioned in the previous section. Thus we seek

piecewise polynomial solutions u; p; q 2 V�x, where V�x is de�ned in (1.6), such that for all test functions

v; w; z 2 V�x we have, for 1 � j � N ,Z
Ij

utvdx�
Z
Ij

(f(u) + r0(u)p)vxdx+
�
f̂ + br0p̂�

j+ 1
2

v�
j+ 1

2

�
�
f̂ + br0p̂�

j� 1
2

v+
j� 1

2

= 0;Z
Ij

pwdx +

Z
Ij

g(q)wxdx� ĝj+ 1
2
w�
j+ 1

2

+ ĝj� 1
2
w+
j� 1

2

= 0; (2.5)Z
Ij

qzdx+

Z
Ij

r(u)zxdx� r̂j+ 1
2
z�
j+ 1

2

+ r̂j� 1
2
z+
j� 1

2

= 0:

Notice that we still use letters without a subscript �x to denote functions in the �nite element space V�x, to

simplify the notations. The only ambiguity in the algorithm (2.5) now is the de�nition of the numerical 
uxes

(the \hats"), which should be designed based on di�erent guiding principles than the �rst order convection

or second order di�usion cases to ensure stability. It turns out that we can take the simple choices (we omit

the subscripts j � 1
2 in the de�nition of the 
uxes as all quantities are evaluated at the interfaces xj� 1

2
)

f̂ = f̂(u�; u+); br0 = r(u+)� r(u�)

u+ � u�
; p̂ = p+; ĝ = ĝ(q�; q+); r̂ = r(u�) (2.6)

where f̂(u�; u+) is a monotone 
ux for f(u), namely f̂(u�; u+) is a Lipschitz continuous function in both

arguments u� and u+, is consistent with f(u) in the sense that f̂(u; u) = f(u), and is a non-decreasing

function in u� and a non-increasing function in u+. Likewise, �ĝ(q�; q+) is a monotone 
ux for �g(q),
namely ĝ(q�; q+) is a Lipschitz continuous function in both arguments q� and q+, is consistent with g(q)

in the sense that ĝ(q; q) = g(q), and is a non-increasing function in q� and a non-decreasing function in q+.

Examples of monotone 
uxes which are suitable for discontinuous Galerkin methods can be found in, e.g.

[10]. We could for example use the simple Lax-Friedrichs 
ux

f̂(u�; u+) =
1

2

�
f(u�) + f(u+)� �(u+ � u�)

�
; � = max

u
jf 0(u)j: (2.7)

where the maximum is taken over a relevant range of u. The algorithm is now well de�ned.

We remark that the choice for the 
uxes (2.6) is not unique. In fact, the crucial part is to take p̂ and r̂

from opposite sides. Thus

f̂ = f̂(u�; u+); br0 = r(u+)� r(u�)

u+ � u�
; p̂ = p�; ĝ = ĝ(q�; q+); r̂ = r(u+)

would also work.

We also remark that the algorithm (2.5)-(2.6) is very easy for numerical implementation. Given u, one

�rst uses the third equation in (2.5) to obtain q. This is achieved locally: q in Ij can be obtained with the

information of u in the cells Ij and Ij�1. The second equation in (2.5) is then used to obtain p locally: p in

Ij can be obtained with the information of q in (at most) the cells Ij , Ij�1 and Ij+1. Finally, the update of

the solution u is obtained using the �rst equation in (2.5), again locally, namely the update of u in Ij can

be obtained with the information of u in (at most) the cells Ij , Ij�1 and Ij+1 and that of p in the cells Ij

and Ij+1.
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We have the following \cell entropy inequality" for the scheme (2.5)-(2.6). This is a generalization of

the cell entropy inequality obtained in [16] for the discontinuous Galerkin method applied to hyperbolic

conservation laws (equation (2.1) with g(q) = 0).

Proposition 2.1. (cell entropy inequality) There exist numerical entropy 
uxes Ĥj+ 1
2
such that the solution

to the scheme (2.5)-(2.6) satis�es

d

dt

Z
Ij

�
u2(x; t)

2

�
dx+

�
Ĥj+ 1

2
� Ĥj� 1

2

�
� 0: (2.8)

Proof: We sum up the three equalities in (2.5) and introduce the notation

Bj(u; p; q; v; w; z) =

Z
Ij

utvdx �
Z
Ij

(f(u) + r0(u)p)vxdx+
�
f̂ + br0p̂�

j+ 1
2

v�
j+ 1

2

�
�
f̂ + br0p̂�

j� 1
2

v+
j� 1

2

+

Z
Ij

pwdx+

Z
Ij

g(q)wxdx� ĝj+ 1
2
w�
j+ 1

2

(2.9)

+ĝj� 1
2
w+
j� 1

2

+

Z
Ij

qzdx+

Z
Ij

r(u)zxdx� r̂j+ 1
2
z�
j+ 1

2

+ r̂j� 1
2
z+
j� 1

2

:

Clearly, the solutions u, p, q of the scheme (2.5)-(2.6) satisfy

Bj(u; p; q; v; w; z) = 0 (2.10)

for all v; w; z 2 V�x. We then take

v = u; w = q; z = �p

to obtain, after some algebraic manipulations,

0 = Bj(u; p; q;u; q;�p) = d

dt

Z
Ij

�
u2(x; t)

2

�
dx+

�
Ĥj+ 1

2
� Ĥj� 1

2

�
+�j� 1

2

with the numerical entropy 
ux Ĥ de�ned by

Ĥ = �F (u�) +G(q�)� r(u�)p� +
�
f̂ + br0p̂�u� � ĝq� + r̂p�

and the extra term � given by

� = [F (u)�G(q) + r(u)p]�
�
f̂ + br0p̂� [u] + ĝ[q]� r̂[p];

Here

F (u) =

Z u

f(u)du; G(q) =

Z q

g(q)dq;

and

[v] = v+ � v�

denotes the jump of v. Notice that we have dropped the subscripts about the location j � 1
2 or j + 1

2 as

all these quantities are de�ned at a single interface and depend only on the left and right values at that

interface. Now all we need to do is to verify � � 0. To this end, we notice that, with the de�nition (2.6) of

the numerical 
uxes and with simple algebraic manipulations, we easily obtain

[r(u)p] � br0p̂[u]� r̂[p] = 0

7



and hence

� = [F (u)]� f̂ [u]� [G(q)] + ĝ[q]

=

Z u+

u�

�
f(s)� f̂(u�; u+)

�
ds�

Z q+

q�

�
g(s)� ĝ(q�; q+)

�
ds (2.11)

� 0;

where the last inequality follows from the monotonicity of the 
uxes f̂ and �ĝ. This �nishes the proof. 2

Now the L2 stability of the method is a trivial corollary:

Corollary 2.1. (L2 stability) The solution to the scheme (2.5)-(2.6) satis�es the L2 stability

d

dt

Z 1

0

�
u2(x; t)

2

�
dx � 0: (2.12)

Proof: We simply add up (2.8) over j. 2

About time discretizations, if we denote the semi-discrete LDG method (2.5)-(2.6) by

ut = R(u);

then the following implicit � scheme

un+1 � un

�t
= R(un+�); un+� = (1� �)un + �un+1 (2.13)

will also satisfy the same cell entropy inequality and L2 stability as long as 1
2 � � � 1. Notice that this

includes the �rst order backward Euler and second order Crank-Nicolson implicit time discretizations as

special cases. See [16] for the purely hyperbolic case.

Proposition 2.2. (implicit time discretization) The cell entropy inequality and the L2 stability also hold

for the time discretization (2.13) with 1
2 � � � 1 for the scheme (2.5)-(2.6). That is,Z

Ij

�
(un+1(x))2 � (un(x))2

2�t

�
dx+ Ĥn+�

j+ 1
2

� Ĥn+�
j� 1

2

� 0; (2.14)

and Z 1

0

(un+1(x))2dx �
Z 1

0

(un(x))2dx: (2.15)

Proof: If we take the test functions at n+ �, e.g. v = un+� given by (2.13), we obtain just as beforeZ
Ij

un+1(x) � un(x)

�t
un+�dx+ Ĥn+�

j+ 1
2

� Ĥn+�
j� 1

2

� 0;

which can be rewritten asZ
Ij

�
(un+1(x))2 � (un(x))2

2�t

�
dx+ Ĥn+�

j+ 1
2

� Ĥn+�
j� 1

2

+

�
� � 1

2

�Z
Ij

�
(un+1(x)� un(x))2

�t

�
dx � 0:

Thus, a suÆcient condition to get the cell entropy inequality (2.14) is just � � 1
2 . Again, (2.15) is

obtained simply by adding up (2.14) over j. 2
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The stability result obtained here can be used to get an error estimate in L2 for the numerical solution u,

when the equation (2.1) is linear. Without loss of generality we may take f(u) = u, g(q) = q and r(u) = u,

resulting in the equation

uet + uex + uexxx = 0: (2.16)

Noticed that we have used the notation ue to denote the exact solution of the PDE in order not to confuse

with the numerical solutions. We have the following result, where C here and below denotes a generic

constant which may be of di�erent values at di�erent locations.

Proposition 2.3. (error estimate) The error for the scheme (2.5)-(2.6) applied to the linear PDE (2.16)

satis�es sZ 1

0

(ue(x; t)� u(x; t))
2
dx � C�xk+

1
2 ; (2.17)

where the constant C depends on the derivatives of ue and time t.

Proof: First, we notice that, in this linear case, most monotone 
uxes simply become upwinding

f̂(u�; u+) = u�; ĝ(q�; q+) = q+;

and this is what we will assume. It is then easy to work out the exact form of � in (2.11) for the cell entropy

inequality to be

� =
1

2

�
[u]2 + [q]2

�
: (2.18)

We now notice that the exact solution of the PDE (2.16), ue, qe = uex and pe = uexx clearly satis�es

Bj(u
e; pe; qe; v; w; z) = 0

for all v; w; z 2 V�x, where Bj is de�ned by (2.9). Taking the di�erence between the above equality and

(2.10), we obtain the error equation

Bj(u
e � u; pe � p; qe � q; v; w; z) = 0 (2.19)

for all v; w; z 2 V�x. As usual this error equation is the basic starting point of error estimates.

We now take

v = Sue � u; w = Pqe � q; z = p�Ppe; (2.20)

in the error equation (2.19). Here P is the standard L2 projection into V�x, that is, for each j,Z
Ij

(Pw(x) � w(x))v(x)dx = 0 8v 2 P k;

where P k denotes the space of all polynomials of degree at most k. In other words, the di�erence between

the projection Pw and the original function w is orthogonal to all polynomials of degree up to k in each

interval. S is a special projection into V�x which satis�es, for each j,Z
Ij

(Sw(x) � w(x))v(x)dx = 0 8v 2 P k�1 and Sw(x�j+1=2) = w(x�j+1=2);

9



in other words, the di�erence between the projection Sw and the original function w is orthogonal to all

polynomials of degree up to k � 1 in each interval, and the projection agrees with the function at the right

boundary in each interval. This special projection is needed for u because we have no control on the jumps

of p in the cell entropy inequality, see (2.18). Substituting (2.20) into the error equation (2.19) and moving

terms, we obtain

Bj(v;�z; w; v; w; z) = Bj(v
e;�ze; we; v; w; z) (2.21)

where v, w, z are given by (2.20), and ve, we, ze are given by

ve = Sue � ue; we = Pqe � qe; ze = pe �Ppe: (2.22)

By the same argument as that used for the cell entropy inequality, the left hand side of (2.21) becomes

Bj(v;�z; w; v; w; z) = d

dt

Z
Ij

�
v2

2

�
dx+

�
Ĥj+ 1

2
� Ĥj� 1

2

�
+�j� 1

2
(2.23)

where, by (2.18),

�j� 1
2
=

1

2

�
[v]2j� 1

2

+ [w]2j� 1
2

�
: (2.24)

The right hand side of (2.21) can be written out as

Bj(v
e;�ze; we; v; w; z) = I + II + III + IV (2.25)

where

I =

Z
Ij

vet vdx; (2.26)

II = �
Z
Ij

zewdx +

Z
Ij

wezdx�
Z
Ij

(ve � ze)vxdx +

Z
Ij

wewxdx+

Z
Ij

vezxdx; (2.27)

III = �
��

vej� 1
2

��
�
�
zej� 1

2

�+�
[v]j� 1

2
+
�
we
j� 1

2

�+
[w]j� 1

2
+
�
vej� 1

2

��
[z]j� 1

2
; (2.28)

and

IV = ĥj+ 1
2
� ĥj� 1

2
(2.29)

for some 
ux function ĥ. Notice that v; w; z are given by (2.20) and ve; we; xe are given by (2.22), respectively.

Now, by using the simple inequality ab � 1
2 (a

2 + b2), and standard approximation theory on vet =

(Sue � ue)t, see, e.g. [6], we have

I � C�x2k+3j +

Z
Ij

�
v2

2

�
dx:

Because P is a local L2 projection, and S, even though not a local L2 projection, does have the property that
w�Sw is locally orthogonal to all polynomials of degree up to k�1, all the terms in II are actually zero. The

last term in III is zero, because of the special interpolating property of the projection S. An application
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of the simple inequality ab � 1
2 (a

2 + b2) for the �rst two terms in III and standard approximation theory

on the point values of ve � ze = (Sue � ue) + (Ppe � pe) and of we = Pqe � qe (see, e.g. [6]) then gives

III � C(�x2k+2j�1 +�x2k+2j +
1

4

�
[v]2 + [w]2

�
:

Finally, IV only contains 
ux di�erence terms which will vanish upon a summation in j.

Combining all these and summing over j we obtain the following inequality

d

dt

Z 1

0

�
v2

2

�
dx+

1

4

�
[v]2 + [w]2

� � C�x2k+1 +

Z 1

0

�
v2

2

�
dx:

An integration in t plus the standard approximation theory on ve = Sue � ue then gives the desired error

estimate (2.17). 2

3. The LDG method for the multiple dimensional case. In this section, we generalize the scheme

discussed in the previous section to multiple spatial dimensions x = (x1; � � � ; xd). We solve the following

nonlinear problem:

ut +

dX
i=1

fi(u)xi +

dX
i=1

0@r0i(u) dX
j=1

gij(ri(u)xi)xj

1A
xi

= 0; 0 � xi � 1; i = 1; � � � ; d (3.1)

with an initial condition

u(x; 0) = u0(x); 0 � xi � 1; i = 1; � � � ; d (3.2)

and periodic boundary conditions. Here fi(u), ri(u) and gij(q) are arbitrary (smooth) nonlinear functions.

Notice that the assumption of a box geometry and periodic boundary conditions is for simplicity only and

is not essential: the method can be easily designed for arbitrary domain and for non-periodic boundary

conditions.

Let's denote a triangulation of the unit box by T�x, consisting of non-overlapping polyhedra covering

completely the unit box. Hanging nodes are allowed. Here �x measures the longest edge of all polyhedra in

T�x. We again denote the �nite element space by

V d
�x = fv : v is a polynomial of degree at most k for x 2 K; 8K 2 T�xg : (3.3)

Similar to the one dimensional case, to de�ne the LDG method, we �rst introduce the new variables

qi = ri(u)xi ; pi =

dX
j=1

gij(qi)xj ; i = 1; � � � ; d (3.4)

and rewrite the equation (3.1) as a �rst order system:

ut +

dX
i=1

(fi(u) + r0i(u)pi)xi = 0;

pi �
dX

j=1

gij(qi)xj = 0; qi � ri(u)xi = 0; i = 1; � � � ; d: (3.5)

The LDG method is obtained by discretizing the above system with the discontinuous Galerkin method.

This is achieved by multiplying the equations in (3.5) by test functions v; wi; zi respectively, integrate over
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an element K 2 T�x, and integrate by parts. We again need to pay special attention to the boundary

terms resulting from the procedure of integration by parts, as in the one dimensional case. Thus we seek

piecewise polynomial solutions u; pi; qi 2 V d
�x, where V

d
�x is de�ned in (3.3), such that for all test functions

v; wi; zi 2 V d
�x we haveZ

K

utvdx�
dX

i=1

Z
K

(fi(u) + r0i(u)pi)vxidx+

Z
@K

dhnKvintKds = 0;

Z
K

piwidx +
dX

j=1

Z
K

gij(qi)(wi)xjdx�
Z
@K

[gi;nKw
intK ds = 0; i = 1; � � � ; d (3.6)Z

K

qizidx +

Z
K

ri(u)(zi)xidx�
Z
@K

[ri;nK z
intKds = 0; i = 1; � � � ; d;

where @K is the boundary of element K, and the numerical 
uxes (the \hats") are de�ned similar to the

one dimensional cases, namely

dhnK =\fnK ;K(u
intK ; uextK ) +

Pd
i=1

�
ri(u

extK )� ri(u
intK )

�
p+i ni;K

uextK � uintK

[gi;nK = \gi;nK ;K(q
intK ; qextK ); [ri;nK = ri(u

�)ni;K : (3.7)

Here nK = (n1;K ; � � � ; nd;K) is the outward unit normal for element K along the element boundary @K,

uintK denotes the value of u evaluated from inside the element K, and uextK denotes the value of u evaluated

from outside the element K (inside the neighboring element). On the other hand, p+ denotes the value of

p evaluated from a pre-designated \plus" side along an edge e, which is always the boundaries of two

neighboring elements. For example, we could choose a �xed vector � which is not parallel with any normals

of element boundaries, and then designate the \plus" side to be the side at the end of the arrow of the normal

n with n �� > 0, see Figure 3.1.\fnK ;K(u
intK ; uextK ) is a monotone 
ux for fnK (u) =

Pd
i=1 fi(u)ni;K , namely

\fnK ;K(u
intK ; uextK ) is a Lipschitz continuous function in both arguments uintK and uextK , is consistent with

fnK (u) in the sense that dfnK (u; u) = fnK (u), and is a non-decreasing function in uintK and a non-increasing

function in uextK . Moreover, it is conservative (that is, there is only one 
ux at each edge shared by two

elements, added to the residue for one and subtracted from the reside for another), namely

\fnK ;K(a; b) = �\fnK0 ;K0(b; a)

where K and K 0 share the same edge where the 
ux is computed and hence nK0 = �nK . Likewise,

�\gi;nK ;K(q
intK
i ; qextKi ) is a monotone 
ux for �gi;nK (qi) = �Pd

j=1 gij(q)nj;K . Notice that we can again

use the one dimensional monotone 
uxes as in the previous section. For example, we can use the simple

Lax-Friedrichs 
ux

\fnK ;K(u
intK ; uextK ) =

1

2

 
dX

i=1

�
fi(u

intK ) + fi(u
extK )

�
ni;K � �(uextK � uintK )

!
; (3.8)

� = max
u

jf 0nK (u)j;

where the maximum is taken over a relevant range of u. The algorithm is now well de�ned.

Again, the algorithm (3.6)-(3.7) is very easy for numerical implementation. Given u, one �rst locally

solves for the qi, then locally solves for the pi, and �nally locally solves for the update of u. All the advantages

listed for the method for the one dimensional case are still valid in this multiple dimensional case.

We still have the following \cell entropy inequality" for the scheme (3.6)-(3.7). The proof follows the

same lines as that for the one dimensional case, so we will omit it.
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Fig. 3.1. Illustration of the de�nition of \plus" and \minus" sides determined by a pre-determined vector �.

Proposition 3.1. (cell entropy inequality) There exist conservative numerical entropy 
uxes \HnK ;K such

that the solution to the scheme (3.6)-(3.7) satis�es

d

dt

Z
K

�
u2(x; t)

2

�
dx+

Z
@K

\HnK ;Kds � 0: (3.9)

2

The L2 stability of the method is then again a trivial corollary, by summing up the cell entropy inequal-

ities over K:

Corollary 3.1. (L2 stability) The solution to the scheme (3.6)-(3.7) satis�es the L2 stability

d

dt

Z



�
u2(x; t)

2

�
dx � 0: (3.10)

2

The same cell entropy inequality also holds for the implicit time discretizations:

Proposition 3.2. (implicit time discretization) The cell entropy inequality and the L2 stability also hold

for the time discretization (2.13) with 1
2 � � � 1 for the scheme (3.6)-(3.7). That is,Z

K

�
(un+1(x))2 � (un(x))2

2�t

�
dx+

Z
@K

\Hn+�
nK ;Kds � 0; (3.11)

and Z



(un+1(x))2dx �
Z



(un(x))2dx: (3.12)

2

Unfortunately, we could not get the optimal error estimate because of the lack of a suitable projection

S similar to the one dimensional case. However, numerical examples in the next section verify that the

accuracy holds as in the one dimensional case.
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Table 4.1

ut + uxxx = 0. u(x; 0) = sin(x). Periodic boundary conditions. L2 and L1 errors. Non-uniform meshes with N cells.

LDG methods with k = 0; 1; 2; 3. t = 1.

k N=10 N=20 N=40 N=80

error error order error order error order

0 L2 2.2222E-01 1.2014E-01 0.88 6.2532E-02 0.94 3.1900E-02 0.97

L1 4.3282E-01 2.2006E-01 0.97 1.1210E-01 0.97 5.8810E-02 0.93

1 L2 2.0144E-02 5.2347E-03 1.94 1.3322E-03 1.97 3.3592E-04 1.98

L1 8.8110E-02 2.3302E-02 1.93 5.9387E-03 1.97 1.4969E-03 1.98

2 L2 9.8394E-04 1.1974E-04 3.03 1.4953E-05 3.00 1.8687E-06 3.00

L1 5.2984E-03 6.8421E-04 2.95 8.5138E-05 3.00 1.0728E-05 2.99

3 L2 7.3589E-05 4.6509E-06 3.98 2.9191E-06 3.99 2.0141E-08 3.86

L1 3.4438E-04 2.2260E-05 3.95 1.3992E-06 3.99 9.1039E-08 3.94

4. Numerical examples. In this section we provide a few preliminary numerical examples to illustrate

the accuracy and capability of the method. Attention has not been paid to eÆciency in time discretizations,

so explicit third order Runge-Kutta method [22] is used. Study of suitable implicit time discretizations which

have eÆcient iterative solvers maintaining the local structure of the method is the subject of a future study.

We would like to illustrate through these numerical examples the high order accuracy of the methods

for both one dimensional and two dimensional, both linear and nonlinear problems. We would also like to

illustrate the good behavior of the method for the so-called convection dominated cases, namely the case

where the coeÆcients of the third derivative terms are small.

Example 4.1. We compute the solution of the linear one dimensional equation

ut + uxxx = 0 (4.1)

with an initial condition u(x; 0) = sin(x) and periodic boundary conditions (with 2� periodicity). The exact

solution is given by u(x; t) = sin(x + t). Both uniform meshes and non-uniform meshes are used. The

non-uniform meshes in this and later examples are a repeated pattern of 0:9�x and 1:1�x with an even

number of elements. The L2 and L1 errors and the numerical order of accuracy are contained in Table 1.1

(in section 1) for the uniform mesh case, and in Table 4.1 for the non-uniform mesh case. We can clearly

see that the method with P k elements are giving a uniform (k + 1)-th order of accuracy in both norms for

both the uniform and the non-uniform meshes.

Example 4.2. We compute the solution of the linear two dimensional equation

ut + uxxx + uyyy = 0 (4.2)

with an initial condition u(x; y; 0) = sin(x + y) and periodic boundary conditions (with 2� periodicity) in

both directions. The exact solution is given by u(x; y; t) = sin(x + y + 2t). Both uniform and non-uniform

rectangular meshes are used. The non-uniform meshes are a repeated pattern of 0:9�x and 1:1�x, in both

directions, with an even number of edges in both directions. The L2 and L1 errors and the numerical order

of accuracy are contained in Table 4.2 for the uniform mesh case, and in Table 4.3 for the non-uniform mesh
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Table 4.2

ut + uxxx + uyyy = 0. u(x; y; 0) = sin(x + y). Periodic boundary conditions. L2 and L1 errors. Uniform meshes with

N �N cells. LDG methods with k = 0; 1; 2; 3. t = 1.

k 10�10 20�20 40�40
error error order error order

0 L2 3.5528E-01 2.0535E-01 0.79 1.1090E-01 0.89

L1 7.1359E-01 4.0190E-01 0.82 2.1165E-01 0.92

1 L2 3.3603E-02 9.0904E-03 1.89 2.4084E-03 1.92

L1 2.2074E-01 6.1899E-02 1.83 1.5962E-02 1.95

2 L2 3.8750E-03 4.8463E-04 2.99 6.0501E-05 3.00

L1 3.9084E-02 4.8902E-03 2.99 6.1274E-04 2.99

3 L2 4.1491E-04 2.6426E-05 3.97 1.6550E-06 3.99

L1 4.2847E-03 2.8478E-04 3.91 1.7846E-05 3.99

Table 4.3

ut + uxxx + uyyy = 0. u(x; y; 0) = sin(x + y). Periodic boundary conditions. L2 and L1 errors. Non-uniform meshes

with N �N cells. LDG methods with k = 0; 1; 2; 3. t = 1.

k 10�10 20�20 40�40
error error order error order

0 L2 3.5963E-01 2.0788E-01 0.79 1.1228E-01 0.88

L1 7.3869E-01 4.0713E-01 0.85 2.1681E-01 0.91

1 L2 3.4590E-02 9.1681E-03 1.92 2.3412E-03 1.97

L1 2.5815E-01 7.2978E-02 1.82 1.8533E-02 1.97

2 L2 4.0949E-03 5.1285E-04 2.99 6.4054E-05 3.00

L1 5.0429E-02 6.3078E-03 2.99 8.0584E-04 2.97

3 L2 4.5434E-04 2.8854E-05 3.97 1.8080E-06 3.99

L1 6.0982E-03 4.0321E-04 3.92 2.5340E-05 3.99

case. We can clearly see again that the method with P k elements are giving a uniform (k + 1)-th order of

accuracy for both the uniform and the non-uniform meshes.

Example 4.3. In order to see the accuracy of the method for nonlinear problems, we compute the classical

soliton solution of the KdV equation

ut � 3
�
u2
�
x
+ uxxx = 0 (4.3)

in �10 � x � 12. The initial condition is given by

u(x; 0) = �2 sech2(x);

The exact solution is

u(x; t) = �2 sech2(x� 4t):
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Table 4.4

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 sech2(x). Boundary condition (4.4). L2 and L1 errors.

Uniform meshes with N cells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.5292E-01 1.9098E-01 0.40 1.3019E-01 0.55 7.9780E-02 0.71

L1 9.0170E-01 6.8651E-01 0.39 4.6405E-01 0.56 2.8531E-01 0.70

1 L2 2.6512E-02 4.6652E-03 2.50 1.0108E-03 2.20 2.5906E-04 1.96

L1 1.4748E-01 3.4625E-02 2.09 1.1840E-02 1.55 3.3239E-03 1.83

2 L2 1.5317E-03 1.8083E-04 3.08 2.2642E-05 2.99 2.8335E-06 2.99

L1 1.7486E-02 2.7505E-03 2.66 3.5575E-04 2.95 4.4397E-05 3.00

3 L2 2.0631E-04 1.3981E-05 3.88 8.9054E-07 3.97 5.6029E-08 3.99

L1 2.0155E-03 2.1462E-04 3.23 1.4461E-05 3.89 9.1140E-07 3.98

Table 4.5

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 sech2(x). Boundary condition (4.4). L2 and L1 errors.

Non-uniform meshes with N cells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.4530E-01 1.9004E-01 0.37 1.3390E-01 0.50 8.4635E-02 0.66

L1 1.0172E+00 7.6826E-01 0.40 5.3383E-01 0.52 3.3655E-01 0.66

1 L2 2.7042E-02 4.9065E-03 2.46 1.0555E-03 2.21 2.6978E-04 1.97

L1 1.4490E-01 4.1570E-02 1.80 1.3925E-02 1.57 3.9129E-03 1.83

2 L2 1.9493E-03 2.0134E-04 3.27 2.4926E-05 3.01 3.1208E-06 2.99

L1 2.2876E-02 3.5163E-03 2.70 4.7161E-04 2.89 5.9033E-05 2.99

3 L2 3.0402E-04 1.5462E-05 4.29 1.0064E-06 3.94 6.3370E-08 3.99

L1 2.7735E-03 2.1464E-04 3.69 1.8358E-05 3.55 1.3119E-06 3.80

We compute the solution with two di�erent boundary conditions. Table 4.4 (uniform mesh) and Table 4.5

(non-uniform mesh) give the errors of numerical solution at t = 0:5 using the boundary condition

u(�10; t) = g1(t); ux(12; t) = g2(t); uxx(12; t) = g3(t) (4.4)

where gi(t) corresponds to the data from the exact solution. Notice that the LDG method allows an easy

implementation of such boundary conditions. Table 4.6 (uniform mesh) and Table 4.7 (non-uniform mesh)

give the errors of numerical solution using the periodic boundary conditions. Although the exact solution is

not periodic, the large size of the computational domain allows the usage of periodic boundary conditions

with negligible error. We can see from these tables that the orders of accuracy are comparable to that for

the linear case.
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Table 4.6

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 sech2(x). Periodic boundary condition. L2 and L1 errors.

Uniform meshes with N cells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.5292E-01 1.9098E-01 0.40 1.3020E-01 0.55 7.9822E-02 0.70

L1 9.0170E-01 6.8648E-01 0.39 4.6404E-01 0.56 2.8602E-01 0.69

1 L2 2.6600E-02 4.6801E-03 2.50 1.0133E-03 2.20 2.5966E-04 1.96

L1 1.4778E-01 3.4403E-02 2.10 1.1930E-02 1.52 3.3404E-03 1.84

2 L2 1.5883E-03 1.8254E-04 3.12 2.2699E-05 3.00 2.8353E-06 3.00

L1 1.7729E-02 2.7130E-03 2.70 3.5359E-04 2.94 4.4350E-05 2.99

3 L2 2.1442E-04 1.5566E-05 3.78 1.0318E-06 3.91 6.5818E-08 3.97

L1 1.9911E-03 2.2607E-04 3.14 1.5397E-05 3.88 9.7191E-07 3.98

Table 4.7

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 sech2(x). Periodic boundary condition. L2 and L1 errors.

Non-uniform meshes with N cells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.4530E-01 1.9004E-01 0.37 1.3391E-01 0.50 8.4650E-02 0.66

L1 1.0172E+00 7.6826E-01 0.40 5.3383E-01 0.52 3.3672E-01 0.66

1 L2 2.7071E-02 4.9216E-03 2.46 1.0581E-03 2.21 2.7039E-04 1.97

L1 1.4507E-01 4.1341E-02 1.81 1.3916E-02 1.57 3.9383E-03 1.82

2 L2 2.0350E-03 2.0344E-04 3.32 2.4988E-05 3.02 3.1228E-06 3.00

L1 2.2916E-02 3.4702E-03 2.72 4.6922E-04 2.88 5.8972E-05 2.99

3 L2 3.2212E-04 1.8451E-05 4.12 1.1715E-06 3.97 7.4102E-08 3.98

L1 2.8274E-03 2.2498E-04 3.65 1.9437E-05 3.53 1.3793E-06 3.81

Example 4.4. In order to see the accuracy of the method for nonlinear problems with small coeÆcient for

the third derivative term, we compute the soliton solution of the generalized KdV equation [5]

ut + ux +

�
u4

4

�
x

+ �uxxx = 0; (4.5)

in �2 � x � 3, where we take � = 0:2058� 10�4. The initial condition is given by

u(x; 0) = A sech
2
3 (K(x� x0)) (4.6)

with A = 0:2275, x0 = 0:5, and K = 3
�
A3

40�

� 1
2

. The exact solution is

u(x; t) = A sech
2
3 (K(x� x0)� !t)

where ! = K
�
1 + A3

10

�
. We compute the solution using the boundary condition

u(�2; t) = g1(t); ux(3; t) = g2(t); uxx(3; t) = g3(t) (4.7)
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Table 4.8

The GKdV equation (4.5) with initial condition (4.6) and boundary condition (4.7). L2 and L1 errors. Non-uniform

meshes with N cells. LDG methods with k = 0; 1; 2; 3. t = 1.

k N=160 N=320 N=640 N=1280

error error order error order error order

0 L2 1.6566E-02 1.1259E-02 0.56 7.0817E-03 0.67 4.1526E-03 0.77

L1 9.3056E-02 6.6829E-02 0.48 4.4502E-02 0.58 2.7539E-02 0.69

1 L2 3.8554E-04 6.0675E-05 2.66 1.1784E-05 2.36 2.8635E-06 2.04

L1 3.2635E-03 6.2508E-04 2.38 2.2689E-04 1.47 6.4595E-05 1.81

2 L2 8.2907E-06 9.5348E-07 3.12 1.1895E-07 3.00 1.5290E-08 2.96

L1 1.6684E-04 2.2545E-05 2.88 3.0858E-06 2.87 3.9503E-07 2.97

3 L2 1.7005E-06 1.3664E-07 3.63 3.0527E-09 5.48 1.9206E-10 3.99

L1 1.7607E-05 1.3291E-06 3.72 8.3962E-08 3.98 5.2861E-09 3.99

with a non-uniform mesh. The result is contained in Table 4.8.

Example 4.5. In this example we compute the classical soliton solutions of the KdV equation

ut +

�
u2

2

�
x

+ �uxxx = 0: (4.8)

The examples are those used in [14].

The single soliton case has the initial condition

u0(x) = 3c sech2 (k(x� x0)) (4.9)

with c = 0:3, x0 = 0:5, k = (1=2)
p
c=� and � = 5�10�4. The solution is computed in x 2 [0; 2] with periodic

boundary conditions, using P 2 elements with 100 cells, and is shown in Figure 4.1.

The double soliton collision case has the initial condition

u0(x) = 3c1 sech
2 (k1(x� x1)) + 3c2 sech

2 (k2(x� x2)) (4.10)

with c1 = 0:3, c2 = 0:1, x1 = 0:4, x2 = 0:8, ki = (1=2)
p
ci=� for i = 1; 2, and � = 4:84� 10�4. The solution

is computed in x 2 [0; 2] with periodic boundary conditions, using P 2 elements with 100 cells. and is shown

in Figure 4.2.

The triple soliton splitting case has the initial condition

u0(x) =
2

3
sech2

�
x� 1p
108�

�
(4.11)

with � = 10�4. The solution is computed in x 2 [0; 3] with periodic boundary conditions and is shown in

Figure 4.3.

Example 4.6. We compute in this example the KdV zero dispersion limit of conservation laws. The

equation is (4.8) with an initial condition

u(x; 0) = 2 + 0:5 sin(2�x) (4.12)

for x 2 [0; 1] with periodic boundary conditions, and we are interested in the limit when �! 0+. Theoretical

and numerical discussions about this limit can be found in [19] and [23]. Here we are mainly concerned with
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Fig. 4.1. Single soliton pro�les. Solutions of equation (4.8) with initial condition (4.9) and periodic boundary conditions

in [0,2] using P 2 elements with 100 cells. Top left: solution at t = 0; top right: t = 1; bottom left: t = 2; bottom right: space

time graph of the solution up to t = 3.

the capability of our numerical method in resolving the small scale solution structures in this limit when �

is small. For this purpose we compute the solution to t = 0:5 with � = 10�4; 10�5; 10�6 and 10�7 using P 2

elements with 300 cells for the �rst two cases, 800 cells for the third case and 1700 cells for the last case.

We have veri�ed that these are \converged" solutions in the sense that further increasing the number of

cells does not change the solutions graphically. These solutions are shown in Figure 4.4. Notice the physical

\oscillations" which are typical in such dispersive limits, see, e.g. [19]. Clearly our method is very suitable

to compute such solutions.
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Fig. 4.2. Double soliton collision pro�les. Solutions of equation (4.8) with initial condition (4.10) and periodic boundary

conditions in [0,2] using P 2 elements with 100 cells. Top left: solution at t = 0; top right: t = 1; bottom left: t = 2; bottom

right: space time graph of the solution up to t = 4.

5. Concluding remarks. We have designed a class of local discontinuous Galerkin methods for solving

KdV type equations containing third derivatives and have proven their stability for any spatial dimensions for

a general class of nonlinear equations. Numerical examples are shown to illustrate the accuracy and capability

of the methods, especially for the convection dominated cases where the coeÆcients of the third derivative

terms are small. EÆcient implicit time discretizations which have eÆcient iterative solvers maintaining the

local structure of the method, accuracy enhancement study, and more numerical experiments with physically

interesting problems constitute an ongoing project.
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Fig. 4.3. Triple soliton splitting pro�les. Solutions of equation (4.8) with initial condition (4.11) and periodic boundary

conditions in [0,3] using P 2 elements with 150 cells. Top left: solution at t = 0; top right: t = 1; bottom left: t = 2; bottom

right: space time graph of the solution up to t = 4.

about the projection S, and Andy Majda for pointing out reference [19] and test cases of zero dispersive

limits of conservation laws in Example 4.6.

REFERENCES

[1] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear,

dispersive systems, Phil. Trans. Roy. Soc. Lond. A, 272 (1972), pp. 47-78.

[2] F. Bassi and S. Rebay, A high-order accurate discontinuous �nite element method for the numerical

solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997), pp. 267-279.

21



x

u

0 0.25 0.5 0.75 1
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
P2, ε=10-4, t=0.5, n=300

x

u

0 0.25 0.5 0.75 1
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
P2, ε=10-5, t=0.5, n=300

x

u

0 0.25 0.5 0.75 1
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
P2, ε=10-6, t=0.5, n=800

x

u

0 0.25 0.5 0.75 1
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
P2, ε =10-7, t=0.5, n=1700

Fig. 4.4. Zero dispersion limit of conservation laws. Solutions of equation (4.8) with initial condition (4.12) and periodic

boundary conditions in [0,1] using P 2 elements at t = 0:5. Top left: � = 10�4 with 300 cells; top right: � = 10�5 with 300

cells; bottom left: � = 10�6 with 800 cells; bottom right: � = 10�7 with 1700 cells.

[3] R. Biswas, K. D. Devine and J. Flaherty, Parallel, adaptive �nite element methods for conserva-

tion laws, Appl. Numer. Math., 14 (1994), pp. 255-283.

[4] J. L. Bona, V. A. Dougalis and O. A. Karakashian, Fully discrete Galerkin methods for the

Korteweg-de Vries equation, Comput. Math. Appl., 12A (1986), pp. 859-884.

[5] J. L. Bona, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, Conservative, high-order

numerical schemes for the generalized Korteweg-de Vries equation, Phil. Trans. Roy. Soc. Lond. A,

351 (1995), pp. 107-164.

[6] P. Ciarlet, The �nite element method for elliptic problems, North Holland, 1975.

[7] B. Cockburn, S. Hou, and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin

22



�nite element method for conservation laws IV: the multidimensional case, Math. Comp., 54 (1990),

pp. 545-581.

[8] B. Cockburn, G. Karniadakis and C.-W. Shu, The development of discontinuous Galerkin meth-

ods, in Discontinuous Galerkin Methods: Theory, Computation and Applications, B. Cockburn, G.

Karniadakis and C.-W. Shu, editors, Lecture Notes in Computational Science and Engineering,

volume 11, Springer, 2000, Part I: Overview, pp. 3-50.

[9] B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin

�nite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84

(1989), pp. 90-113.

[10] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin �nite ele-

ment method for scalar conservation laws II: general framework, Math. Comp., 52 (1989), pp. 411-

435.

[11] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin �nite el-

ement method for scalar conservation laws V: multidimensional systems, J. Comput. Phys., 141

(1998), pp. 199-224.

[12] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection

di�usion systems, SIAM J. Numer. Anal., 35 (1998), pp. 2440-2463.

[13] B. Cockburn and C.-W. Shu, Runge-Kutta Discontinuous Galerkin methods for convection-

dominated problems, submitted to J. Sci. Comput.

[14] A. Debussche and J. Printems, Numerical simulation of the stochastic Korteweg-de Vries equation,

Physica D, 134 (1999), pp. 200-226.

[15] C.L. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math.,

54 (1994), pp. 409-427.

[16] G.-S. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous Galerkin methods, Math.

Comp., 62 (1994), pp. 531-538.

[17] O. A. Karakashian and W. R. McKinney, On the approximation of solutions of the generalized

Korteweg-de Vries equation, Math. Comput. Simulation, 37 (1994), pp. 405-416.

[18] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular

canal and on a new type of long stationary waves, Philosophical Magazine, 39 (1895), pp. 422-443.

[19] P. D. Lax, C. D. Levermore and S. Venakides, The generation and propagation of oscillations in

dispersive initial value problems and their limiting behavior, in Important Developments in Soliton

Theory, Springer Series in Nonlinear Dynamics, A.S. Fokas and V.E. Zakharov, Eds., Springer-

Verlag, 1993, pp. 205-241.

[20] W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, Tech.

Report LA-UR-73-479, Los Alamos Scienti�c Laboratory, 1973.

[21] C.-W. Shu, TVB uniformly high-order schemes for conservation laws, Math. Comp., 49 (1987), pp. 105-

121.

[22] C.-W. Shu and S. Osher, EÆcient implementation of essentially non-oscillatory shock capturing

schemes, Journal of Computational Physics, 77 (1988), pp. 439-471.

[23] S. Venakides, The zero dispersion limit of the Korteweg-de Vries equation with periodic initial data,

AMS Trans. 301 (1987), pp. 189-225.

23




